
WADE: A software platform to develop mission critical
applications exploiting agents and workflows

Giovanni Caire
Telecom Italia

Via Reiss Romoli 274
10148 Torino - Italy
+39 011 2286107

giovanni.caire@telecomitalia.it

Danilo Gotta
Telecom Italia

Via Reiss Romoli 274
10148 Torino - Italy
+39 011 2288061

danilo.gotta@telecomitalia.it

Massimo Banzi
Telecom Italia

Via V. Zambra 1
38100 Trento - Italy
+39 0461 316408

massimo.banzi@telecomitalia.it

ABSTRACT
In this paper, we describe two mission critical applications currently
deployed by Telecom Italia in the Operations Support System
domains. The first one called “Network Neutral Element Manager”
implements a mediation layer between network elements and OSS
systems. The second one, known as “Wizard”, provides step-by-step
guidance to technicians performing maintenance operations in the
fields.

Both applications have strong requirements in terms of scalability
and flexibility and exploit the combination of agents and workflows
to meet them. As such both of them are based on a common
software platform called WADE (Workflows and Agents
Development Environment). WADE is the main evolution of JADE
a popular Open Source framework that facilitates the development
of interoperable intelligent multi-agent systems. WADE adds to
JADE the support for the execution of tasks defined according to the
workflow metaphor and a number of mechanisms that help
managing the complexity of the distribution both in terms of
administration and fault tolerance. In this paper in particular we
focus on the workflow aspect and we show how WADE tries to
bring the workflow approach from the business process level to the
level of system internal logic.

Categories and Subject Descriptors
I.2.11 {Artificial Intelligence]: Distributed Artificial Intelligence
- Multiagent systems; C.2.4 {Computer Communication
Systems]: Distributed systems; D.2.11 [Software Engineering]:
Software architecture

General Terms
Management, Performance, Languages.

Keywords
Software Agent, workflow, JADE, Open Source, XPDL, OSS,
Telecommunication network, Scalability, Flexibility.

1. INTRODUCTION
With 7.3 million broadband connections (retail and wholesale)
[1], Telecom Italia is currently the leading operator in the national
TLC market. It has one of the most penetrating and advanced
network in Europe, with an extension of over 107 million Km in
copper lines (access) and 3.8 million km of optical fibers
(transport and access).
Recently the deployment of the passive optical fiber network
(GPON) in combination with VDSL2 modulation supporting
transmission rates up to 50 Mbit/s enabled the provisioning of
more advanced services such as high definition television,
telemedicine, and so on.
Considering the huge business volumes involved in the described
scenario, it is not difficult to understand that management systems
carrying out everyday intensive operations have strong
requirements in terms of scalability, robustness and flexibility. In
this paper in particular we describe two mission critical
applications currently deployed by Telecom Italia in the Operation
Support System (OSS) domains that exploit the agent paradigm and
the workflow metaphor to meet such requirements.
Both applications are built upon a common software platform
called WADE (Workflows and Agents Development
Environment). WADE is the main evolution of JADE ([2], [3],
[4], [5]) a popular Open Source framework that facilitates the
development of interoperable intelligent multi-agent systems. For
instance British Telecom uses JADE as the core platform for
mPower [6], a multi-agent system that is used by BT engineers to
support cooperation between mobile workers and team-based job
management. WADE adds to JADE the support for the execution
of tasks defined according to the workflow metaphor and a
number of mechanisms that help managing the complexity of the
distribution both in terms of administration and fault tolerance. In
this paper in particular we focus on the workflow aspect and we
show how WADE tries to bring the workflow approach from the
business process level to the level of system internal logics
Many barriers preventing a massive exploitation of agent
technology remains both in terms of supporting tools and
methodologies and of acceptance of software applications
showing a certain degree of autonomy and self-consciousness.
Nevertheless several examples of deployed agent-based systems
for industrial application exist. A number of them are described in
the Agent Link site [7] and in related papers [8]. In particular the
trend that is mixing agents, workflows, grid and SOA ([9], [10],

Cite as: WADE: A software platform to develop mission critical
applications exploiting agents and workflows, Caire G., Gotta D., Banzi
M., Proc. of 7th Int. Conf. on Autonomous Agents and Multiagent
Systems (AAMAS 2008) – Industry and Applications Track, Berger,
Burg, Nishiyama (eds.), May, 12-16., 2008, Estoril, Portugal, pp. 29-36.
Copyright © 2008, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

