
Distributed Constraint Propagation for Diagnosis of Faults
in Physical Processes

Ana L. C. Bazzan and Bruno C. da Silva∗

Instituto de Informática, UFRGS
Caixa Postal 15064, CEP 91.501-970 Porto Alegre, RS, Brazil

{bazzan,bcs}@inf.ufrgs.br

ABSTRACT
Most of the current research on distributed diagnosis in and
for multiagent systems focuses on diagnosis of coordination
failures. Proposed approaches for this problem are not ef-
ficient for diagnosing failures in physical devices. This pa-
per proposes algorithms for distributed troubleshooting of
physical devices and processes. The consequences of us-
ing distributed representation of the knowledge, ATMS, and
distributed reasoning are discussed and algorithms are pro-
posed to deal with the occurrence of conflicts and the com-
putation of the set of candidate diagnosis.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence
Intelligent agents, Multiagent systems

General Terms
Algorithms

Keywords
Model Based Diagnosis, Distributed Diagnosis

1. INTRODUCTION
Diagnosis reasoning is a well known problem in Artificial

Intelligence. An effective way to do it is to use a descrip-
tion of the system, as for instance physical properties and
laws. This description together with the behavior constitute
a model. Model-based diagnosis (MBD) infers abnormalities
of internal components of a system given the behavior of the
system’s input(s) and output(s).

In this paper we focus on troubleshooting of physical de-
vices or processes. These are likely to involve a high number
of components. However, the diagnosis problem framed in
centralized way is computationally prohibitive: in [3], it is

∗Authors partially supported by CNPq–Brazil

suggested that only the most probable candidates should be
computed. Thus, due to the size and complexity of the bi-
ological processes, physical devices or industrial plants, it
makes sense to do diagnosis in a distributed way. Hints
of this can be found in the practice of industrial automa-
tion (which is inherently distributed due to the modern,
distributed control systems).

There is a key difference between the centralized and the
distributed versions of that problem. In the former, given
the designer’s knowledge of the device, it is more or less
straightforward to compute the faulty values. In the latter
case we cannot count on any agent knowing all inputs and
outputs of the system. In traditional centralized MBD of
hardware devices, symptoms are easily detected from the
designer’s knowledge. A symptom is any difference between
a prediction and an observation, whereas a candidate is a
hypothesis to explain the difference between the actual and
the expected value. Symptoms are used to guide the compu-
tation of conflicts and candidate sets. Henceforth the term
model-based diagnosis of processes (MBDP) is used for this
class of problems.

2. DIAGNOSIS OF PHYSICAL DEVICES
MBD is a natural way of dealing with troubleshooting in

devices because the model normally mirrors the causal struc-
ture of components [2, 3, 4]. Due to lack of space we omit
the details of these approaches, as well as the description of
research on diagnosis of lack of coordination, and refer the
reader to a previous version of this paper [1].

Following the terminology used in [4], a diagnosis D of
(SD, OBS, COMP) is a set Δ ⊆ COMP such that SD ∪
OBS ∪ {AB(c)|c ∈ Δ} ∪ {¬AB(c)|c ∈ COMP − Δ} is con-
sistent. SD, OBS, and COMP are the set of formulae de-
scribing the system, the observations, and the components
of the system respectively.

The algorithms shown here are based on the method pro-
posed in [3]: In summary, one must define an inference strat-
egy C(OBS, ENV) which, given the set of observations and
a set of assumptions (an environment), determines whether
or not they are consistent. The method starts with an empty
environment and inserts one parent at time. If an environ-
ment is inconsistent, then it is a minimal conflict and the
supersets are not explored. Otherwise it is enlarged by us-
ing other combinations of components. In order to make
the inference, strategy C is implemented using a function
P(OBS, ENV) which returns all behavioral predictions fol-
lowing OBS given the assumptions in ENV . P computes
the outputs and/or inputs of component(s) given that these

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, to republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

AAMAS’07, May 14–18, 2007, Honolulu, Hawai'i, USA.

Copyright 2007 IFAAMAS.

774

978-81-904262-7-5 (RPS) c©2007 IFAAMAS

M3

A1

A2

M1

M2

A=3

C=2

B=2

D=3

C=2

E=3

F=10

G=12

Y=6

12

12

Z=6

X=6

Figure 1: Circuit Adder/Multiplier – Two Outputs

components are assumed as not faulty (not abnormal). One
output can be computed only if both inputs are known for
sure; one input requires one output and the other input in
order to be computed. If, for a given ENV , two different
values of P are found, then ENV is a conflict.

