
Improving UCT Planning via
Approximate Homomorphisms

Nan Jiang
Computer Science & Eng.

University of Michigan

nanjiang@umich.edu

Satinder Singh
Computer Science & Eng.

University of Michigan

baveja@umich.edu

Richard Lewis
Department of Psychology

University of Michigan

rickl@umich.edu

ABSTRACT

In this paper we show how abstractions can help UCT’s per-
formance. Ideal abstractions are homomorphisms because
they preserve optimal policies, but they rarely exist, and
are computationally hard to find even when they do. We
show how a combination of (i) finding local abstractions in
the layered-DAG MDP induced by a set of UCT trajectories
(rather than finding abstractions in the global MDP), and
(ii) accepting approximate homomorphisms, leads to greater
prevalence of good abstractions and makes them computa-
tionally easier to find. We propose an algorithm for finding
abstractions in UCT planning and derive a lower bound on
its performance. We show empirically that it improves per-
formance on illustrative tasks, and on the game of Othello.

Categories and Subject Descriptors

I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search

General Terms

Algorithms

Keywords

Abstraction; UCT; Planning; Reinforcement learning

1. INTRODUCTION
State abstraction is a key ingredient in many approaches [1,
2] to applying value-function-based methods [3] to learning
and planning in sequential decision-making (or reinforce-
ment learning (RL)) problems with large or infinite state
spaces. Another, quite different and more recent, approach
to dealing with large state spaces in RL is the use of sample-
tree-based incremental planning methods such as Sparse-
Sampling [4] and the UCT [5] algorithms. At each online
planning step, such methods generate a search-tree from
sample trajectories and select an action greedily with re-
spect to the estimated action-value of each action choice at
the root node (the current state) computed from the tree.
The remarkable result that the sample-complexity and hence

Appears in: Alessio Lomuscio, Paul Scerri, Ana Bazzan,
and Michael Huhns (eds.), Proceedings of the 13th Inter-
national Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2014), May 5-9, 2014, Paris, France.
Copyright c© 2014, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

computational cost for each action-selection step is indepen-
dent of the size of state space [4, 5] accounts in large part
for the popularity and success of UCT and other sample-
tree-based algorithms in certain classes of domains [6, 7].
Thus, it might seem that there is no need to consider state-
abstraction in UCT (we focus on UCT though our results
should generalize to other sample-tree-based methods).

In this paper, we provide a number of results.
1) We show that good abstractions can help UCT’s perfor-
mance by improving search control, which leads to better
action choices. The ideal form of abstraction is a homo-
morphism because the optimal policies found by planning
in the abstracted problem are optimal in the unabstracted
problem. But homomorphisms are global in nature, don’t
exist in most real problems, and even if they do exist are
computationally challenging to find.
2) We present a new domain-independent algorithm for ab-
straction in UCT that exploits the local layered-DAG struc-
ture implicit in UCT’s simulated trajectories to efficiently
find approximate homomorphisms. By considering only the
local MDP rooted at the current state, the algorithm avoids
the cost of constructing abstractions in the original full MDP.
It is the combination of domain-independent abstraction
with sample-based planning that distinguishes our effort from
other work on approximate homomorphisms in MDPs [8, 9,
10, 11].
3) Empirical tests in two illustrative domains and the game
of Othello demonstrate our algorithm’s effectiveness in im-
proving UCT planning.
4) Theoretical analysis provides an upper bound for perfor-
mance loss due to inaccuracy in the empirical model and
approximations via abstraction.
One interesting overall insight obtained herein is that the
more computationally limited UCT is, the coarser are the
best-performing abstractions.

1.1 Preliminaries: MDPs and UCT
We will consider planning tasks formulated as Markov de-

cision processes (MDPs). An MDP is a tuple 〈S,A, T,R, γ〉,
where S is the state space and A is the action space. T :
S×A×S → [0, 1] is the transition function, where T (s, a, s′)
is the probability that the next state is s′ given that current
state is s and action a is taken, R : S × A → R is the re-
ward function, with R(s, a) being the expected immediate
reward of taking action a in state s, and γ is a discount
factor that determines the tradeoff between short-term and
long-term rewards. A deterministic policy π : S → A spec-
ifies the action to take in each of the states. The value
function of state s with respect to policy π is defined as

1289

V π(s) = E
[
∑∞

t=1 γ
t−1rt

∣

∣s0 = s;π
]

. Similarly, a state-action

value function is defined as Qπ(s, a) = E
[
∑∞

t=1 γ
t−1rt

∣

∣s0 =

s, a0 = a;π
]

. The optimal policy π∗ has value function and
action-value function V ∗ = maxπ V π and Q∗ = maxπ Qπ.
Taking actions greedily with respect toQ∗ yields the optimal
policy π∗.
UCT. At each time step, UCT samples multiple trajec-

tories starting from the current state to some finite depth
using a generative model of the MDP, and recommends an
action to execute based on the samples. When sampling,
UCT decides what action to simulate by balancing exploita-
tion and exploration. At a particular state-depth pair (or
state node) (s, d), a score is computed for each action and
the action with the highest score is selected. The score for
action a in (s, d) is

Q(s, a, d) + C
√

log(n(s, d))/n(s, a, d). (1)

The first component of the score, Q(s, a, d), is the Monte-
carlo action-value estimate from the trajectories sampled
thus far of the expected discounted return obtained by tak-
ing action a at (s, d). This component reflects exploitation.
The second component encourages exploration in a state
(s, d) by giving a larger reward bonus to actions a taken less
frequently in that state, where C is a positive parameter
called the UCB scalar, n(s, d) is the number of trajectories
that pass through (s, d) and n(s, a, d) is the number of tra-
jectories that select action a in state s at depth d. After
a prescribed number of trajectories are sampled, UCT rec-
ommends the action with the highest action-value estimate
at the root node. Overall, the algorithm takes 3 param-
eters, the number of trajectories per step, planning depth
dmax and UCB scalar C. Given infinite number of trajecto-
ries, the probability of recommending a suboptimal action
converges to zero when the domain is episodic and dmax is
large enough [5], otherwise there exists a truncation error
bounded by γ and dmax [4].

