
Pan-supplier Stock Control in a Virtual Warehouse

Emad El-Deen El-Akehal
Dept. of Computer Science
University of Bath, Bath, UK

emad@bookdepository.co.uk

Julian Padget
Dept. of Computer Science
University of Bath, Bath, UK

jap@cs.bath.ac.uk

ABSTRACT
We describe the commercial application of agents to the handling
of catalogue and stock-control for the selling of books on the inter-
net. The primary characteristic of the target market is (very) low
volumes over a (very) large number of items, thus agility and ex-
tremely low overheads are the essential factors for a viable business
model. Being a new company (established 2004), without legacy
software and with the freedom to make new choices, it was decided
that the agent abstraction offered both short-term software engi-
neering and longer-term business advantages. This expectation has
been borne out in practice, in that it has been possible to construct
an e-trading platform, using a 4-person team over a period of a few
months, and that is now part of a live business operation handling
just over 12,000 transactions daily. In this paper we explain how
agents helped focus attention on the responsibilities of key software
functions, how different functions should interact with one another
and how to identify and propagate key performance indicator infor-
mation through the system to detect unexpected behaviour. Agent
technology has many potential benefits for dynamic fast-moving
businesses where software requirements change quickly and busi-
ness needs grow rapidly, all within a dynamic environment that
has entirely different rules across the axes of geography, market,
customer and competitor. Using autonomous agents allowed The
Book Depository to build quickly a complex network of P2P rela-
tionships with a large number of suppliers and publishers of very
different sizes who each utilize a variety of different trading and
data interchange standards.

Categories and Subject Descriptors
C.4 [Performance of systems]: Reliability, availability, and ser-
viceability; D.2.1 [Requirements/Specifications]: Methodologies
(Agent-oriented); D.2.11 [Software Architectures]; I.2.11 [Dis-
tributed Artificial Intelligence]: Multi-agent systems

General Terms
Software engineering, performance, fault-tolerance, distributed sys-
tems

Keywords
Supply-chains, multi-agent systems, AgentScape

Cite as: Pan-supplier Stock Control in a Virtual Warehouse, Emad El-
Deen El-Akehal and Julian Padget, Proc. of 7th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2008)- Industry
and Applications Track, Berger, Burg, Nishiyama (eds.), May, 12-16.,
2008,Estoril,Portugal,pp.11-18.
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

1. INTRODUCTION
The Book Depository1 is a book (re-)selling company that oper-

ates around the world both in its own right and as one of the top
alternative sellers through the Amazon market place. It functions
primarily as an intermediary between buyers and many large and
small publishers, book sellers and book distributors as part of its
mission of “making all books available to all”. The subject of this
paper is how the concept of agents helped in the design and how
actual agents help run the virtual warehouse that the company uses
to deliver the (inventory data) catalogue synthesized from a large
number of suppliers.

Much of the book business focusses on selling large numbers of
a few titles, ignoring — for logistical as well as business reasons —
the huge variety of offerings with niche interest. The Book Deposi-
tory targets this market with the “long tail” of books that will never
be best-sellers but for which there is nevertheless demand. The
idea is to put together lots of these small markets and on a global
scale. The first consequence of this approach is a large catalogue
— but at the same time, a close-to-nil inventory, despite the cur-
rent 1.7 million offerings. The key to the business model is, instead
of holding a huge stock, an e-trading platform that works out the
best way (that is, lowest cost and fastest delivery) of sourcing the
books once the order is placed2. The system described here helped
significantly in increasing the profitability of the company, putting
it in the position to win Online Business of the Year and Retailer
of the Year awards3. Alongside this trading activity, there is a new
development that is part of the overall vision of delivery of small
print-run books, namely the digitizing of books that have gone out
of print and out of copyright and then re-publishing — under the
Dodo Press brand — via on-demand printing. So, the business ob-
jective can be summarized as: to deliver rapidly, anywhere in the
world, books from small-scale publishers and now even books that
were no longer available. The technical challenge is how to handle
the delivery quickly and cheaply without resorting to holding small
stocks of a vast number of items. It is that part of the operation on
which we focus in this paper.

The (virtual) stock control problem is characterized by (i) pro-
viding (and monitoring) a continuously available system (currently
ships about 12,000 orders/day) (ii) handling the variety of data for-
mats used by the different service providers (iii) handling regular
catalogue updates. Particular notable influences on the design have
been institution modelling [12, 15, 17], fault-tolerant architecture
patterns developed for Erlang [1], and proposals for self-managing

1http://www.bookdepository.co.uk
2The system won the Nielsen BookNet Supply Chain Initiative of
the Year at The Bookseller’s Retail Awards in 2006.
3Startups Awards 2007 is organized by http://www.
startupsawards.co.uk

11



architectures from Van Roy [16]. The system itself is built on the
AgentScape agent platform [8, 13].