The classical example deals with the circuit shown in Fig-
ure 1: two adders and three multipliers. Outputs are mea-
sured at G = 12 and F = 10. The latter is faulty i.e. F
is observed at 10, not 12 which is the correct value given
the inputs. For the circuit in Figure 1, P({A = 3, B =
2, C = 2, D = 3}, {A1, M1, M2}) yields {A = 3, B = 2, C =
2, D = 3, X = 6, Y = 6, F = 12}. The minimal conflict set is
computed: {{A1, M1, M2}, {A1, A2, M1, M3}}. In order to
identify the minimal candidate set, here the basic approach
by Reiter [4] is used, which is based on the computation of
the minimal hitting set for the conflict set CS. The diagno-
sis is then: D = {{A1}, {M1}, {A2, M2}, {M2, M3}}.

3. DISTRIBUTED DIAGNOSIS
In distributed MBDP, due to lack of global knowledge,

no single agent can infer that a component is faulty. Thus
either one assumes that agent Ai receives information re-
garding a symptom (e.g. F observed as 10, not 12), or this
assumption is dropped and agents just try to find conflicts by
exchanging values. Here no external communication regard-
ing symptoms is made. Agents communicate to propagate
the constraints (values of outputs of components).

3.1 Agents
Agents are represented by calligraphic letters: for exam-

ple M2 is the agent in charge of M2, etc. Each agent Ai

has a knowledge base KB(i) to store the knowledge K(i),
where K(i) denotes local information (assumed 100% trust-
worthy). Also computations performed by Ai over K(i) are
stored in KB(i), as well as the list of agents related to Ai.
This relation is both physical (agents physically connected)
and logical (agents inserted in a list called agent list because
they can help in the detection of conflicts and faults).

Both the knowledge and the beliefs are based on mes-
sages received from other agents. Values are computed lo-
cally from the knowledge of an agent about its component.
Agents can perform the following actions: collect input and
output values (only for agents in charge of input and out-
put components respectively); compute output values (only
if both inputs are known) and input value (given the output
and one input); request knowledge and communicate values
to agents in the agent list; and communicate diagnosis (via
broadcast to those in the agent list).

3.2 Details of the Algorithms
Given a list of input and output components (IN and

OUT respectively), assuming that each is associated with

Algorithm 1 Computation of Conflicts, distributed version

given a list AG containing all agents
for i ∈ AG do

initialize list backward agents(i)
initialize list forward agents(i)
extra communications(i) = {}
CS(i) = {} {// conflict sets detected by i}
structural knowledge(i) = {i} {// list of agents with
whom i has communicated}
K(i) = local observations(i)
K(i) = P (i, K(i)) {// expand local knowledge}

end for
for i ∈ AG do

for j ∈ backward agents(i) do
COMM(i, j)

end for
end for
for i ∈ AG do

for j ∈ forward agents(i) do
COMM(i, j)

end for
end for
for i ∈ AG do

while extra communications(i) not empty do
j = i.pop()
COMM(i, j)

end while
end for
return

S
CS(i) ∀i ∈ AG

an agent, a list of components means in fact a list of agents.
All components/agents are collected in the AG list. An im-
portant remark is that all agents can communicate concur-
rently. For examples of the computation of diagnosis using
these algorithms see [1]. The schema of the approach is as
follows:

1. representation of knowledge: knowledge bases keep the
variables values and constraints between variables;

2. computation of conflicts (Algorithms 1 and 2): this oc-
curs in a finite number of cycles (in the worst case some
agents have to communicate with all others). First
each agent collects local knowledge to the agent list
(distinguishing between agents connected backwards
and forwards, and expand the knowledge via the func-
tion P(OBS, ENV). Next communication with agents
backwards and forwards occurs. During this, new agents
can be added to a list (new in agent list) as the list
extra communication grows. While these lists are not
empty, this means that agent i still has new relation-
ships to explore. At the end of the communications,
some agents have collected a list of conflicts.

3. computation of candidates for diagnosis: the hitting
set is computed.