29

[11], [12], [13], [14]) appears to be very promising and WADE
fits in it.
The paper is structured as follows: in chapters 2 and 3, we present
the applications mentioned above that have a direct influence on
the work of thousands of technicians and potentially millions of
customers. The first one called “Network Neutral Element
Manager” implements a mediation layer between network
elements and OSS systems. The second one, known as “Wizard”,
provides step-by-step guidance to technicians performing
maintenance operations in the fields. In chapter 4 and 5 we focus
on WADE, the software platform at the basis of both applications
actually implementing the agents and workflows related features.
Finally in chapter 6 we draw some conclusions and present future
activities.

2. NETWORK NEUTRAL ELEMENT
MANAGER
One of the major problems in the Operation Support Systems
domain is related to the lack of standards in the management
interfaces that network elements provide. This is even more
critical in large and highly multivendor telecommunication
networks such as that of Telecom Italia. Because of this lack of
standardization each vendor provides its own Element Manager
with a proprietary interface both in terms of protocol (CORBA,
SNMP, TL1, XML being the most common ones), mimic of
interactions and data modeling. As a consequence all OSS
systems that require communicating with the network (such as the
activation system, the troubleshooting system, the performance
monitoring system and so on) need to embed proper adapters for
each vendor and type of device. Moreover every time a new
technology, a new vendor or even a new release of a network
element is deployed, all OSS systems need to be updated thus
multiplicating the effort and slowing down the roll out of new
services.

In order to face this problem, a project called “Network Neutral
Element Manager” was started four years ago in the OSS
Innovation department of Telecom Italia. The focus of the project
was the development of a mediation layer decoupling the
management systems from the network elements. As depicted in
Figure 1 the Network Neutral Element Manager (NNEM) aimed
at hiding the diversity of the underlying technologies, vendors and
types of device to OSS systems by providing a uniform north-
bound interface.

Another important benefit of the NNEM was related to the
possibility of controlling the management overload. Having a
single entity carrying out all interactions with the network, in
facts, allows governing the requests of the different OSS systems.
This avoids slowing down the performances of the network due to
uncontrolled accesses performed by completely un-coordinated
systems.

Considering the challenging goals described above, it was clear
that the NNEM had to meet strong requirements in terms of:

Scalability - The NNEM had to be able to manage thousands of
network elements and serve several management systems
potentially producing each one thousands of requests per minute.

Flexibility - A big telecommunication network is a sort of “living
animal” that evolves mostly every day in terms of new services,

new technologies, new vendors, new types of device and new
firmware releases. Clearly the NNEM had to cope with this
continuous evolution providing proper mechanisms to support hot
deployment of new/modified system logics.

Activation
system

Troubleshooting
system

Performance
Monitoring

system

Other OSS
system

Network Neutral Element Manager

Uniform interface

Figure 1. The Network Neutral Element Manager

In order to meet the scalability requirement it was decided to
adopt agent technology as the basis for the NNEM. In particular
the core of the system was architected with one agent called
Resource Proxy for each network element. A Resource Proxy is
responsible for virtualizing the related network element and
managing all accesses to it. Each Resource Proxy keeps an image
of both the physical structure (cards, ports and so on) and the
configurations (logical interfaces, cross-connections, profiles) of
the virtualized device. This image, called “cache” is normalized
according to a vendor independent model closely derived from the
SID (Shared Information/Data model) being defined within the
scope of the Tele Management Forum [25]. The Resource Proxy
also processes the traps issued by the virtualized device and is
therefore able to keep its cache constantly up to date.

Flexibility was achieved by describing all the logics of
interactions with the network elements to be carried out by
Resource Proxy agents as workflows. That is, instead of directly
embedding the code implementing these interactions, Resource
Proxy agents were designed to include a very light workflow
engine. Each time a modification occurs in the network a
new/modified workflow reflecting the modification can be
deployed at runtime thus making the Resource Proxy agents
immediately able to cope with the new situation.

Both the basic agent-related features such as execution model,
communication, discovery and life cycle management and the
ability to execute possibly long and complex tasks defined
according to the workflow metaphor are provided to the NNEM
system by a software platform called WADE that will be
described in chapter 4.