We report here on our experience of building and deploying this
live system, starting with an overview of the architecture and the
components in section 2, then moving in to look at the detail of the
feedback mechanism that is employed to provide a degree of self-
management (section 3). We discuss our choice of AgentScape in
section 4 and conclude with some reflections on the experience so
far and a discussion of future developments (section 5).

2. DISTRIBUTED STOCK CONTROL AR-
CHITECTURE

The overall system design has been influenced by experience
from FishMarket [14] and from Carrel [21] (organ and tissue ex-
change), while the design process itself has been supported by the
Prometheus design tool [20, 18]. Consequently, the system is con-
ceived of in terms of roles, scenes and protocols, although future
developments will take advantage of developments in norm-driven
specification [3] and the use of multiple institutions [4]. At present,
the system could be regarded as closed, in that all the agents popu-
lating the trading platform have been developed in-house, however,
once again, in looking to the future the design has kept the principle
of open systems in mind throughout.

2.1 The Bigger Picture
It would take more space than there is available — and probably

be rather tedious — if we were to explore the design of the entire
system, so we have chosen to focus on a key component: how the
(inventory data) catalogue is kept up to date and discuss that in de-
tail. However, to give the reader some context, this section outlines
the components of the e-trading platform and relates them through
a high-level architectural diagram (see Figure 1)

The motivation driving the development of the framework is the
belief that the traditional supply chain in the book industry is rela-
tively inefficient as a result of the huge changes that have occurred
with the push towards e-commerce. The use of the internet and
the emergence of new technologies have contributed significantly
to changes in human behaviour, whether they are customer, seller
or provider.

In a traditional supply chain, there are barriers between the par-
ties in the chain, in that certain kinds of relationships are not con-
sidered or perhaps even not permitted. For example, it is usually
not the case that a publisher sells directly to individuals, yet in
reality, there are many small publishers who are forced to act as
retailers because wholesalers and distributors are not interested in
carrying all publishers’ stock. Our aim has been to re-engineer the
traditional book trade supply chain and recreate it as a set of inde-
pendent services as distinct from independent roles.

A useful observation arising from the roll-out of electronic trad-
ing methods is that most active trading parties are taking on more
than one role inside the industry. Consequently, the framework is
designed around the principle of breaking down the supply chain
into a set of services (functions) regardless of the role of their users,
in order to allow small providers to focus on their area of expertise
and not have to concern themselves with issues such as payments
processing, handling shipping, etc..

We have identified four core services that cover all activities in
the trade supply chain (see Figure 1). These are:

1. Catalogue Information Services (CIS)
2. Trade Information Services (TIS)
3. ORdering Services (ORS)
4. PAyments Services (PAS)

Trade Info
services

Payments
services

Catagloue Info
services

Ordering
services

Figure 1: Generic Supply Chain Architecture

• Name: publish/update of central catalogue
• Participants: SPA, AA, CDBA
• Description:

1. SPA downloads delta file or full-feed file from supplier
2. SPA obtains CDBA identity from AA, if not already

known
3. SPA sends revisions to CDBA

• Exceptional flows:
1. No response from supplier FTP server
2. No response from AA
3. No response from CDBA
4. File fails soft consistency checks

The SPA reports these condition to the AA

Figure 2: Use Case 1

• Name: SPA information request
• Participants: SPA1, SPA2, AA
• Description:

1. SPA1 requests catalogue information from SPA2
2. SPA2 sends catalogue information to SPA1
3. SPA1 sends feedback on transaction to AA
4. SPA2 sends feedback on transaction to AA

• Exceptional flows:
1. No response from SPA2
2. No response from SPA1

The SPA reports these conditions to the AA

Figure 3: Use Case 2

The main focus of this paper is Trade Information Services (TIS)

2.2 Trade Information Services
To provide the reader with an overview of what we wanted to

achieve, we begin with a short statement of the (functional) require-
ments for this component. In this context, it should be understood
that the concepts of service provider agent (SPA), administrator
agent (AA) and central database agent (CDBA) have already been
identified, thus with focus on the SPA, we state:
R1 The SPA must be able to publish/update its stock-level infor-

mation in the central database
R2 The SPA must provide stock-level information about any num-

ber of its catalogue items on request from another agent
R3 The SPA must report any errors in transaction with other agents
R4 The SPA must report any suspected data transmission failure
R5 The AA must log and may take corrective action in response to

an error reported by a SPA
These requirements are then elucidated in the summary use cases

(using Cockburn’s undressed style) in figures 2 and 3.
The virtual warehouse acts as an aggregator, bringing together

12



the BookDepository’s own physical warehouse and those of some
35 other suppliers, so that the front-end business logic interfaces to
a single repository using a standard query and response language.
The virtual warehouse is populated by agents playing four different
roles:

1. Administrator agents (AA)
2. Service provider/client agents (SPA)
3. Helper agents (HA)
4. Central database agent (CDBA)

We discuss these in more detail in the following subsections.