2. ABSTRACTIONS HELP UCT
We first define perfect abstractions, i.e., global homomor-

phisms, and show that they can indeed help UCT.

Homomorphisms. A homomorphism is a perfect abstrac-
tion in the sense that the induced abstract MDP is equiva-
lent to the original MDP for planning purposes. More for-
mally, an MDP homomorphism h from a source MDP (unab-
stracted problem) M = 〈S,A, T,R, γ〉 to a target MDP (ab-

stracted problem) M̃ = 〈S̃, A, T̃ , R̃, γ〉 is a surjection (map-

ping) from S to S̃ such that ∀s ∈ S, a ∈ A, s̃′ ∈ S̃

R̃(h(s), a) = R(s, a) and T̃ (h(s), a, s̃′) =
∑

s′:h(s′)=s̃′

T (s, a, s′).

The fundamental result is that the distribution over reward
trajectories for any policy π̃ in M̃ is identical to the dis-
tribution over the reward trajectories for the corresponding
lifted policy in M (where the lifted policy π : s 7→ π̃(h(s))).

As a consequence, for any optimal policy π̃∗ in M̃ the cor-
responding lifted policy is optimal in M .

Incorporating abstractions in UCT. In UCT,Q(s, a, d),
n(s, d) and n(s, a, d) are used to compute the online score
that in turn helps select simulation actions in generating tra-
jectories. Given an abstraction h that clusters unabstracted

(a)

0 100 200 300 400 500
−10

−9.5

−9

−8.5

−8

−7.5

−7

A
v
e

ra
g

e
 C

u
m

u
la

ti
v
e

 R
e

w
a

rd

trajectories

UCT with homomorphism

UCT

(b)

Figure 1: (a) The Redundant-Object domain (on top) and
the Sailing-Wind domain (on bottom). (b) Performance
comparison in Redundant-Object domain between UCT with
and without abstraction (perfect homomorphisms).

states, whether it is a homomorphism or not, we simply re-
place s with h(s) when we store, retrieve and update these
statistics. This is equivalent to running UCT with a simu-
lator of the abstract MDP, while generating samples from a
simulator of the unabstracted MDP.

Illustrative domain and its homomorphism. The
Redundant-object domain is shown in the top half of Fig-
ure 1a. In a 10 × 10 gird world, the agent starts in top left
corner and must get to the bottom right. It can move right
and move down, with 0.1 probability of failure (moving in
the other direction). There is a movement cost as a function
of the agent’s position (predetermined by randomly draw-
ing from U [−1, 0] for moving down, and U [−2, 0] for moving
right). Discount factor is 0.99. There is another randomly
moving object that is visible to the agent but that has no
impact on the agent. The state is the agent’s position and
the object’s position. There is an obvious abstraction that
is a (perfect) homomorphism in which the abstracted state
is just the agent’s position.

Results. To illustrate that global homomorphisms can
help, we compare the performance of UCT with full state
and UCT with abstracted state.
UCT configurations. Planning depth was fixed to 20, as an
episode typically ends within 20 steps. We evaluated 20, 50,
200 and 500 trajectories. A range, e{−4,−3.6,...,6}, of values
for the UCB exploration parameter were evaluated and the
results presented are for the best choice of exploration pa-
rameters for each configuration (number of trajectories and
state representation).

Figure 1b presents cumulative reward averaged over 2000
trials (with standard errors) as a function of the number of
UCT trajectories. In all cases using the abstraction helped
UCT. When the number of trajectories is small, the perfor-
mance gap is small because UCT samples actions more than
once in very few states, even with the abstraction. With a
large number of trajectories, the gap is also insignificant be-
cause both algorithms are nearly-optimal.

Summary. Abstractions can help UCT’s performance by
changing both the exploitation component of action-values,
by aggregating more trajectories into the Monte-Carlo esti-
mates, and the exploration component of reward bonuses,
by increasing visit-counts for state-depth nodes and state-
depth-actions. Together these changes can lead to improved
search control and thus to better action choices.

1290

(a)

(b)
(c)

Figure 2: (a)(c) An MDP in which there is a local but no
global homomorphism. (b) The rockSample domain.

2.1 From global & exact to
local & approximate homomorphisms

There are two major challenges in exploiting global & exact
homomorphisms in practice. First, non-trivial homomor-
phisms don’t exist in most problems of interest because of
the strict requirements of perfect abstraction. Second, even
if non-trivial homomorphisms exist, finding the coarsest one
is an NP-hard problem (see e.g., [8, 12]). The difficulty stems
from the fact that aggregated states need to have the same
immediate rewards as well as distributions over the next
abstract state, which forms a recursive definition; this ne-
cessitates an iterative procedure of refining a partition over
the state space until convergence, which is computationally
intensive [13]. We address these challenges in three steps.