3.3 Larger Devices
In order to test the approach with devices larger than that

in Figure 1, we use a generator of random adder–multiplier
circuits. To compare performances, we use both the central-
ized and the distributed version of the algorithms. However,

The Sixth Intl. Joint Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS 07) 775

Algorithm 2 function COMM (i, j) – (Communication for
extension of knowledge between agents)

given: a function enough conflicts(struc knowl, K)
which determines whether all components in struc-
tural knowledge belong to at least one conflict in K and a
function detect conflicts(K) which determines all agents
involved in conflicting values in K
if not enough conflicts(struc knowl(i), K(i)) then

struc knowl(i) = struc knowl(i) ∪ struc knowl(j)
K(i) = K(i) ∪ K(j)
K(i) = P (struc knowl(i), K(i)) {// expand
knowledge}
CS(i) = CS(i) ∪ detect conflicts(K(i))
for k ∈ CS(i) do

if k! = i then
if k �∈ backward agents(i) and
k �∈ forward agents(i) then

extra comms(i) = extra comms(i) ∪ k

end if
end if

end for
end if

since the runtime of the former is exponential in the number
of components, it is not possible to make this comparison
with a large number of them. We use here two metrics: rate
of correct CS’s (i.e. number of elements in the CS yielded
by the distributed algorithm divided by this number yielded
by the centralized algorithm), and percentage of correct di-
agnosis (idem). Figure 2 depicts the correctly detected CS’s,
for 6 to 18 components in a device with two layers. Results
are averages over 20 random circuits. Notice that the more
faults, the higher the rate of successfully detected conflict
sets. As the number of components increases, the percent-
age of correctly detected CS’s decreases. In general, a rate
of 75% correctly detected CS’s is achieved with the increase
of faulty outputs.

To give an idea of running times (cpu) of the algorithms,
for 6 to 12 components in two layers, these range from 0.06
to 1.3 seconds and this is similar to the time required by the
centralized algorithm. For larger number of components,

Figure 2: Percentage of correctly detected conflict
sets, for 6 to 18 components, varying the number of
faulty outputs

l – c – o % corr. HS l – c – o % corr. HS
2 – 3 – 1 63 2 – 3 – 2 97
2 – 3 – 3 92 2 – 4 – 1 41
2 – 4 – 2 53 2 – 4 – 3 42
2 – 4 – 4 71 2 – 6 – 3 19
2 – 6 – 5 32 3 – 3 – 3 48

Table 1: Percentage of correctly computed hitting
sets, for different number of layers (l), components
per layer (c), and faulty outputs (o)

running times for the distributed algorithm are up to hun-
dreds of seconds. In general the running times for the cen-
tralized are 2 to 3 times larger. However, two issues are
important. We could not run the centralized algorithm for
more than 18 components (2 layers of 9). Second, regard-
ing the distributed algorithm, there is a high variance in
those times because the circuits generated randomly connect
adders and multipliers in very different flavors. This leads
to very different situations in terms of conflict detection and
need of communication. Many times agents communicate
information which leads to already known conflicts. Thus,
running time can be exceptionally high.

Regarding the second metric, Table 1 shows the percent-
age of correctly computed hitting sets (i.e. the diagnosis) for
different number of components and layers. The tendency
here is similar to the one discussed for the CS’s: the higher
the number of components, the lower the performance. A
higher number of faulty outputs increases the performance
though. The fact that circuits with more failures are better
handled by the distributed algorithm might seem strange
at first. These circuits are hard to be analyzed since the
number of component sets which explain the observed faults
tends to be big. However, one must also note that a higher
number of failures causes conflicting predictions to occur
more often. In other words, communications between agents
tend to contain more conflicting values, which makes it eas-
ier to discover the correct conflict sets.

Finally, the approach was also tested with a boolean cir-
cuit as metaphor for a regulatory network with five genes [1].
Each can be ON or OFF. The idea here is slightly different
from the devices previously seen. Adders and multipliers
are man-made device, whose behavior is well-known. In bi-
ology, we have just theories or assumptions about how the
components should behave. Thus, the goal here is to ver-
ify whether the theory leads to the observed behavior and,
when this is not the case, to point out the candidates which
could explain how or where the theory fails.

4. REFERENCES
[1] A. L. C. Bazzan. Distributed diagnosis of faults in

circuits and biological systems. In F. W. et al., editor,
Proceedings of 3rd Workshop on Model-Based Systems
(ECAI 2006), pages 16–20. ECAI, August 2006.
www.inf.ufrgs.br/bazzan/downloads/mbs.pdf.

[2] R. Davis. Diagnostic reasoning based on structure and
behavior. Artificial Intelligence, 24(1–3):347–410,
December 1984.

[3] J. de Kleer and B. C. Williams. Diagnosing multiple
faults. Artificial Intelligence, 32(1):97–130, April 1987.

[4] R. Reiter. A theory of diagnosis from first principles.
Artificial Intelligence, 32(1):57–95, April 1987.

776 The Sixth Intl. Joint Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS 07)