2.3 Administrator agents
Here we describe the function and purpose of a single admin-

istrative agent, but in practice, there will be many of these. The
purpose of the administrative agent is to oversee the functioning of
the warehouse, to which end it has several responsibilities:

1. Controlling registration and de-registration of supplier agents
to/from the warehouse and quarantining of norm-violating
agents

2. Establishing the status of an agent for the rest of the commu-
nity. We have chosen to implement three policies: (i) pub-
lic: this means the arrival of the agent is advertised to all
the agents already present and it shall be contactable by any
other agent (ii) whitelist: the incoming agent specifies a list
of acquaintances who shall be notified of its arrival and who
shall be permitted to contact it (iii) private: arrival is not
announced and agent is effectively uncontactable by others
present.
The system was built to form a generic platform for trad-
ing services, where trading partners might adopt different
polices, as an example a wholesaler might limit its trade to
retailers who maintain a minimum of several thousands of
purchases per day, while a small publisher would sell as little
as one copy to any customer. In real-world trading there is
dynamic pricing mechanism that is normally realized by ap-
plying different discounts to each client, so a service provider
could keep its stock level and pricing information private and
supply them on demand after application of the discount pol-
icy.

3. Receiving feedback from suppliers about transactions with
other agents. This aspect is important to the good running
and for the self-management of the warehouse and is dis-
cussed detail in section 3.

4. Management of helper agents: helpers are created lazily
by the administrator and in the case where a supplier reports
that a particular helper appears not to be responding it will
shut the existing copy down and start another (see discussion
of feedback and self-management in section 3).

2.4 Service Provider agents
There is typically one service provider agent (SPA) per supplier,

but in some cases there may be more, such as when there is more
than one account, as a means to capture the different rules under
which each account is operated. For example, one particular book
distributor in this system is represented by two SPAs with different
business logic for each — reflecting different contracts — and each
with access to different (physical) warehouses, affecting product
availability and geographical spread for delivery. Service provider
agents have five tasks:

1. Communicate with other suppliers’ agents This is for the
purpose of one SPA supplying accurate information about its
stock level to another SPA. For instance, the SPA of a dis-
tributor may request an update on a range of products from

the SPA of a publisher before publishing its catalogue. The
system provides for setting up communication channels, so a
newly joined SPA can find other SPAs without prior knowl-
edge of their existence, then it engages in data exchange
transactions. This is an essential element of open market
structure where the trading parties have no prior knowledge
of each other, however they do have clear knowledge of their
needs and the tools, or the logic to evaluate and decide on
engagement with other parties.

2. Translate queries The system has a standard query language,
but each supplier typically has their own specific query lan-
guage. Each SPA representing a supplier has its own data
feed format and while some of them use well-known inter-
national standards such as ONIX4, others have their own for-
mats, such as tab-delimited, fixed length, or comma-separated-
value files. We have defined a simplified format for data ex-
change between all agents called Trading Information Ser-
vices Standard Public Format (TIS-SPF). TIS-SPF captures
the minimum required information that a trading party needs
to know, namely the book identifier ISBN5, suggested retail
price, applicable discount percentage, and available quantity
for sale. Other (standard) message formats such as ONIX,
might contain much superfluous information. Further infor-
mation, such as delivery period and currency are available on
a per supplier basis and do not need to be included in the data
file. When the SPA requests an update from another SPA it
would normally receive the update in the TIS-SPF format,
and in some cases it might need to translate it to a specific
format before any internal processing. This can be done by
the SPA itself or it can use a translation Helper Agent (HA).

3. Translate responses: The converse of the previous, namely
to convert supplier-specific format data into TIS-SPF. For ex-
ample, when a SPA needs to submit and update to another
agent, it must use the TIS-SPF format, and indeed TIS-SPF
is the only format accepted by the CDBA for update/publish
actions. Thus, an SPA must either be able to translate its spe-
cific format to TIS-SPF or use a translation HA to translate
and then carry out the submission to the central catalogue.
The system we describe here is able to translate from at least
16 supplier-specific formats into TIS-SPF, and vice versa.

4. Update the supplier catalogue This takes two forms: (i) small
changes — via a delta file of edits to the current catalogue
— which may take place hourly or daily, depending on the
supplier and (ii) major changes — via a full-feed file that
replaces the current catalogue — which take place weekly.
Clearly timeliness — that is having an up-to-date catalogue
is very important — but so also is consistency, and thus an
element of soft-checking is employed to protect system in-
tegrity. For example, it may be that the supplier has not
deposited the update file in the agreed place by the agreed
time, so the fetch will result in a null file. Thus it is consid-
ered better to retain the old file than to remove all the current
entries. In this circumstance the supplier agent is responsi-
ble for implementing a retry policy and after a number of
failed attempts will advise the supplier’s human system ad-
ministrator of the situation. Likewise, if there is a substantial
difference in size or number of entries between the old and
new files, this condition is detected and communicated to the
supplier’s human system administrator.