The Network Neutral Element Manager is currently deployed on
15 low cost HP Proliant DL 145 servers each one equipped with 2
ADM Opteron 246 processors (2 GHz) and 4 Mbytes of RAM
(cost per unit between 2000 and 3000 euros at the end of 2006). It
manages the network elements of the IP broadband and ultra-
broadband access (~2000 devices considering IP DSLAM and
ONU from 4 different vendors) serving the activation,

30

troubleshooting and partially the fault management processes.
Extensions to new domains (and in particular the GBit Ethernet
metropolitan network) and new processes (such as performances
monitoring and configuration management) are under evaluation.

As described in [26] laboratory tests carried out in 2007 shown
that more than 5400 IPTV service activation requests per hour can
be served on just 3 of the servers mentioned above.

3. WIZARD
The costs of the operational processes, such as the ones for
providing new services to customers or for removing failures and
malfunctions, represent an important percentage of the costs that
telecommunications operators must face yearly. Hence the
importance of systems aimed at reducing such costs through tools
supporting activities of both operator workforce and customers,
which can thereby be directly involved in removing troubles
related to equipments in the network and in the customer home.
To support the workforce that is directly involved in actions of
repairing failures/malfunctions of the network we have realized a
software system called Wizard. Wizard guides the technical staff
in a complete, integrated and exhaustive way, through all the
steps to be followed in problem-solving activities. A complete
guide enables both a reduction in the working times for the
technicians and a faster insertion of technicians that are new to the
job.
In the first place, the system provides a direct interaction with the
systems/platforms responsible for network and service
management. This significantly reduces the times of execution of
problem-solving activities since the correct completion of the jobs
performed by the technical staff can be verified in real-time by
Wizard that proactively triggers suitable checks with the right
data on the relevant OSS systems.
In the second place, the system represents using formal tools
(such as the workflows) the operative knowledge to be shared by
technicians. This enables a further reduction of the working times
of the technicians through an unambiguous and readily
understandable description of the activities to be carried out. Such
formal representation would also avoid any possible difficulties of
interpretation of the supplied indications, which can lead
technicians to execute activities that are useless or even harmful
for the network.
The Wizard system has been developed on top of WADE (that
will be described in chapter 4) and is aimed to support business
processes including both automatic tasks (machine to machine
interactions) and human task (human workflows, that means the
support for human activities and a real-time interaction with the
user). One of the features added by Wizard is the concept of
Workflow Driven GUI, that means a Graphic User Interface that
allows the real-time interaction between the workflow execution
and the user (see Figure 2).
This GUI runs also on mobile assets in order to take into account
nomadic workplace environments
We have carefully chosen the case study working together with
on field technicians in order to understand all details, critical
points and bottleneck of their job.

SendNotification

SendNotification

ShowMessage

GUI on client Asset Workflow

Figure 2. Workflow driven GUI

One result is a new way to perform the ADSL diagnosis that
reduce the work for the back office and empower the on field
technician.
The technician on field receives the work-request on his mobile
asset, drives to the central office (where the network elements are
located) and starts through his mobile asset the “ADSL diagnosis
and repair“ workflow that drives him through all steps of the
whole process interacting with him and with the remote systems
when needed (see Figure 3)

Figure 3. ADSL Diagnosis and repair scenario

At the end of the workflow the technician gets, as a result, the
new pair position on MDF (main distribution frame) related to the
new DSLAM port to the technician
Finally the technician moves the jumpers on the new MDF
positions and closes his work-request
The diagnosis process now is well defined and documented as
part of “ADSL Diagnosis and repair workflow”
Technicians of any experience level are able to address the work-
request and possibly even learn through the workflow they
execute in order to accomplish it

31

The technician through the Wizard Platform can use the automatic
service fulfillment chain in order to reconfigure the circuit saving
a lot of time (from hours to minutes)
The feedback from the field is really good because of the time
saved by the technician avoiding the phone call to the back office
operator and the time saved by the back office operator itself .
The overall process now takes only few minutes instead of hours
The solution presented in this section is used in Telecom Italia by
hundreds of technicians each day guaranteeing the assurance on
the 7.3 million broadband connections.

