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ABSTRACT
Data trustworthiness is a crucial issue in real-world partici-
patory sensing applications. Without considering this issue,
different types of worker misbehavior, especially the chal-
lenging collusion attacks, can result in biased and inaccurate
estimation and decision making. In this paper, we propose a
novel trust-based mixture of Gaussian processes (GP) model
for spatial regression to jointly detect such misbehavior and
accurately estimate the spatial field. We develop a Markov
chain Monte Carlo (MCMC)-based algorithm to efficiently
perform Bayesian inference of the model. Experiments us-
ing real-world dataset show the superior robustness of our
model compared with existing approaches.
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1. INTRODUCTION
Recently, crowdsourcing has become a fast and inexpen-

sive alternative to outsourcing. One of its notable applica-
tions is participatory sensing, in which workers collect sen-
sory information of spatial phenomena (e.g. temperature,
noise, air pollutant, etc.) via mobile devices [8]. Through
collected data, the field of spatial phenomenon can be esti-
mated at any given point in space via regression. However,
trustworthiness of collected data is a crucial issue [4]. Faulty
sensors, inappropriate methods of measurement, and mali-
cious attacks (especially the challenging collusion attacks),
can result in erroneous or malicious data. Without consider-
ing this issue, estimations can become biased and inaccurate.

For this type of problem, several robust regression meth-
ods have been developed, such as M-estimation [2], and ro-
bust parametric methods that employ heavy-tailed distri-
butions such as Student’s t-distribution [3]. These meth-
ods minimise effects of outliers, but fail to model complex
human-like behaviors, such as collusion. In [7], a trust-
based heteroscedastic Gaussian process (TrustHGP) model
was proposed. Due to overly simplified assumptions, this
model lacks the ability to mitigate real-world malicious at-
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tacks. In addition, the method is unable to incorporate past
trustworthiness of workers in future tasks.

In this paper, we propose a novel trust-based mixture of
Gaussian processes (GP) model to yield accurate estimation
of spatial fields in the presence of misbehaving workers and
untrustworthy data. The mixture model does not assume
specific attack strategies, and is robust against various kinds
of attacks, including collusion attacks. Our contributions are
as follows: (i) We define attacks in spatial regression settings
via a mixture of GP model. (ii) We develop a Bayesian trust
framework to maintain and update trustworthiness of partic-
ipatory sensing workers. Updated trustworthiness improves
reliability of future tasks. (iii) We design a novel and effi-
cient Markov chain Monte Carlo (MCMC) sampling-based
algorithm for Bayesian inference of the proposed model. (iv)
We compare our model with state-of-the-art models using
real-world dataset and demonstrate its robustness.

2. TRUST-BASED REGRESSION MODEL
Suppose a participatory sensing system has w potentially

dishonest workers, and we collected n data points {(xi, yi)}ni=1

from them in a task to estimate a spatial field f : Rd → R.
xi ∈ Rd is the d-dimensional covariate, and yi ∈ R is the re-
sponse variable dependent on xi. A data point could either
be truthful or untruthful. Truthful data points are observa-
tions from the target field f , while untruthful data points are
not related to f . Our objective is to reliably estimate f(x∗)
for any covariate x∗ ∈ Rd with its probability distribution.

We assume that untruthful data points form K distinct
coalitions. We use ci ∈ {0, 1, · · · ,K} to denote the truth-
fulness of the i-th data point, where ci = 0 indicates (xi, yi)
is truthful and ci = j ∈ {1, · · · ,K} indicates that it is un-
truthful and belongs to the j-th coalition. The probability
that a data point is truthful depends on the honesty of its
contributor tm := Pr(ci = 0), given that the data point
is from the m-th worker. When ci = j ∈ {1, · · · ,K}, we
define εj := Pr(ci = j|ci 6= 0) to be the prior probability
of a data point joining the j-th coalition. We place a beta
prior on tm, with parameters rm := (αm, βm), defined as
the trustworthiness of the m-th worker. Every new worker
is assigned an initial trustworthiness. After completion of
each task, the trustworthiness of workers will be updated,
and used in future tasks as priors. Workers who showed
dishonest behaviors in the past will be distrusted in future
tasks. Truthful data points are generated from the target
function f . Untruthful data points from the j-th coalition
are generated by an attack strategy function sj : Rd → R.
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Figure 1: Contour plots of predictive mean resulted from contaminated AQI dataset with (a) the proposed model,
(b) TrustHGP, (c) robust GP, (d) standard GP, (e) approximate ground truth of the dataset [Best Viewed in Color]

We assume that all observations contain Gaussian noises.