4ONIX for Books; Developed and maintained by EDItEUR jointly
with Book Industry Communication (UK), the Book Industry Study
Group (US); http://www.editeur.org/onix.html
5The International Standard Book Number

13



Action
Agent
Protocol
Percept

Figure 4: Trader information sub-system overview (designed using Prometheus)

2.5 Helper agents
Helper agents (HAs) are simple service providers and are created

(lazily) on demand when supplier agents request the administrator
agent for a particular helper function and persist thereafter. There
are three kinds of service they provide:

• Document translation: For the most part helper agents trans-
late documents between formats, such as from TIS-SPF to
the format that a particular supplier uses and vice versa. Thus,
a service provider agent requests a helper agent to translate
a file containing a document in a particular format. This
is agreed (using a pre-determined protocol) and the helper
agent generates a new file containing the translated material
and informs the supplier that the task has been completed.
This describes the normal course of events: section 3 dis-
cusses what happens under other circumstances. Because the
formats in use are all known a priori, there is no need for
any sophisticated matchmaking/brokerage function: a sup-
plier agent simply asks the administrator for the identity of
a helper agent that can translate to or from a specific named
format. Thus, as new formats are added to the system, so they
are named and registered with the administrator. Neverthe-
less, maintenance of this approach and continued extension
could become tiresome so that a (semi-)automatic approach
like that described by Szomszor [19] may be worth investi-
gating in the future.

• FTP requests: A second service function of helpers is to

carry out FTP requests for suppliers, typically for the purpose
of obtaining update files from supplier sites.

• DB helper: One critical function for overall system perfor-
mance is to limit the number of concurrent connections to
the DB server. The DB connector agent holds a pool of DB
connections to be used by active agents, eliminating the need
for establishing new connection on a per agent basis. If all
the connections are in use, either a new one will be created, if
the limit has not been reached, or the request will be queued
and responded to when a connection is freed.
Another aspect of the DB Helper is to facilitate the process
of storing temporary or permanent data for each agent so
the agent implementation can be independent of the type of
database server and the database structure, and ignorant of
how to connect to the database server. Instead, it is just able
to send its queries to the DB Helper, that will in turn de-
liver these queries in the proper format to the database server,
and return the result set to the agent. As mentioned earlier,
each agent might need to pre-process its catalogue data be-
fore executing a public update, so it might ask the CDBA to
allocate temporary space on the server, where it can upload,
filter carry other functions as necessary.

2.6 Protocol observance
As can be seen from the system overview diagram (figure 4) sev-

eral protocols are employed in different places to describe the inter-

14



1 PLANS
2 TRANSLATION PLAN
3 SUB PLANS
4 CONNECT PLAN
5 PREREQUISITES
6 COMMUNICATION
7 - Agent: name + handle
8 REQUIRED
9 - Feed back report

10 OPTIONAL
11 END CONNECT PLAN
12 TRANSLATION REQUEST PLAN
13 PREREQUISITES
14 CONNECT PLAN: Success
15 File types: delimited OR
16 fixed-length OR
17 xml
18 PROTOCOL
19 REQUEST
20 - Performative
21 - Formats
22 - Paths
23 REPLY
24 - Performative
25 REQUIRED
26 - Feed back report
27 - Success reply
28 - Failure reply
29 OPTIONAL
30 END TRANSLATION REQUEST PLAN
31 END SUB PLANS
32 END TRANSLATION PLAN
33 END PLANS

Figure 5: A plan for translation

action between two agents. It would be both clumsy and a source
of strong coupling, if these protocols were hard-coded into each
agent, as well as making it tedious to update the protocols both
during development and later during deployment. In consequence,
the service provider agents instead have a task menu that lists each
of the goals they might have and in order to fulfill that goal, a SPA
asks the administrator agent to send it a plan to achieve the goal.
It then simply follows the sequence of actions laid out in the plan,
sending messages and waiting for answers. Thus, the SPAs are rel-
atively simple generic agents that when instantiated only know how
to request a plan from the administrator, how to interpret that plan
and how to provide feedback on the interactions arising from the
plan.