4. THE WADE PLATFORM
Though addressing different domains and showing opposite
characteristics in terms of user interactivity, the applications
described in sections 2 and 3 are both built on top of a common
software platform called WADE. WADE (Workflow and Agent
Development Environment) represents the main evolution of
JADE [5], a popular open source middleware conceived to
facilitate the development of distributed applications based on the
agent-oriented paradigm.
As depicted in Figure 4, JADE provides a distributed runtime
environment, the “agent” and “behaviour” abstractions, peer to
peer communication between agents and basic agent lifecycle
management and discovery mechanisms. WADE adds to JADE
the support for the execution of tasks defined according to the
workflow metaphor and a number of mechanisms that help
managing the complexity of the distribution both in terms of
administration and fault tolerance. This paper in particular focuses
on the aspects related to workflow based development that we
consider WADE most characterizing feature.

JADE

WADE Eclipse

WOLF

- Distributed runtime
- Agent and behaviour
- Communication
- Discovery

- Workflow development
- Administration and fault
management

Application - Application specific
features

Figure 4. The WADE platform

In principle WADE supports “notepad-programming” in the sense
that there is no hidden stuff that developers can’t control.
However, especially considering that one of the main advantages
of the workflow approach is the possibility of representing
processes in a friendly graphical form, WADE comes with a
development environment called WOLF that facilitates the
creation of WADE-based application. WOLF is an Eclipse [15]
plug-in and as a consequence allows WADE developers to exploit

the full power of the Eclipse IDE plus additional WADE-specific
features.

4.1 Workflow based development
A workflow is the definition of a process in terms of activities to
be executed, relations between them, criteria that specify the
activation and termination and additional information such as the
participants, the software tools to be invoked, required inputs and
expected outputs and internal data manipulated during the
execution.
The main advantage of implementing a process as a workflow is
the expressiveness of the workflow metaphor. A workflow in
facts can be represented in a purely graphical form that is
understandable by domain experts as well as by programmers.
Domain experts can therefore validate system logics directly and
not only on documents that most of the time are not perfectly up
to date. In some cases they could even contribute to the actual
development of the system without the need for any programming
skill.
Another important characteristic is that the steps that compose the
process are explicitly identified. This makes it possible to create
automatic mechanisms that trace the execution of a workflow
thus facilitating system monitoring and problem investigation.
Additionally, when processes have to be executed within the
scope of a transaction, semi-automatic rollback procedures can
be activated in case of unexpected fault.
Finally, since workflows are fully self-documented, workflow-
based development releases the development team of the burden
of keeping documentation aligned each time design choices must
be revisited to face implementation details.

4.1.1 Scope
Nowadays the workflow metaphor is mostly used in BPM
(Business Process Management) environments where a workflow
represents a business process and orchestrates a number of
existing systems typically (but not necessarily) accessible by
means of Web Services-based interfaces.
The main challenge in WADE is to bring the workflow approach
from the business process level to the level of system internal
logics. That is, even if it could be used for that purpose too,
WADE does not target high level orchestration of services
provided by different systems, but the implementation of the
internal behaviour of each single system.
A direct consequence of the described approach is that WADE is
expected to be particularly suitable for applications that imply the
execution of possibly long and fairly complex tasks.
Furthermore, unlike the majority of existing workflow systems
that provide a powerful centralized engine, in WADE each agent
can embed a “micro workflow engine” and a complex process can
be carried out by a set of cooperating agents each one executing a
piece of the process.
From an industrial point of view one advantage in using WADE is
the possibility to develop mission critical applications that can
work on grid of blade servers (or PC) with great scalability, and
big savings in hardware [16]. For example, one impressive
success of PC-derived components, harnessed in parallel by open-
source-based software, is the Google search engine, implemented
on a massive cluster comprising more than 15,000 commodity-
class PCs as described in an paper published in 2003 [17]. The

32

Google application has been designed to take advantage of these
affordable building blocks, with different queries running on
different processors and with a partitioned index that allows
single queries to run on multiple processors. They make it
possible for Google to pursue the lowest possible ratio of price to
performance and not, in the manner of past supercomputer efforts,
peak processor performance regardless of cost.