Step 1: Local Homomorphisms. At each planning
step, UCT considers only the directed acyclic graph (DAG)
of states reachable from the current state in a number of time
steps less than or equal to the depth parameter of UCT. This
induces a local-layered MDP (that UCT samples trajectories
from) in which each node in the corresponding DAG is the
pair 〈state of the original MDP, depth in the DAG〉. A lo-
cal homomorphism is a homomorphism for the local-layered
MDP induced from an MDP and a current state and depth.
We discuss an example below.
Claim: There are MDPs in which there is no nontrivial

global homomorphism, but there are local homomorphisms.
Proof by example. In the 1-d grid world shown in Fig-

ure 2a, the agent has 2 actions, one which takes a step to-
wards the center (dotted action) and the other which takes a
step away from the center (solid action); actions that would
take the agent off-grid have no effect. It gets +1 reward
when it moves to the location with the X symbol and gets 0
otherwise. Due to the asymmetry in the location of X, the
domain has no homomorphism except the trivial one (iso-
morphism). The DAG for the local-layered MDP rooted at
s2 with depth 4 is shown in Figure 2c, and the DAG of the
corresponding abstract local-layered MDP generated by a
local homomorphism is shown on the right; the nodes clus-
tered together level by level are shown. By inspection it can
be seen that the reward for every sequence of actions is the
same in both DAGs.
Since by definition all global homomorphisms are local

homomorphisms, and from the example above there are lo-
cal homomorphisms even when there are no global homo-
morphisms, we expect local homomorphisms to be a more
useful target for learning abstractions for local-tree-search-
based algorithms like UCT.

Claim: Computing a local homomorphism from a local-
layered MDP is at worst quadratic in the number of nodes
in the corresponding DAG.

Proof (constructive) by provision of a quadratic Algo-
rithm 1 below for computing approximate local homomor-
phisms (exact local homomorphisms are a special case).

Thus, local homomorphisms are far easier to compute and
more prevalent than global homomorphisms. Nevertheless,
the requirement for exactness limits their applicability.

Step 2: Approximate Global Homomorphisms. Next
we relax exactness by allowing approximation errors in a
global abstraction h as follows

ǫR = max
s∈S,a∈A

∣

∣

∣
R(s, a)− R̃(h(s), a)

∣

∣

∣
(2)

ǫT = max
s∈S,a∈A

∑

s̃′∈S̃

∣

∣

∣

∑

s′∈h−1(s̃′)

T (s, a, s′)− T̃ (h(s), a, s̃′)
∣

∣

∣
(3)

where ǫR is the worst-case absolute difference in expected
reward, while ǫT is the worst-case l1-distance between the
probability vectors of distribution over next abstract states,
which falls in the range [0, 2]. Homomorphisms are recov-
ered by requiring ǫR = 0 and ǫT = 0. The key reason to
use approximate homomorphisms as the formulation of ap-
proximate abstraction is the result that the optimal policy
found in M̃ when lifted to M incurs a loss that is upper-
bounded in the worst-case by a function of ǫR and ǫT [10].
But finding a global approximate homomorphism is just as
hard as finding an exact one. To address this we combine
Step 1 and Step 2 next.

Step 3: A quadratic algorithm for finding Local Ap-
proximate Homomorphisms. Local approximate ho-
momorphisms can be defined for a local-layered MDP just
as for the exact homomorphisms case. Algorithm 1 (see
panel; adapted from [14]) finds a local approximate homo-
morphism by a bottom-up procedure that aggregates nodes
level-by-level in the DAG corresponding to a given local-
layered MDP. It takes two input parameters (ǫT , ǫR), and
clusters nodes within each level of the DAG whose approxi-
mation errors (as computed via Equations 2 and 3) are up-
per bounded by twice the input parameters. If the input
is (0, 0), perfect (possibly trivial) homomorphisms will be
found. In general, the algorithm finds coarser abstractions
with greater approximation parameters, ǫT , ǫR, though there
will be intervals on these quantities in which the abstrac-
tions found will be the same. The quadratic in the number
of nodes in the DAG computational complexity of this al-
gorithm is clear from inspection (each node in a layer only
considers nodes in the layer below and in the worst case
considers each node in the layer below at most once).

3. A TRADEOFF: COARSENESS BENEFITS

BUT APPROXIMATION HURTS
One concern with Algorithm 1 is that it assumes that a local-
layered MDP is available at each planning step. Instead,
UCT has a set of trajectories sampled from the local-layered
MDP.We will address this practical concern in the final piece
of our contribution in §4. Here, we assume access to the
local-layered MDP in order to cleanly study the following
tradeoff. Recall that with exact homomorphisms the theo-
retical guarantees of UCT are retained. With approximate
homomorphisms, however, this guarantee no longer applies.

1291

Algorithm 1 Backwards-induction algorithm for finding
approximate homomorphisms in a local-layered MDP.
Input parameter: (ǫT , ǫR). Let d(s) be the depth of a state
and Sd = {s : d(s) = d}. The aggregation of states at depth
d is represented as hd.

Pick arbitrary s′ in Sdmax .
hdmax ← ∀s, s 7→ s′.
for d = dmax − 1 to 0 do

hd ← empty map.
for all s ∈ Sd do

if (∃s1 in the value set of hd, s.t. ∀a ∈ A, |R(s, a)−
R(s1, a)| ≤ ǫR and
∑

s̃′∈hd+1(Sd+1)

∣

∣

∣

∑

s′∈h
−1

d+1
(s̃′)

(T (s, a, s′)− T (s1, a, s
′))

∣

∣

∣
≤

ǫT) then
add (s 7→ s1) to hd

else
add (s 7→ s) to hd.

end if
end for

end for
return h : s 7→ hd(s)(s)

10
2

10
3

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

trajectories

L
in

e
a

r
re

g
re

s
s
io

n
 c

o
e

ff
ic

ie
n

t
o

f
p

e
rf

o
rm

a
n

c
e

 o
n

 a
b

s
tr

a
c
ti
o

n
 c

o
a

rs
e

n
e

s
s

The coarser
the better

The finer
the better

trajectories increases

Figure 3: Relation between abstraction-coarseness and al-
gorithm performance given different number of trajectories
available to UCT.