(yi|xi, ci = 0) ∼ N(f(xi), σ
2
n0), (1)

(yi|xi, ci = j) ∼ N(sj(xi), σ
2
nj), j ∈ {1, · · · ,K}. (2)

We model f and {sj}Kj=1 as Gaussian processes (GP) [5] re-
alizations. Their priors are specified by GP with zero mean,

f ∼ GP(0, Cf ;θf ), (3)

sj ∼ GP(0, Csj ;θsj ), for j ∈ {1, · · · ,K}, (4)

where Cf 1 and {Csj}Kj=1 are covariance functions parameter-

ized by GP hyperparameters θf and {θsj}Kj=1 accordingly.
This creates a mixture of (K+1) GP. In reality, the number
of coalitions K is unknown. We estimate the model marginal
likelihood and choose the value of K via a Bayesian model
determination procedure similar to [1].

Let L := ({ci}ni=1,θf , {θsj}Kj=1, ε) denote latent variables 2.
Let x = {xi}ni=1, y = {yi}ni=1. To obtain the posterior pre-
dictive distribution of f∗ := f(x∗), we need to marginalize
over L, i.e.

p(f∗|x,y) =

∫
L

p(f∗|x,y,L)p(L|x,y)dL. (5)

The first term within the integral in (5) is a Gaussian den-
sity, and the second term is the posterior distribution of L,
which is analytically intractable. Hence, we apply Markov
chain Monte Carlo (MCMC) to generate samples from
p(L|x,y) to approximate the integral in (5). Each com-
ponent of L can be sampled from its conditional posterior
distribution via Gibbs sampling. In particular, {ci}ni=1 is
sampled component-wise by Gibbs sampling, and all GP hy-
perparameters (θf , {θsj}Kj=1) are sampled via Hybrid Monte
Carlo (HMC). ε is directly sampled from its posterior, which
is a Dirichlet distribution. Additionally, we apply parallel
tempering [6] to facilitate convergence of the Markov chain.

Throughout different tasks, we maintain the trustworthi-
ness of workers via {rm}wm=1. After a task, the updated
trustworthiness of the m-th worker is r′m = (α′m, β

′
m). We

first formulate the posterior of tm from samples obtained
from MCMC, denoted by P , and then approximate P by

a beta distribution Beta(α′m, β
′
m), denoted by P̂ , such that

the Kullback-Leibler (KL) divergence is minimised,

(α′m, β
′
m) = arg min

α′
m,β

′
m

DKL(P ||P̂ ). (6)

This is a convex optimization problem and can be computed
efficiently via Newton’s method.
1Cf may be defined to be stationary or non-stationary.
2Note that (t1, · · · , tw) has been integrated out.

3. EXPERIMENTATION
We demonstrate the robustness of our model by applying

it to a real-world dataset and comparing with several state-
of-the-art models. The dataset we use is an air quality index
(AQI) dataset retrieved from the World Air Quality Index
project (http://aqicn.org) on July 13, 2016, which consists
of 213 AQI readings from North America. In this dataset,
{xi}ni=1 corresponds to longitudes and latitudes where data
were observed, and {yi}ni=1 corresponds to measured PM2.5
AQIs. Since the dataset came from an official source, we
assume all readings are truthful. We randomly assign data
points to 20 imaginary honest workers, and then contami-
nate the original dataset by adding 50 untruthful data points
from a coalition of 5 imaginary dishonest workers. These
untruthful data points contain false AQI readings that are
higher than the actual value. The contaminated dataset sim-
ulates a collusion attack scenario, and is used to evaluate the
robustness of our model against three baseline models.

The three baseline models we compare our model against
are the standard GP, robust GP with Student’s t-distributed
noises [3], and TrustHGP [7]. We give weakly-informative
priors to GP hyperparameters of all four models, and use
them to perform Bayesian inference on the contaminated
dataset. Figure 1(a), 1(b), 1(c), 1(d) show the contour plots
of the posterior mean resulted from our proposed model,
TrustHGP, robust GP, and standard GP, respectively. Fig-
ure 1(e) shows the approximate ground truth of this dataset
obtained by applying standard GP regression to the original
dataset. Our proposed model shows accurate reconstruction
of the spatial field that is close to the approximate ground
truth, despite the presence of collusion attacks, while three
baseline models have produced distorted results due to the
attacks. In addition, the worker trustworthiness is efficiently
updated after the inference, which is able to further improve
the predictive accuracy of future tasks.

4. CONCLUSIONS
This paper introduced a novel trust-based mixture of Gaus-

sian processes model for spatial field regression in the pres-
ence of untruthful data in participatory sensing. Bayesian
inference of the model is done via a MCMC-based sampling
algorithm. We demonstrated the robustness of the proposed
model using real-world dataset, comparing with three base-
line models. Our model was shown to be significantly more
effective than baseline models against attacks. The trust-
worthiness of workers is efficiently updated after each task,
and is used to improve accuracy of future tasks. For future
work, we will investigate the performance of the model when
dealing with non-stationary spatial processes.
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