Raw XML is not so pleasant for the human reader, so we present
a sanitized version of a translation plan in Figure 5. This is an
example of the kind of document that an Administrator may com-
municate to a Service Provider so that it may request a helper agent
to carry out a translation for it. On line 7 the AA has identified a
helper agent that is capable of providing the service that the SPA
requested (the handle is an AgentScape-specific identifier). The
document then proceeds to specify (i) the prerequisites (line 15)
for the translation process, namely that the input file must satisfy
one of the specified types and (ii) the protocol (in this case it is just
one message exchange) and the format and content of the messages
sent (lines 20–22) and received (line 24)

3. SELF-MANAGEMENT AND FEEDBACK
From the foregoing, it is clear that the administrator agent has

a critical role to play and the current design is centralized, in that
all agents are responsible to the administrator agent (AA). Thus, a
reasonable question at this point is what happens if the administra-
tor agent fails? This centralized approach is an interim solution,
for the purpose of enabling operator control over all the agents in
the system, however as discussed in section 5, we are planning for
an early transition to a fully self-managed and open implementa-
tion. Clearly, having a central point of dependency might lead to
deadlock if the AA is not available for any reason, so that none of
the other agents would be able to communicate or interact with any
other. As a short term measure agents currently notify the (human)
system administrator by email if they cannot communicate with the
AA.

In a commercial setting, software systems are frequently required
to run continuously, in line with the global market. This immedi-
ately raises several major practical questions:

1. How to monitor the system for anomalous behaviour
2. How to apply corrective action when faults occur, and
3. How to update a running system

The approach taken to this is inspired by Van Roy [16] who ad-
dresses the delicate problems that arise from interacting feedback
loops. For the sake of keeping this article self-contained, we sum-
marize the basics here and then explain how we have applied this
in the case of the virtual warehouse.

Van Roy puts forward a simple pattern that can be applied to
the monitoring of distributed systems so that multiple interacting
control loops work together rather than conflict with one another.
He argues that systems should converge (rapidly) to the desired be-
haviour and not be perturbed by changes in the system’s environ-
ment [16], but that in practice it may well collapse, oscillate or be-
come chaotic. The difficulty is that programs typically only behave
well close to or possibly even only at their equilibrium point —
move the system away from that point by even the slightest amount
and disaster may ensue. Similar arguments also motivate the con-
cept of autonomic computing [9], and indeed this is just one scheme
whereby a particular pattern of self-management may be imple-
mented. Van Roy proposes that by understanding the relationship
between a system and its sub-systems, it is possible to predict sys-
tem behaviour and thus design a system with the desired behaviour.
Thus, a feedback loop consists of three interacting components:

1. A component that monitors the state of a (sub-)system
2. A component that calculates a corrective action
3. A component that applies the corrective action to the (sub-

)system
Van Roy goes on to explain how it can be extended to multiple

interacting feedback loops, wherein the system parameters depend
on each other, but for now that is more than we need. Our scenario
has two instances of a feedback loop running in parallel, where the
two parties in a transaction provide feedback on each other, as we
will now go on to explain.

We have chosen to build monitoring into our agents rather than
add a separate collection of monitoring agents. The reason for in-
tegration rather than separation of this function lies in our plans for
future work in which we aim to distribute control of the system be-
tween its members, wherein the agents might learn from their ex-
periences with other agents and adapt their behavior accordingly.
For example, when a SPAa completes a satisfactory data exchange
with SPAb, then SPAa might choose to add SPAb to its whitelist,
having the feedback information available to and assessed by the
agent itself, rather than a third-party.

Thus, each agent collects information about its interactions with

15



administrator
agent

supplier
agent1

supplier
agent2

transaction
log

SA1’s feedback on SA2 SA2’s feedback on SA1

Validate feedback
+

follow-up action

Figure 6: Agent transaction feedback model

other agents — simply as part of executing the protocol — and
passes that information to the administrator. We note in passing
that it is clear that the administrator could become overloaded by
this activity if there were significantly more supplier agents: our
long term solution to this is to replicate and federate the warehouse
(see section 5).

The overall purpose of the collection of information about trans-
actions is to enable the system to perform a degree of self-management.
This in turn currently takes two forms: (i) collecting evidence to in-
dicate whether a given agent is functioning — akin to the heartbeat
function of autonomic systems [9] (ii) collecting performance in-
formation to inform a ranking of the supplier agents — this aspect
is currently unfinished and forms part of our future work plan.

3.1 Recognition of conditions
We implement Van Roy’s model by filling in the functions iden-

tified above (see figure 6):
• Monitoring: carried out by each SPA in the transaction —

refer back to the exceptional flows in use case 2 — so that
each SPA sends a feedback report to the AA about its trans-
action.

• Calculation: carried out by the AA. The AA receives the
feedback reports, stores them in the transaction log in the
event that a post-mortem is required, and proceeds to deter-
mine which action to take. At present this might be: (i) sand-
boxing the agent so that no other agents can communicate
with it, since it appears to be faulty, or (ii) killing the agent;
typically this applies to internal agents, such as helper agents,
that have stopped functioning for some reason, and (iii) cre-
ating a new (helper) agent to replace the faulty one, or (iv) an-
nouncing a moratorium on central database updates, if for
example, the CDBA appears not to be responding.