Intuitively, UCT should benefit from coarseness of the ab-
straction but be harmed by the inaccuracy/approximation
in the abstraction. This sets up a tradeoff that we explore
in this section. Our specific hypothesis is that the fewer
computational resources available to UCT (the fewer trajec-
tories), the coarser the ideal abstraction.

Domain Description. The Sailing-Wind domain shown
in Figure 1a (bottom) is inspired by a benchmark problem
for testing variants of UCT [5]. The agent must get to the
goal in the bottom right corner starting from the top left
corner in the face of a stochastic wind that changes direc-
tion at every step according to a random walk (on five pos-
sible values with equal probabilities of decreasing, increas-
ing and holding, with an initial value of 3 for all trials).
The agent’s two actions move down or right are determinis-
tic. The state has a factored representation, (x, y, w), where
(x, y) is the position of the agent and w is the wind direc-
tion. The reward function is the following: R(x, y, w, a) =
f(x, y, a)ga(w), where gdown(w) = tan(wπ/12) and gright(w) =

cot(wπ/12), and f is the reward function used in the Redundant-
Object domain. The discount factor γ = 0.99.

We derived approximate local homomorphisms of vary-
ing coarseness by using Algorithm 1 over a range of val-
ues1 for (ǫT , ǫR). Then we evaluated these abstractions with
many different computational bounds on UCT (specifically,
50, 75, 100, 150, 200, 300, 400, 500, 1000 and 2000 trajec-
tories with the UCT exploration parameter optimized sepa-
rately for each case). According to our hypothesis, when the
number of trajectories is small, coarse abstractions should
perform better. We tested this prediction by computing a
linear regression of performance on coarseness (see footnote2

for scalar definition) at each computational bound. The re-
gression coefficients are plotted in Figure 3. The expected
pattern is observed: the coefficients are positive at small
numbers of trajectories and then decrease, finally dropping
below zero as finer abstractions perform better.

4. LOCALAPPROXIMATEHOMOMORPHISMS

FROM SAMPLE TRAJECTORIES
The last piece needed to make a practical abstraction al-
gorithm for use with UCT is to drop the requirement of
access to the true local-layered MDP in Algorithm 1, which
means that the algorithm no longer has access to functions
T and R, but only to the sample trajectories. The simple
idea is to use the empirical local-layered MDP induced by a
set of sampled trajectories as an approximation to the local
MDP3. However, if the abstraction is done after UCT has
finished generating its trajectories it will have no influence
on the trajectories generated, and hence no effect on the
action chosen (recall that the action chosen is greedy w.r.t
the Monte-Carlo action-value estimates at the root node).
Hence, we divide the UCT trajectory generation phase into
a number of batches. Within each batch we run UCT as de-
scribed above using the approximate homomorphism com-
puted at the end of the previous batch as follows. After
each batch we update the empirical layered-MDP using all
the trajectories sampled thus far and recompute an approxi-
mate homomorphism, and finally we recompute all the UCT
values (action-values and reward bonuses) to determine the
sampling of the next batch of trajectories. The number of
batches, denoted l, is an input parameter of the algorithm.

There are a couple of subtleties that must be dealt with.
If a state-depth pair does not appear in the sampled trajec-
tories in the batches thus far, but is encountered in later tra-
jectories, it is treated as unabstracted. If a state-depth pair
is “under-sampled” in that at least one action has not been
tried thus far in the sampled trajectories, it is aggressively
aggregated with all other similarly under-sampled states at

1ǫT = {0, 0.33, . . . , 2.0} and ǫR = {0, 1.0, . . . , 7.0}.
2At each depth of the local layered MDP rooted at the ini-
tial state, the number of abstract states is divided by the
number of primitive states and the ratio is then averaged
over all depths except the bottom one. A ratio of 1 means
no abstraction at all, while a ratio close to 0 indicates that
the abstraction is very coarse. We use the negative of this
ratio as an indicator of abstraction-coarseness.
3If the domain has a large or infinite branching factor, the
empirical MDP either converges slowly or does not converge.
However, large branching factor is known to be an issue for
UCT itself and tackled by its variants [15, 16]. We focus on
showing improvement relative to basic UCT, while leaving
application of our ideas to variants of UCT to future work.

1292

that depth. These methods for handling these challenging
cases were determined through empirical evaluation of sev-
eral alternate methods. With these modifications to Algo-
rithm 1, the pseudo-code of our proposed algorithm is spec-
ified in Algorithm 2.

Algorithm 2 Algorithm for finding approximate homomor-
phisms based on sampled trajectories. Works with UCT us-
ing n trajectories per step. Input parameters: (ǫT , ǫR, l); l
is the number of batch updates of the empirical local MDP
and ǫT , ǫR are the abstraction parameters.

h← identity function.
for m = 1 to l do

Sample the next n/l trajectories in UCT with abstrac-
tion h.

Build empirical model for the local layered MDP from
the mn/l trajectories sampled so far.

Construct abstraction h′ using Algorithm 1 (modified
as specified in §4) with parameter (ǫT , ǫR).

h← h′.
end for

5. EMPIRICAL EVALUATION
Experiment 1: Comparing abstractions derived from
local MDPs (Algorithm 1) and those derived from
sampled trajectories (Algorithm 2). The objective is
to see how much of the gain due to abstractions achieved by
the impractical Algorithm 1 on the Sailing-Wind domain of
§3 can be recovered by the use of the practical Algorithm 2.
Figure 4 shows how our algorithm performs under different
parameters for the cases of 50 and 100 UCT trajectories. In
the top two graphs, the difference between the two dashed
lines is the improvement achieved by the best abstraction
found by Algorithm 1 ((ǫT , ǫR) = (2.0, 6.0) for 50 trajecto-
ries and (1.34, 4.0) for 100 trajectories) relative to no ab-
straction. Visually it is clear that Algorithm 2 (the solid
line curve) recovers about half the gain of Algorithm 1. The
bottom two graphs are scatter plots that show the robust-
ness of performance against variation in the approximation
parameters. See Figure4 caption for more details.