4.1.2 Approach
As mentioned the workflow metaphor provides a clear and
intuitive representation of the process execution flow. On the
other hand a purely graphical or descriptive formalism (such as
BPMN, BPEL, WS-BPEL ([22], [23], [24]) is not suitable to
specify all the details involved in a process that implements a
piece of the business logic of a given software system. A usual
programming language such as Java is definitely more powerful
and flexible to deal with data transformations, computations and
other low level auxiliary operations that can be needed during the
process execution. Furthermore programmers used to exploit
powerful Integrated Development Environments such as Eclipse
would not even consider working with a platform that does not
provide the same level of support in terms of searches,
navigations, error reporting, automatic suggestions, refactoring,
debugging and so on.
Taking into account the above considerations, the approach
followed by WADE is to provide a workflow view on top of a
normal Java class. That is a workflow that can be executed by
WADE agents is expressed as a Java class with a well defined
structure (detailed in section 5.2.1). As such WADE workflows
can be edited, refactored, debugged and in general managed as all
Java classes. In addition of course the execution flow they specify
can be presented and modified in a friendly, graphical way. More
in details Wolf (the development environment for WADE based
applications) is an Eclipse plugin and allows developers to work
with a graphical view (suitable to manage the process flow) and a
code view (the usual Eclipse Java editor suitable to define
execution details) that are kept in synch.
Therefore the WADE micro workflow engine does not embed an
interpreter of a workflow description language, but just executes
compiled Java code. This on the one hand makes it extremely
performant, but on the other hand requires the necessary
workflow classes to be available when an agent is requested to
execute a workflow. For this reason WADE uses ad hoc Java
class loaders to allow deploying new/modified workflows that
become immediately executable without the need to turn the
system down.

5. Workflow representation formalism
As mentioned in section 4.1.2, WADE provides a workflow view
on top of normal java classes that can therefore be managed
exploiting the full power of the Eclipse IDE. In this section we
give more details about how a java class representing a workflow
that can be executed by WADE agents looks like.

5.1 The meta-model
In order to facilitate import/export operations from/to workflow
standard representation formalisms, WADE adopts (when
relevant) a workflow meta-model closely derived from that
defined by the by the Workflow Management Consortium for the

XPDL language ([18], [19], [20], [21]). The main elements that
compose this meta-model are described hereafter.
A task that is being described is called a Process. A process is
composed of a set of Activities each one corresponding to the
execution of given operations. A process defines a single Start
Activity (specifying the execution entry point) and one or more
End Activity (specifying the execution termination points). Each
non-end activity has one or more outgoing Transitions, possibly
associated to a condition, leading to another activity in the
process. Once the execution of the operations included in a given
activity is terminated, the conditions of all outgoing transitions
are evaluated. As soon as a condition holds the corresponding
transition is fired and the execution flow goes on with the
operations included in the destination activity.
A process can have one or more Formal Parameters defining the
type of required inputs and expected outputs. At process
invocation time proper values must be provided for input
parameters and, at the end of the execution, the values produced
as output parameters are returned to the requester.
Depending on the included operations, there are different types of
activity the most important being.

• Tool activities. The operations included in a tool activity
consist in invoking one or more external tool generically
identified as Applications. Applications are computational
entities defined outside the workflow process and wrapped
by a uniform interface.

• Subflow activities. The operations included in a subflow
activity consist in the invocation of another workflow
process. The execution of the subflow takes place in a
separate computational space and (as will be described in
section 5.3) can be even carried out by a different agent
(possibly running in a remote host) with respect to that
performing the main process.

• Code activities. The operations included in a code activity
are specified directly by a piece of Java code embedded in
the workflow process definition. It should be noticed that,
unlike tool and subflow activities, code activities do not
belong to the XPDL meta-model and are a proprietary
WADE extension.

a
b
c
d
e
f
...

“Hallo world”

25

3.25

10

Data Fields

Appl. X

e <= b otherwise

Activity A1
(Tool)

Activity A2
(Code) Activity A3

(Subflow)

1) Application X
produces value 10
and stores it in data

filed “e”

2) This
transition is

fired

3) A3 consist in the
execution of another

workflow process
defined outside P

e = e+10;
f = 0;

Process P

Figure 5. Main elements in the WADE meta-model

33

Finally the process makes reference to a set of Data Fields each
one having a name, a type and possibly an initial value. Data
fields can be referenced wherever in the process e.g. in the
conditions associated to the transitions, as actual parameters for
application and subflow invocations and in the pieces of code
triggered by code activities.
Figure 5 shows an example summarizing the main elements of the
WADE meta-model.