• Actuation: also carried out by the AA, being one of the ac-
tions identified above.

4. THE CHOICE OF AGENTSCAPE
The system has been implemented using the AgentScape [8, 13]

platform, which provides a framework for heterogeneous, mobile
agents. This section serves to give a brief overview of AgentScape
and to outline the advantages that led to its adoption.

4.1 AgentScape
The AgentScape middleware creates a distributed environment

that supports multiple, mobile agents for agent-based applications.
This middleware provides the functions for agents to perform their
tasks, communicate and migrate. In addition, the middleware im-

plements security mechanisms, including in particular agent sand-
boxing to prevent malicious code from accessing the host machine,
and vice versa, to protect an agent from access by the host.

AgentScape is designed to run across multiple hosts, grouped
into locations. Each AgentScape location consists of one or more
hosts running the AgentScape middleware, typically within a sin-
gle administrative domain. Agents are active entities, residing in a
location, that can communicate with other agents and may access
services provided by AgentScape. Agents can migrate from loca-
tion to another, however, it is up to the middleware to determine
which host within the location actually runs the agent.

The middleware processes running within AgentScape provide
services to agents. For example, agent servers provide a run-time
environment for agents, a Message Center enables agents to com-
municate with other agents, and a Web service gateway enables
agents to communicate with web services using the SOAP/XML
protocol. Figure 7 (supplied from [13]) shows an overview of
AgentScape.

4.2 Perspective on AgentScape
In AgentScape, any number of hosts can form a single loca-

tion. The application is not aware of the actual number of hosts, so
adding hosts does not require changes to the application. This host
transparency offers a flexible way of distributing an application.
Although we are not taking significant advantage of this facility at
present, the direct support for distribution is an important factor for
the near future.

The middleware manages the distribution of agents among the
actual hosts. Each agent is assigned a unique handle, that can be
used to address agents without having to know or care on which
host and location the agent actually resides. This agent location
transparency eases the task of developing agent applications. Com-
munication between agents is done via sending and receiving mes-
sages, which can contain arbitrary data.

Each agent runs in an isolated environment, and can only com-
municate with other agents by sending messages, addressed to the
receiver’s handle. The messages are delivered to the correct re-
ceiver by AgentScape, regardless of the host on which it is running.

AgentScape also supports migration of agents, which is useful
for allowing agents to have local access to certain resources thereby
reducing communication overhead.

That is not to say that the experience of using AgentScape has
all been positive, although we are well aware this is software un-
der development. Various shortcomings are a current lack of doc-
umentation, difficulties in killing threads, the complicated nature
of testing and debugging in a non-deterministic environment (not
restricted to AgentScape of course) and the lack of an automated
clean-up on system shut-down. At a different level, there is the
agent programming model: AgentScape is purposely an agent op-
erating system that permits the user to write agents in whichever
language they wish using whichever internal model they will, while
providing the platform functions through an API. We are aware of
a need for higher-level support for full-agency within the trading
platform agents and are currently evaluating various possibilities,
including Jason[2].

5. REFLECTION AND DISCUSSION
A number of reflections on the rationale and process are scat-

tered through the article. In this section we aim to draw these to-
gether and look back on the development experience so far. Then,
we discuss briefly our plans for future developments of the trad-
ing platform under the headings of load-balancing, ranking, service
identification and self-management.

16



AgentScape
middleware

AgentScape
middlewaremiddleware

AgentScape AgentScape
middleware

Mac OS X

AgentScape
middleware

Solaris

Lo
ca

tio
n 

B

service

agent

W2K/XPLinux Solaris

Lo
ca

tio
n 

A

Figure 7: AgentScape middleware environment

Deployment of and cut-over to the agent implementation is a
similar story to that of most software systems. The agent-based
implementation was run for two weeks in parallel with the exist-
ing conventional system, starting with a few of the large suppli-
ers, during which time data integrity checks were made regularly,
gradually adding more and smaller suppliers until the full comple-
ment were engaged. There were numerous instances of manual
intervention during this period, while the integrity checks were a
mix of automatic and manual verification, covering issues such as
the number of records, values after and before calculations, perfor-
mance (transaction/time) and error reports. Some problems were
at the functional level, such as when the Administrator Agent shut
down for three days and no new agents could register, others were
at the supporting level, such as memory leaks. One characteristic of
using agents that has been particularly beneficial, is the ease with
which we are able update the running system. In that sense, the
current deployment is never the final system, but just a step on the
way.