Experiment 2: Extension to POMDPs. UCT has
been generalized [17] to POMDP settings by treating history
as state and using a particle representation for the root state.
Our Algorithm 2 also generalizes to POMDPs straightfor-
wardly. UCT does not explicitly exploit any structure of
the belief-state space, while our algorithm can potentially
find and leverage such structures to improve performance
in terms of abstractions. We evaluate this possibility in a
benchmark POMDP problem called rockSample [18], shown
in Figure 2b (in which there are positive-reward and negative-
reward rocks and the agent can act to receive distance-
dependent noisy signals about the quality of rocks; see [18]
for a detailed domain description).
UCT Configuration. Planning depth is set to 20, which

is sufficient considering the world’s size. The number of
trajectories is set to 1000, 2000 and 5000.
Results. Results are shown in Figure 5. Algorithm 2

with the best # batches parameter always outperforms UCT
with no abstractions under different number of trajectories
in planning (top row of graphs). Furthermore, standard
UCT only has slight improvement when given more trajec-

2 4 6 8 10
−9.6

−9.4

−9.2

−9

50 trajectories

batches

A
v
e

ra
g

e
 C

u
m

u
la

ti
v
e

 R
e

w
a

rd

Best of Alg 1

No abstraction

(ε
T
, ε

R
) = (1.67, 4)

0 0.5 1 1.5 2

0

2

4

6

8

ε
T

ε
R

4 batches

2 4 6 8 10
−8.2

−8.1

−8

−7.9

−7.8

−7.7

100 trajectories

batches

A
v
e

ra
g

e
 C

u
m

u
la

ti
v
e

 R
e

w
a

rd

Best of Alg 1

No abstraction

(ε
T
, ε

R
) = (1.67, 3)

0 0.5 1 1.5 2

0

2

4

6

8

ε
T

ε
R

4 batches

Figure 4: Performance of Algorithm 2 in Sailing-wind do-
main for 50 and 100 UCT trajectories. The top two graphs
show performance as # batches (l) increases. The upper
dashed line is the best performance obtained by Algorithm 1,
and the lower dashed line is the performance when no ab-
straction is used. The fixed approximation parameters are
the best picked from range indicated in the bottom two
graphs. The bottom two graphs show performance as ap-
proximation parameter varies (# batches fixed to l = 4).
The size of the • at a (ǫT , ǫR) position on the graph indi-
cates the difference in performance of our Algorithm 2 from
baseline (no point is worse than baseline in these two graphs)
at that parameter setting. To get a sense of scale, note that
the size of the • at (1.67, 4) in the bottom left figure corre-
sponds to the performance difference at 4 batches in the top
left figure. All results are averaged over 20000 trials.

tories, while our algorithm’s performance improves signifi-
cantly. The bottom row of graphs shows that our algorithm
is robust against approximation errors. Only for very large
(ǫT , ǫR) is our algorithm worse than the baseline.

Parameter selection. Algorithm 2 takes three parame-
ters: the number of batches l and the allowed approximation
errors (ǫT , ǫR). How should values for these parameters be
selected? For # batches, we observe the following trade-off:
when the # batches is very small (such as 1 or 2), many
trajectories receive no benefit from abstractions; when #
batches is large (> 10), early abstractions are constructed
from (inaccurate) models constructed from small numbers
of trajectories, and furthermore the computational cost of
finding abstractions many times is also greater. From our
empirical experiments (see Figures 4 and 5), it seems that
4 is a good choice for # batches across domains, and we fix
l = 4 for the remaining experiments. Our empirical experi-
ments suggest that Algorithm 2 may also be robust against
variation in the approximation error parameters (ǫT , ǫR) (see
the scatter plots in Figure 4 and Figure 5) and so the search
for good values may be easy. The result of applying the al-

1293

0 5 10
9

10

11

12

13

batches

A
v
e

ra
g

e
 c

u
m

u
la

ti
v
e

 r
e

w
a

rd
1000 trajectories

ε
T
=1.5,ε

R
=5

No abstraction

0 1 2

0

5

10

15

20

ε
T

ε
R

4 batches

0 5 10
9

10

11

12

13

batches

A
v
e

ra
g

e
 c

u
m

u
la

ti
v
e

 r
e

w
a

rd

2000 trajectories

ε
T
=1.75,ε

R
=7.5

No abstraction

0 1 2

0

5

10

15

20

ε
T

ε
R

4 batches

0 5 10
9

10

11

12

13

batches

A
v
e

ra
g

e
 c

u
m

u
la

ti
v
e

 r
e

w
a

rd

5000 trajectories

ε
T
=1.5,ε

R
=0

No abstraction

0 1 2

0

5

10

15

20

ε
T

ε
R

4 batches

Figure 5: Performance of Algorithm 2 on the rockSample
domain as #batches increases (top row) and as approxima-
tion parameters vary (bottom row). In the top graphs, the
dashed line shows the performance of UCT without abstrac-
tion; the approximation parameters are the best picked from
the range spanned in the bottom graphs. For the bottom
graphs, a • indicates better performance than baseline (no
abstraction), and a ◦ indicates worse performance; the size
of the •/◦ indicates the magnitude of the performance dif-
ference. All results are averaged over 20000 trials.

gorithm to Othello, described next, is consistent with this
conjecture. In future work we will consider online methods
for learning good values of all three parameters.