5.2 Process elements implementation
Having presented the main elements that make up a workflow
process, in this section we show the structure of the Java code that
actually implements them. It is important to note that, even if they
could, WADE developers are not required to write the pieces of
code that are described in this section directly. The graphical
editor provided by Wolf automatically manages them all.

5.2.1 Structure of a workflow class
Each workflow process is implemented by a Java class that
extends (directly or indirectly) the WorkflowBehaviour base
class.

public class CoffeeProcess extends WorkflowBehaviour {
 ...
 protected void defineActivities() {
 registerActivity(new CodeExecutionBehaviour(PREPARE, this),
 INITIAL);

 registerActivity(new CodeExecutionBehaviour(POUR, this),
 FINAL);

 registerActivity(new CodeExecutionBehaviour(ERROR, this),
 FINAL);
 }

 protected void defineTransitions() {
 registerTransition(new Transition(
 “enoughCoffee”, this),
 PREPARE,
 POUR);
 registerTransition(new Transition(),
 PREPARE,
 ERROR);
 }

 ...

 protecetd void prepare() throws Exception {
 // Code to prepare coffee
 // To be filled by developers
 }

 protecetd void pour() {
 // Code to pour coffee
 // To be filled by developers
 }

 protecetd boolean enoughCoffee() {
 // Return true if we don’t have enough coffee
 // To be filled by developers
 }

 ...
}

PREPARE

POUR

ERROR

COFFEE PROCESS

enoughCoffee

Figure 6. Workflow class structure
The WorkflowBehaviour class on its turn extends the JADE
FSMBehaviour class and provides on top of it an API
consistent with the meta-model presented in 5.1. In particular the

registerActivity() and registerTransition()
methods allow defining the activities and transitions that specify
the process flow. Even if in principle this is not strictly necessary
it is highly recommended to register all process activities in a
method called defineActivities() and all transitions in a
method called defineTransitions(). This is because the
workflow graphical editor included in Wolf searches for these
methods to detect process activities and transitions to show.
The registerActivity() method gets the behaviour
implementing the registered activity as an argument. More in
details there is a class for each type of activity:
ToolExecutionBehaviour to register a tool activity,
SubflowDelegationBehaviour to register a subflow
activity, CodeExecutionBehaviour to register a code
activity and so on. The actual operations to be performed in a
registered activity (no matter of its type) are specified in a void
method of the workflow class. That method must have the same
name as the corresponding activity. Each activity behaviour is just
responsible for invoking the related method when the activity is
visited.
Similarly the registerTransition() method gets a
Transition object as an argument. In case the transition has an
associated condition, this is implemented by a boolean method
of the workflow class. The Transition object is just responsible for
invoking that method when the transition condition must be
evaluated.
Figure 6 summarizes the above correspondences by showing the
structure of a workflow class implementing a simple process for
coffee preparation.

5.2.2 Data fields and formal parameters
Data Fields of a workflow process are implemented as fields of
the workflow class. For instance, with reference to the coffee
process shown in Figure 5, there could be a data field containing
the amount of coffee in grams available for preparation. This
would be implemented as an int field of the CoffeProcess
class.
Workflow formal parameters need to be accessed by the
workflow in a similar way to data fields. Therefore they are
implemented, like data fields, as fields of the workflow class. In
order to let WADE know that they are formal parameters,
however, they must be annotated by means of the
FormalParameter annotation. For instance the coffee process
could take an input formal parameter nCups indicating the
number of cups to be prepared. This would be implemented as an
int field annotated as below.
@FormalParameter(mode=FormalParameter.INPUT)

private int nCups;

5.2.3 Layout information
When representing a process as a workflow, besides the
information related to the actual flow of execution, it is necessary
to consider all additional information such as activity positions,
transition bend-points (if any), comments and so on. In WADE all
these information are captured in the @WorkflowLayout
annotation of the workflow class. By means of this choice the
execution flow definition remains clean and readable as much as
possible and at the same time WADE deals with a single java file
per workflow.