Although it might seem quite obvious, we are very positive about
the utilization of agents and agent-oriented software engineering in
building business applications, even if like any development pro-
cess, it has not been without its problems. From the company’s
point of view, the vindication of the technology is how it has helped
the company to carve out a niche in the book supply industry and
this largely rests on the effectiveness of the (software-supported)
supply-chain, parts of which we have outlined here. Because de-
velopment was also a learning experience with new technology, the
initial costs were inevitably higher, but the payback has come with
lower overheads in deployment, update and extension. For exam-
ple, we can test and incorporate a new supplier agent into the run-
ning system in under half an hour.

While organizations invest in building workflow management
systems and B2B integration to be able to handle multiple trans-
actions in support of their business processes, multi-agent systems
are rarely part of this process. Building supply chains is probably
one of the more common applications of agents, as highlighted in
[10], and so the degree of novelty here is possibly not very high.
On the other hand, although there are doubtless many such systems
deployed, detailed descriptions are not that easily found. We have
chosen to invest the time in exploring the potential advantages of
using multi-agent systems to facilitate the huge number of transac-
tions that are part of a live business system, which in itself was a
risky strategy. Looking back on this, we believe the current system
is evidence for the benefits of agent oriented architectures in gen-
eral and the current state of development holds plenty of promise
for the near future.

Consequently, we believe the main contributions of this article
are the exposition of the architecture that has been deployed, and
more importantly, the message that both the ideas and the tools

being developed in the software agents community can help deliver
sophisticated software systems. In particular, we emphasize how
the abstractions of agents and institutions, the principles of self-
management and the agent-oriented SE tools have actually helped
both in the conceptualization and (rapid) realization of the solution,
as well as enabling its short- and longer-term evolution.

5.1 Load-balancing and mobility
An unsurprising artifact of the need to have a functional system

in a short timescale is that we have not taken advantage of Agent
scape’s built-in support for distribution and mobility. As currently
deployed, the system runs on a single platform and so although the
transaction load has not reached current throughput limits, we are
aware of the need to replicate various components of the system
— especially the administrator agent, as mentioned in section 3 —
and distribute them across several physical platforms for the sake
of both resilience and load-balancing. We will be addressing these
issues in the near future.

5.2 Ranking
One of the most important issues within trading relations is the

level of trust between the trading parties. That is a given in our
existing closed system, but as we move towards an open system, it
is necessary to establish degrees of security and agents should be
able to assess each other before getting involved with risky trans-
actions. We will use ranking functions operating on an individual
(private) level and a system (global) level. The private ranking is
maintained by each agent about the other agents with which that it
has engaged in transactions. The global ranking will be maintained
by the administrator agent and will function as an indicator of the
degree of stability and reliability of an agent, as well as warning the
administrator when it may be necessary to consider quarantining an
agent whose ranking falls below some threshold [7].

5.3 Adapters
Translation from supplier-specific format to TIS-SPF and vice

versa is currently handled on a case-by-case basis and while it is
manageable at the current scale, this is clearly a problem that could
get worse. It is however also a problem that has been encountered
before, in particular in the bio-informatics community [6], where
the solution has typically been to write scripts for each mapping re-
quired and then automatically insert them in the workflow where
necessary. In fact, there are two problems here: one is author-
ing and maintaining an increasing number of mapping scripts, the
other is finding the right one when it is needed. Szomszor [19]
describes a sophisticated and extensible approach using OWL rea-
soning to synthesize and discover adapters, that may be applicable
to our needs.

17



5.4 Self-Management
The current system cannot survive a failure of the administrator

agent. Furthermore, the administrator is also a bottleneck, so plac-
ing a limit on the number of transactions that the system can handle.
We believe that the correct solution to this problem is to move to-
wards decentralized architecture using principles from peer-to-peer
network. We intend to refactor our system in two phases to achieve
a P2P structure: in the first phase we will use a hybrid architecture
with a centralized directory storing the locations of the services of
the system, and in the second phase we will move to a relaxed-ring
structure[11] linking the helper and administrator agents to achieve
self-healing properties[5].

6. ACKNOWLEDGMENTS
Thanks to Michel Oey (VUA) and Reinier Timmer (VUA) for

assistance with using and describing AgentScape. Frances Bra-
zier (VUA) provided feedback on an earlier version of this article.
Emad El-Deen El-Akehal is partially supported by The Book De-
pository Ltd. and by an EPSRC CASE award through the UK’s
South-Western Regional Development Agency (SWRDA).

7. REFERENCES
[1] J. Armstrong. Making reliable distributed systems in the

presence of software errors. PhD thesis, Royal Institute of
Technology (KTH), Kista, Sweden, 2003.

[2] R. H. Bordini, J. F. Hübner, and M. Wooldridge.
Programming Multi-agent Systems in AgentSpeak Using
Jason. Wiley, 2007. ISBN-13 978-0470029008.