Experiment 3: Application to Othello. Our final ex-
periment is an application of Algorithm 2 to the 2-player
board game of Othello. It has been shown that UCT-based
agents can be competitive players in this game [19], and
we wanted to see if we can improve their performance via
abstractions. This domain is different from the previous do-
mains in three ways. (1) The action space is inhomogeneous
(different boards can have different numbers of legal moves).
Only considering states with exactly the same number of ac-
tions for aggregation is too strict to find useful abstractions.
Therefore, some form of action aggregation is necessary. (2)
When applying UCT to board games, every trajectory has
to be sampled to the end of the game because the only re-
ward signal is a binary value indicating whether the player
wins or not. Thus, with a small number of very long trajec-
tories most states except for ones close to the root will not
have all their actions explored even once. Next we propose
a variation of Algorithm 2 for dealing with these issues.
Modified Algorithm. The basic modification is to trun-

cate the tree at the depth below which there is very little
search. Before aggregation, all under-sampled nodes are re-
moved from the empirical MDP. For each remaining (s, a, d)
tuple, if any of the next states (in Othello there is only one
next state due to determinism) has been removed, (s, a, d)
is treated as a terminal state that obtains a reward equal to
the Monte-Carlo Q-value estimate of (s, a, d). For the trun-
cated empirical local-layered MDP, we first perform action
abstraction to combine similar actions at a state and then
allow permutations when trying to match up the abstract
actions of 2 states, as done in [14]. Since transitions in Oth-
ello are deterministic, the ǫT parameter no longer plays a
role and so only ǫR need be defined for the algorithm.

Comparison to a domain-specific heuristic. We compare
our algorithm to RAVE, a well-known heuristic that im-
proves UCT performance in board games, whose efficiency
has been proven in Monte-carlo Go [20]. RAVE general-
izes value estimates among state-action pairs that share the
same action based on the observation that putting a piece
at a particular position usually has similar values under
different boards. It is a domain-specific heuristic: the as-
sumption that state-action pairs with the same action have
similar values holds in board games, resource allocation do-
mains, and some other problems with similar structures. In
contrast, our algorithm generalizes value estimates among
state-action pairs that are similar under the measure of ap-
proximate homomorphisms found via a domain independent
method. But given that both approaches share the idea of
generalizing value estimates, we compare our algorithm to
RAVE in Othello. Our specific implementation follows the
MC-RAVE algorithm with handed schedule [20] (see foot-
note4 for details.)

Results. Table 1 presents the percentage of games won
by the player with black pieces against the player with white
pieces. Each column label is the number of UCT trajectories
used by the black player vs. the white player (four combi-
nations of 1000 and 5000). In all cases the white player
uses standard unabstracted UCT. The first row of the table
reports results when the black player also uses standard un-
abstracted UCT and thus sets the baseline for all the other
rows. The rows labeled Algorithm 2 use the modified algo-
rithm described above, while the rows labeled RAVE all use
MC-RAVE. The entries in bold are statistically significantly
better than the baseline entries. Thus, at least for the cases
when the black player is at the same or fewer number of UCT
trajectories relative to the white player, the use of our algo-
rithm for abstraction yields about 4% to 5% improvement
in performance. In the third column, the black player has
many more UCT trajectories relative to the white player and
hence is at a considerable advantage (baseline performance
is 73% wins) which makes it harder for abstractions to im-
prove performance. Overall, the results show that using the
domain-independent abstraction algorithm can improve the
performance of an already state-of-the-art algorithm, UCT,
on Othello. On the other hand, our competitor RAVE un-
der its best k parameter is slightly better than standard
UCT, but not as good as our algorithm with the best pa-
rameter. Furthermore, as k increases to a large value, the
performance is worse than standard UCT, which is expected
as the algorithm relies too much on biased estimates5.

4Recall that in standard UCT, the sampling policy selects
actions that maximize Q(s, a, d) + C

√

log(ns,d)/ns,a,d. In
RAVE, Q(s, a) is replaced by a linear combination of the
Monte-carlo value estimate Q(s, a, d) and the All-Moves-As-

First (AMAF) value Q̃(s, a, d). The AMAF value is the
return averaged over the trajectories that satisfy the follow-
ing conditions: (1) goes through s at depth d; (2) executes
action a at any point after depth d. The weight on AMAF
value is denoted as β(s, a, d), which decreases to 0 as ns,a,d

tends to infinity so that the convergence of UCT is preserved.
The handed schedule picks β(s, a, d) to be

√

k/(3ns,d + k),
where k is a positive parameter controlling the speed with
which β decreases. The smaller k is, the faster β decreases
and the more quickly the algorithm converges to standard
UCT. We present results for k = 1, 2, 5, 10, 100, 1000.
5This phenomenon is not seen in the experiments with Go,
where performance is maintained even for very large k,

1294

Table 1: Results from Othello,
comparing performance of Algo-
rithm 2 (modified to deal with
under-sampling as described in the
text) to a domain-specific heuristic
(RAVE) previously used in Othello
and other board games. Batch pa-
rameter is fixed to l = 4. Table
entries are winning percentage for
black. The numbers in parenthe-
ses in the first row are the standard
errors; they are approximately the
same for the remaining rows. See
text for description of the RAVE
parameter k and other details.

black trajectories vs. # white trajectories
Black player 1000 vs 1000 1000 vs 5000 5000 vs 1000 5000 vs 5000

UCT 45.9(0.8) 20.7(0.7) 73.0(0.7) 43.7(0.8)

Algorithm 2 (ǫR = 0.0) 48.5(1.1) 24.5(0.9) 73.2(0.9) 47.2(1.1)
Algorithm 2 (ǫR = 0.1) 49.8 22.3 73.1 48.9
Algorithm 2 (ǫR = 0.2) 46.9 21.8 74.7 46.3
Algorithm 2 (ǫR = 0.5) 42.0 19.3 73.9 46.6