34

5.3 Delegations
An important characteristic of WADE micro workflow engine is
the possibility of delegating subflows to other agents selected at
runtime and possibly running on remote hosts. Subflow performer
selection criteria are clearly application specific. For instance they
can be based on the current host/agent workload thus achieving a
GRID-like system able to distribute pieces of a complex process
across available hosts. In the Network Neutral Element Manager
system described in chapter 2, this feature was deeply exploited to
deal with agent specialization. As an example the
IPTVServiceActivation workflow, that is triggered when network
elements must be configured to support a new ADSL IPTV
service, is cooperatively executed by at least three different
agents. It is initially submitted to a ServiceAgent embedding
additional features to interact with the ADSL services DB. The
ServiceAgent executes the part of the process that stores the new
service in the services DB and then delegates the actual network
element configuration part to a TopologyAgent. The latter, as its
name suggests, knows the topology of the network and identifies,
on the basis of the customer location and on the type of the
service to be activated, the network elements involved in the
activation process. Having done that, the TopologyAgent
delegates the specific configurations to the ResourceProxy agents
acting as proxies for the identified network elements.

5.4 Workflow Inheritance
One of the requirements that were taken into account when
designing the WADE micro workflow engine was the support for
workflow inheritance. This feature, that allows creating new
workflows starting from existing ones and specifying only the
differences, is likely one of the most characterizing in the
landscape of workflow management tools.
 public class ExtendedCoffeeProcess extends CoffeeProcess {
 ...
 protected void defineActivities() {
 super.defineActivities();
 deregisterActivity(ERROR);

 registerActivity(new CodeExecutionBehaviour(BUY, this));
 }

 protected void defineTransitions() {
 deregisterTransition(PREPARE, ERROR);

 registerTransition(new Transition(),
 PREPARE,
 BUY);
 registerTransition(new Transition(),
 BUY,
 PREPARE);
 }

 ...

 protecetd void buy() throws Exception {
 // Code to buy coffee
 // To be filled by developers
 }
 ...
}

PREPAREBUY

EXTENDED COFFEE
PROCESS

enoughCoffee

POUR

Figure 7. Workflow inheritance example

More in details, being WADE workflows Java classes, they can
be extended using Java inheritance. This allows redefining the
methods associated to the process activities thus modifying the

related operations according to the needs of the extended
workflow. Furthermore the WorkflowBehaviour class provides
the deregisterActivity() and deregisterTransition() methods that,
in conjunction with the registerActivity() and registerTransition()
methods described in section 5.2.1, allows modifying the process
execution flow at will. For instance we could create an extended
version of the CoffeeWorkflow presented in section 5.2.1 as
shown in Figure 7.

6. CONCLUSIONS
In this paper we presented two mission critical applications
developed in Telecom Italia and currently deployed in the field.
These applications have a direct influence on the work of
thousands of technicians and on millions of customers and, as a
consequence, have strong requirements in terms of scalability and
flexibility. The enabler for this compelling price/performance
proposition is the middleware WADE that uses the combination
of Agents and Workflows to achieve:

• high flexibility in defining and modifying services

• deep control on the accuracy of results in a fault
tolerance environment that runs on a grid of low cost
servers

• high performance and scalability

• high robustness and user-friendliness

• high control and maintainability on the logics used in
the platform

In order to bring the workflow approach from the business
process level to the level of system internal logics, WADE
provides a workflow view over normal Java classes. This allows
combining the flexibility of the Java language and the power of
the Eclipse IDE with the expressiveness and traceability of the
workflow metaphor.
On the other hand the exploitation of “autonomy” and “self
consciousness ” of agents (and in general of Artificial Intelligence
Techniques) still encounters some resistance especially in big
companies that need deep control over their systems. The NNEM
and Wizard applications described in this paper currently do not
take advantage from these features.
Future activities are focusing on empowering the WADE platform
and its development environment Wolf. In particular a deep
integration with Web services and the support for asynchronous
events are in the roadmap.

7. ACKNOWLEDGMENTS
We gratefully acknowledge all of our international friends who
have contributed to Jade over the years. Furthermore we are
grateful to our Telecom Italia colleagues (in primis the OSS
Innovation department and the Trento Software factory) for the
contributions to the systems implementation, deployment, testing
and maintenance of WADE, NNEM e Wizard

8. REFERENCES
[1] The individual shareholder Guide Oct. 2007.

http://ticlub.telecomitalia.com/pdf/Guida_1H_2007_ottobre_
EN.pdf

35

[2] Bellifemine F., Caire G., D. Greenwood. Feb. 2007,
Developing multi-agent systems with JADE. Wiley Series in
Agent Technology. ISBN 978-0-470-05747-6,.