[3] O. Cliffe. Specifying and Analysing Institutions in
Multi-Agent Systems Using Answer Set Programming. PhD
thesis, Dept. Computer Science, University of Bath, June
2007.

[4] O. Cliffe, M. De Vos, and J. Padget. Specifying and
reasoning about multiple institutions. In P. Noriega,
J. Vázquez-Salceda, G. Boella, O. Boissier, V. Dignum,
N. Fornara, and E. Matson, editors, Proceedings of
Coordination, Organizations, Institutions and Norms (COIN)
at AAMAS06, volume 4386 of Lecture Notes in Artificial
Intelligence, 2006.

[5] E. M. Dashofy, A. van der Hoek, and R. N. Taylor. Towards
architecture-based self-healing systems. In WOSS ’02:
Proceedings of the first workshop on Self-healing systems,
pages 21–26, New York, NY, USA, 2002. ACM.

[6] D. Hull, R. Stevens, P. Lord, C. Wroe, and C. Goble.
Treating ‘shimantic web’ syndrome with ontologies. In First
Advanced Knowledge Technologies workshop on Semantic
Web Services (AKT-SWS04), volume 122 of KMi. The Open
University, Milton Keynes, UK, 2004. Workshop
proceedings available from CEUR-WS.org.
ISSN:1613-0073.
http://sunsite.informatik.rwth-aachen.
de/Publications/CEUR-WS/Vol-122/.

[7] T. D. Huynh, N. R. Jennings, and N. R. Shadbolt. An
integrated trust and reputation model for open multi-agent
systems. Journal of Autonomous Agents and Multi-Agent
Systems, 13(2):119–154, 2006. ISSN 1387-2532. Last
viewed December 2007 at http://eprints.ecs.
soton.ac.uk/9559/1/dong-ecai2004.pdf.

[8] IIDS. AgentScape Agent Middleware.
http://www.agentscape.org.

[9] J. O. Kephart. Research challenges of autonomic computing.

In G.-C. Roman, W. G. Griswold, and B. Nuseibeh, editors,
ICSE, pages 15–22. ACM, 2005.

[10] M. Luck, P. McBurney, O. Shehory, and S. Willmott. Agent
Technology: Computing as Interaction (A Roadmap for
Agent Based Computing). AgentLink, 2005.

[11] B. Mejias and P. V. Roy. A relaxed-ring for self-organising
and fault-tolerant peer-to-peer networks. sccc, 0:13–22,
2007.

[12] P. Noriega. Agent mediated auctions: The Fishmarket
Metaphor. PhD thesis, Universitat Autonoma de Barcelona,
1997.

[13] B. J. Overeinder and F. M. T. Brazier. Scalable middleware
environment for agent-based Internet applications. In
Applied Parallel Computing, volume 3732 of Lecture Notes
in Computer Science, pages 675–679. Springer, Berlin, 2006.

[14] J.-A. Rodríguez, P. Noriega, C. Sierra, and J. Padget. FM96.5
A Java-based Electronic Auction House. In Proceedings of
2nd Conference on Practical Applications of Intelligent
Agents and MultiAgent Technology (PAAM’97), pages
207–224, London, UK, Apr. 1997. ISBN 0-9525554-6-8.

[15] J. A. Rodriguez-Aguilar. On the Design and Construction of
Agent-mediated Institutions. PhD thesis, Universitat
Autonoma de Barcelona, 2001.

[16] P. V. Roy. Self management and the future of software
design. Electr. Notes Theor. Comput. Sci., 182:201–217,
2007.

[17] J. V. Salceda. The role of Norms and Electronic Institutions
in Multi-Agent Systems applied to complex domains. PhD
thesis, Technical University of Catalonia, 2003.

[18] C. Sierra, J. Thangarajah, L. Padgham, and M. Winikoff.
Designing institutional multi-agent systems. In L. Padgham
and F. Zambonelli, editors, AOSE, volume 4405 of Lecture
Notes in Computer Science, pages 84–103. Springer, 2006.

[19] M. Szomszor. Dynamic Discovery, Creation and Invocation
of Type Adaptors for Web Service Workflow Harmonisation.
PhD thesis, University of Southampton, April 2007.

[20] J. Thangarajah, L. Padgham, and M. Winikoff. Prometheus
design tool. In F. Dignum, V. Dignum, S. Koenig, S. Kraus,
M. P. Singh, and M. Wooldridge, editors, AAMAS, pages
127–128. ACM, 2005.

[21] J. Vázquez-Salceda, J. Padget, U. Cortés, A. López-Navidad,
and F. Caballero. Formalizing an electronic institution for the
distribution of human tissues. Artificial Intelligence in
Medicine, 27(3):233–258, 2003. ISSN: 0933-3657, available
via http://dx.doi.org/10.1016/
S0933-3657(03)00005-8.

18