RAVE (k = 1) 48.0 20.3 71.8 46.6
RAVE (k = 2) 47.2 21.7 70.8 43.8
RAVE (k = 5) 46.4 22.8 71.9 44.4
RAVE (k = 10) 45.7 19.5 71.0 44.7
RAVE (k = 100) 44.6 20.6 69.9 40.3
RAVE (k = 1000) 38.7 16.4 65.4 36.9

6. BOUNDING PERFORMANCE LOSS
Algorithm 2 builds empirical local MDPs from trajectories
sampled by UCT and finds approximate homomorphisms
in the empirical local MDPs. In previous sections we have
shown that this can help improve performance of UCT. In
this section, we provide a theoretical bound on how lossy
(in sleeking actions) the constructed approximate homomor-
phisms could be relative to the true local MDP. The con-
struction is lossy in two ways: (1) inaccuracy in the em-
pirical MDP (controlled by the number of trajectories, n,
sampled by UCT), and (2) approximation errors allowed in
the abstractions (controlled by input parameters to the al-
gorithm). Note that even if UCT was allowed an infinite
number of trajectories, in which case the empirical local
MDP would converge to the true local MDP, the approx-
imate homomorphism based procedure would still generate
loss in value. Next we define the notion of loss in value along
with some notation useful for the analysis.
Notation & Objective of Analysis: For the current state
of interest, let the true local layered MDP with depth dmax

be M . In the first step that introduces value-loss, UCT sam-
ples n trajectories in M and builds an empirical MDP M̂ .
In a second step that also introduces value-loss, an approx-
imate homomorphism h maps M̂ to an abstract MDP M̂h

constructed by applying Algorithm 1 to M̂ with parameter

(
ǫ′
T

2
,
ǫ′
R

2
) (hence the approximation error of the constructed

abstraction is at most (ǫ′T , ǫ
′
R))

6. Our analytical objec-
tive is to bound the loss of the abstraction, i.e., to bound

‖V π∗

M − V
π∗

h

M ‖∞, where V π
M is the expected value function of

policy π evaluated in MDP M , and π∗ is the optimal policy
in M , while π∗

h is the optimal policy in M̂h lifted to true
local MDP M .
Our main result, presented next, establishes that given

any choice of error-parameters ηT and ηR, there is a num-
ber of trajectories, above which the loss introduced by the
first of the two sources of error (inaccuracy in the empiri-
cal MDP) is bounded with high probability. Of course, the
loss function also contains terms that are a function of ǫ′T
and ǫ′R, the second of the two sources of error (approximate
homomorphisms).

which shows that ASAF is a heuristic that works well for
Go but not as well for Othello.
6We use P , P̂ and P̂h to distinguish transition probabilities

of M , M̂ and M̂h, and similarly for reward.

Theorem 1 (Main Result). ∀ηT , ηR > 0, δ ∈ (0, 1),

‖V π∗

M − V
π∗

h

M ‖∞ ≤
2(ǫ′R + ηR)

1− γ
+

γ(Rmax −Rmin)(ǫ
′
T + ηT)

(1− γ)2

holds with probability at least 1− δ when

n > max{exp(dmax)
[

log
(

a(KB)dmax/δ
)

/b
]

, N}

and a
def
= max{3dmax, 6B}

b
def
= min{2cp2, 2cη2

R/(Rmax −Rmin)
2, 2cη2

T /B
2}

where (1) n is the number of UCT trajectories, (2) K is the
number of actions under each state, (3) B is the maximal
number of possible next states from a state-action pair, (4)

p
def
= min

(s,a,s1,d):P (s,a,s1,d))>0
P (s, a, s1, d))/2, (5) [Rmin, Rmax]

is the range of reward in M, M̂ and M̂h, (6) N, c are positive
constants that do not depend on the choice of ηT , ηR.

We sketch the proof of Theorem 1 with the help of the
following three lemmas:

Lemma 2. ∃N, c > 0, ∀ηT , ηR > 0, when n > N ,
maxs,a,d

∑

s1

∣

∣P̂ (s, a, s1, d)− P (s, a, s1, d)
∣

∣ ≤ ηT and

maxs,a,d |R̂(s, a, d) − R(s, a, d)| ≤ ηR holds with probability
at least

1− (KB)dmax

(

dmax exp(−2p
2c log(dmax)(n))

+2 exp(−2c log(dmax)(n)η2
R/(Rmax −Rmin)

2)

+2B exp(−2η2
T c log

(dmax)(n)/B2)
)

(4)
Lemma 2 states that for any ηR, ηT there is a number of
trajectories after which the error in the empirical MDP’s re-
ward function and transition probabilities are bounded by
the given parameters with high probability. Given failure
probability δ, we use this bound to find satisfying n in The-
orem 1.

Lemma 3. Let the approximation errors for h : M 7→
M̂h be (ǫT , ǫR). If the conditions for Lemma 2 are satisfied,
then ǫT ≤ ǫ′T + ηT and ǫR ≤ ǫ′R + ηR.

Lemma 3 is essentially triangle inequality for distances; the
proof is elementary and hence omitted here.

Lemma 4. [Ravindran and Barto, 2004] If the condi-
tions for Lemma 2 are satisfied, then

‖V π∗

M − V
π∗

h

M ‖∞ ≤
2ǫR
1− γ

+
γ(Rmax −Rmin)ǫT

(1− γ)2

1295

The main result of Theorem 1 follows from Lemma 4 and
so the novel part is our proof of Lemma 2 which we can
only briefly sketch here because of space constraints. The
proof has two steps: (1) bound the probability that P̂ and

R̂ are not (ηT , ηR) accurate for some arbitrary (s, a, d), and
(2) apply that to the whole empirical MDP by union bound.
To obtained (1), we first bound ns,a,d (the number of visits
of (s, a, d)), and then the result follows directly from Hoeffd-
ing’s inequality. The bound for visit counts is given in the
following lemma.