[3] Bellifemine F., Poggi A., Rimassa G.. 2001. Developing
multi agent systems with a FIPA-compliant agent
framework. In Software - Practice & Experience, 31:103-
128,.

[4] Berger M. Rusitschka S., Toropov D.,Watzke M., Schlichte
M., 2002. Porting Distributed Agent-Middleware to Small
Mobile Devices. In Workshop on Ubiquitous Agents,
AAMAS 2002.

[5] JADE - Java Agent Development framework.
http://jade.tilab.com.

[6] Lee H., Mihailescu P., Shepherdson J., . 2007, Realising
Team-Working in the Field: An Agent-based Approach,
IEEE Pervasive Computing, pp. 85-92 .

[7] AgentLink III. Agent Technology Roadmap. Available from
http://www.agentlink.org/roadmap/index.html

[8] Belecheanu R., Munroe S., Luck M., Payne T., Miller T.,
Pechoycek M., McBurney P, 2006 . Commercial applications
of agents lessons, experiences and challenges, Industrial
Track Fifth international joint Conference on Autonomous
Agents and Multi-Agents Systems. ACM Press, pp 1549-
1555

[9] Buhler P.A., Vidal, J.M. 2005, Towards Adaptive Workflow
Enactment Using Multiagent Systems. Information
Technology and Management, Information Technology and
Management, 6(1):61-87.

[10] Poggi A., Tomaiuolo M., Turci P, 2007, An Agent-Based
Service Oriented Architecture
http://woa07.disi.unige.it/papers/PoggiSOA.pdf

[11] Foster I., Jennings N. R., Kesselman C., 2004, Brain Meets
Brawn: Why Grid and Agents Need Each Other, Proc.
Autonomous Agents and Multi Agent Systems (AAMAS
2004), pp 8-15

[12] Greenwood, D., Callisti, M. Engineering Web Service-Agent
Integration. In IEEE Conference of Systems, Man and
Cybernetics, 2004. Available from
http://www.whitestein.com/resources/papers/ieeesmc04.pdf

[13] Savarimuthu, B.T.R.; Purvis, Mary.; Purvis, Mart.;
Cranefield, S., 2005.,Integrating Web services with agent
based workflow management system (WfMS), Proceedings.

The 2005 IEEE/WIC/ACM International Conference on Web
Intelligence, Page(s): 471 - 474

[14] Negri A., Poggi A., Tomaiuolo M., Turci P,. 2006, Dynamic
Grid Tasks Composition and Distribution through Agents,.
Concurrency and Computation: Practice and
Experience(2006), 18(8): 875-885

[15] Eclipse. www.eclipse.org.
[16] Gotta,D, Covino, G., 2004, “GRID COMPUTING in the

real world”, CMG Italia, Italy conference Pisa 2004,
http://www.cmgitalia.it

[17] L.A. Barroso, J. Dean, U. Holzle, 2003 “Web search for a
Planet: the google cluster architecture”, Micro,
IEEE,Volume: 23, Issue: 2, Page(s): 22- 28

[18] WFMC WorkFlow Managment Coalition,
http://www.wfmc.org/

[19] XPDL XML Process Definition Language,
http://www.wfmc.org/standards/xpdl.htm

[20] van der Aalst W.M.P.,. 2003,Patterns and XPDL: A Critical
Evaluation of the XML Process Definition Language. QUT
Technical report, FIT-TR-2003-06, Queensland University
of Technology, Brisbane,

[21] Shapiro, R. 2002. A comparison of XPDL, BPML and
BPEL4WS (Rough Draft), Cape Vision

[22] BPMN Business Process Modeling Notation
http://www.bpmn.org/

[23] P. Wohed, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter
Hofstede., 2003 Analysis of Web Services Composition
Languages: The Case of BPEL4WS., 22nd International
Conference on Conceptual Modeling (ER 2003), volume
2813 of Lecture Notes in Computer Science, pages 200-215.
Springer-Verlag, Berlin, 2003.

[24] WS BPEL Web Services Business Process Execution
Language Version 2.0, OASIS Standard, 2007, Available
from http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf

[25] Tele Management Forum. www.tmforum.org
[26] G. Covino, D.Gotta, A.Nasuto, 2007. La gestione delle

nuove reti con un diverso paradigma, pp 11-13.
http://www.telecomitalia.it/TIPortale/docs/innovazione/0120
07/Pag27_42_NNEM.pdf

36