Lemma 5. ∃N, c > 0 s.t. ∀n > N ,

P

{

ns,a,d ≥ c log(d+1)(n)
}

≥ 1− exp(−2p2c log(dmax)(n)))d

Proof. The lemma is proved by induction and builds cru-
cially on a result of Kocsis and Szepesvari (2007; their The-
orem 3) that provides a lower bound on the number of times
an action is tried in a state-depth pair as a function of how
many times that state-depth pair has been visited. The com-
plete version of the proof can be found in http://web.eecs.

umich.edu/~baveja/papers/aamas-2014-theory.pdf.

7. CONCLUSION AND FUTUREWORK
We showed how online domain-independent algorithms for
discovering good state abstractions can improve the perfor-
mance of UCT, a state-of-the-art sample-tree-based plan-
ning method. Our contributions include: (1) providing some
insight into how abstractions can help UCT by improving
search control; (2) providing a practical algorithm for auto-
matically finding abstractions via local & approximate ho-
momorphisms in UCT planning; (3) demonstrating that our
algorithm can be effective in some illustrative domains as
well as in the game of Othello; (4) upper bounding perfor-
mance loss due to model inaccuracy and approximation in
abstraction. Stronger theoretical results on the usefulness
of abstractions in UCT await future work.

Acknowledgments: This work was supported by NSF grant
IIS-1148668. Any opinions, findings, conclusions, or recom-
mendations expressed here are those of the authors and do
not necessarily reflect the views of the sponsors.

8. REFERENCES
[1] Balaraman Ravindran and Andrew G Barto. Model

minimization in hierarchical reinforcement learning. In
5th Symposium on Abstraction, Reformulation, and
Approximation, pages 196–211, 2002.

[2] Thomas G Dietterich. Hierarchical reinforcement
learning with the MAXQ value function
decomposition. Journal of Artificial Intelligence
Research, 13:227–303, 2000.

[3] Richard S Sutton, David A McAllester, Satinder
Singh, and Yishay Mansour. Policy gradient methods
for reinforcement learning with function
approximation. In Advances in Neural Information
Processing Systems 12, pages 1057–1063, 2000.

[4] Michael Kearns, Yishay Mansour, and Andrew Y Ng.
A sparse sampling algorithm for near-optimal
planning in large Markov decision processes. Machine
Learning, 49(2-3):193–208, 2002.

[5] Levente Kocsis and Csaba Szepesvári. Bandit based
Monte-Carlo planning. In 15th European Conference
on Machine Learning, pages 282–293, 2006.

[6] Yizao Wang and Sylvain Gelly. Modifications of UCT
and sequence-like simulations for Monte-Carlo go. In
IEEE Symposium Computational Intelligence and
Games, pages 175–182, 2007.

[7] Todd Hester and Peter Stone. Texplore: real-time
sample-efficient reinforcement learning for robots.
Machine Learning, 90(3):385–429, 2013.

[8] Eyal Even-Dar and Yishay Mansour. Approximate
equivalence of Markov decision processes. In Learning
Theory and Kernel Machines, pages 581–594, 2003.

[9] Norm Ferns, Prakash Panangaden, and Doina Precup.
Metrics for finite Markov decision processes. In 20th
Conference on Uncertainty in Artificial Intelligence,
pages 162–169, 2004.

[10] Balaraman Ravindran and A Barto. Approximate
homomorphisms: A framework for nonexact
minimization in Markov decision processes. In 5th
International Conference on Knowledge-Based
Computer Systems, 2004.

[11] Norm Ferns, Pablo Samuel Castro, Doina Precup, and
Prakash Panangaden. Methods for computing state
similarity in Markov decision processes. In 22nd
Conference on Uncertainty in Artificial Intelligence,
pages 174–181, 2006.

[12] Balaraman Ravindran. An algebraic approach to
abstraction in reinforcement learning. PhD thesis,
University of Massachusetts Amherst, 2004.

[13] Robert Givan, Thomas Dean, and Matthew Greig.
Equivalence notions and model minimization in
Markov decision processes. Artificial Intelligence,
147(1):163–223, 2003.

[14] Tuomas Sandholm and Satinder Singh. Lossy
stochastic game abstraction with bounds. In 13th
ACM Conference on Electronic Commerce, pages
880–897, 2012.

[15] Ronald Bjarnason, Alan Fern, and Prasad Tadepalli.
Lower bounding Klondike Solitaire with Monte-Carlo
planning. In 19th International Conference on
Automated Planning and Scheduling, pages 26–33,
2009.

[16] Adrien Couëtoux, Jean-Baptiste Hoock, Nataliya
Sokolovska, Olivier Teytaud, and Nicolas Bonnard.
Continuous upper confidence trees. In 5th
International Conference on Learning and Intelligent
Optimization, pages 433–445. 2011.

[17] David Silver and Joel Veness. Monte-Carlo planning in
large POMDPs. Advances in Neural Information
Processing Systems 23, 23:2164–2172, 2010.

[18] Trey Smith and Reid Simmons. Heuristic search value
iteration for POMDPs. In 20th Conference on
Uncertainty in Artificial Intelligence, pages 520–527,
2004.

[19] Philip Hingston and Martin Masek. Experiments with
Monte-Carlo Othello. In IEEE Congress on
Evolutionary Computation, pages 4059–4064, 2007.

[20] Sylvain Gelly and David Silver. Monte-Carlo tree
search and rapid action value estimation in computer
Go. Artificial Intelligence, 175(11):1856–1875, 2011.

1296

