
Autonomic Multi-Agent Management of Power and
Performance in Data Centers

Rajarshi Das
IBM Research

rajarshi@us.ibm.com

Jeffrey O. Kephart
IBM Research

kephart@us.ibm.com

Charles Lefurgy
IBM Research

lefurgy@us.ibm.com

Gerald Tesauro
IBM Research

gtesauro@us.ibm.com

David W. Levine
IBM Research

dwl@us.ibm.com

Hoi Chan
IBM Research

hychan@us.ibm.com

ABSTRACT
The rapidly rising cost and environmental impact of energy
consumption in data centers has become a multi-billion dol-
lar concern globally. In response, the IT Industry is ac-
tively engaged in a first-to-market race to develop energy-
conserving hardware and software solutions that do not sac-
rifice performance objectives. In this work we demonstrate
a prototype of an integrated data center power management
solution that employs server management tools, appropri-
ate sensors and monitors, and an agent-based approach to
achieve specified power and performance objectives. By in-
telligently turning off servers under low-load conditions, we
can achieve over 25% power savings over the unmanaged
case without incurring SLA penalties for typical daily and
weekly periodic demands seen in webserver farms.

Categories and Subject Descriptors
D.4.8 [Software]: Performance—measurements, modeling
and prediction, operational analysis

General Terms
Data center, power measurement, multicriteria utility func-
tions, policy-based management

Keywords
Green Data Center, Power Management, Energy Savings

1. INTRODUCTION
Energy consumption is a major and growing concern for

customers, data centers, server vendors, government regu-
lators and non-governmental organizations concerned with
energy and environmental matters. To cite a recent and
prominent example, the US Congress mandated a study of
energy efficiency for servers and data centers [14]. Another
clear sign of the growing interest in power management is the
Green Grid, an industry consortium dedicated to improving
data center power efficiency [20]. Recent trade press articles
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also make it clear that computer purchasers and data center
operators are eager to reduce power consumption and the
heat densities being experienced with current systems.

The widespread interest and concern regarding power man-
agement is attributable to several alarming trends [4, 10]:

• In 2005, data center servers accounted for 1.2% of elec-
tricity use in the United States, doubling since 2000.

• By 2008, 50% of existing data centers will have insuf-
ficient power and cooling.

• By 2008, power will be the second-highest operating
cost in 70% of all data centers

• Data centers are responsible for the emission of tens
of millions of metric tons of carbon dioxide emissions
annually – more than 5% of the total global emissions.

In response to these concerns, researchers are exploring a
myriad of different methods for reducing power consumption
at a wide range of spatial and temporal scales. At the finest
granularity, chip manufacturers are including controls that
allow the CPU frequency and voltage to be reduced [13].
Methods for exploiting these controls at the server level are
being implemented in firmware [12] and in operating sys-
tems (e.g. the Linux On-Demand Governor). Middleware
is beginning to exploit such controls based on load balanc-
ing or virtualization at the level of entire server clusters [9].
Even at the data center-level approaches that go beyond
static provisioning to active management techniques which
are cognizant of how racks, cooling units, etc. are laid out
in the data center have gained prominence recently.

There are several significant challenges to be met in de-
veloping a coherent power management strategy for a data
center, of which we cite two. First, one must ensure that
the various energy-savings techniques, when deployed sepa-
rately and independently, will not work at cross purposes.
Second, the problem of saving energy cannot be addressed
independently of other important concerns such as perfor-
mance targets and resource availability. For example, a good
way to achieve high availability is to keep a large number of
spare servers idle and at the ready in case another should
fail, but these spare servers would be equally well coveted
by a power manager (which might wish to turn them off)
and a performance manager (which might want to use them
to process more workload in parallel). How are these cross-
disciplinary conflicts to be resolved?
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To these challenges we add an important constraint on the
nature of the solution: one that is introduced by business re-
ality. Previous research efforts have attempted to address si-
multaneous management of power and performance through
centralized solutions that manage power and performance
jointly. However, although perhaps feasible in prototypes,
centralized approaches do not recognize the reality of today’s
IT environments, which typically contain multiple manage-
ment products specialized to different disciplines including
performance and power as well as other characteristics such
as availability [15].

In the abstract, it seems clear that multi-agent systems
should provide an excellent and fundamentally appropri-
ate paradigm for addressing the data center management
challenges we have cited, especially given the business con-
straints described above. Indeed, this position is consistent
with our earlier claim [3] that autonomic computing is a
killer app for multi-agent systems, given that data center
management is one important, specific application domain
for autonomic computing.

The purpose of this paper is to support our theoretical ar-
gument with a practical demonstration. Specifically, we de-
scribe an implemented system and experiments that demon-
strate coherent automated management to specified power
and application performance objectives in a medium-sized
server cluster housed in a single IBM BladeCenter chassis.
The agents are commercial or freeware products, or sub-
components thereof, to which has been added a thin layer
of communication and some fairly simple algorithms.

The remainder of this paper is structured as follows. Sec-
tion 2 sets the stage for our current work by providing a
bit of historical perspective. In section 3, we describe our
multi-agent architecture. Then, in section 4, we describe the
results of two experiments that demonstrate successful man-
agement of the system to performance and power objectives
that are specified using utility functions. Finally, in sec-
tion 5, we summarize our main points and provide thoughts
on future directions.

2. BACKGROUND
Industry is beginning to provide advanced power man-

agement features for servers, of which IBM Active Energy
Manager (AEM) Version 3.1 extension1) of the IBM System
Director (Version 5.20) [6] is an example. IBM Systems Di-
rector features open, standards-based design and broad plat-
form and operating support to enable customers to manage
heterogeneous environments from a central point. Director
is typically run on a dedicated server and remotely monitors
other servers in the data center. In our work, we measure
power and control the server performance state using inter-
nal, prototype software that is somewhat in advance of the
power management features available commercially today.

AEM provides power measurements for servers by using
either power measurement circuitry built into IBM servers,
or by communicating with rack-level power distribution units
to monitor AC power of 3rd party servers. Based on such
information, customers can allocate lower power usage on se-
lect IBM servers by two different techniques: power capping
and power savings. Power capping lets users set a maximum
power level per system while power savings mode lets users
manage power usage by running the processors on the server

1AEM was formerly known as Power Executive.

at their lowest frequency and/or voltage setting. Today,
AEM is manually operated by the systems administrator
and does not have the capability to use performance infor-
mation to make power management decisions on demand.
In our work, we show that, by casting an advanced proto-
type of AEM as an agent and situating it in a multi-agent
systems with other agents possessing the knowledge and ca-
pability to manage performance and other aspects of system
behavior, we can achieve autonomic management of power
and performance in accordance with specified objectives.

Our approach differs from previous literature on perfor-
mance and power management in several respects. First,
we power servers off when they are not idle, which is in-
herently able to achieve greater energy savings than clock
frequency manipulation techniques that have been studied
previously [9]. Moreover, we differ from previous approaches
that use intelligent placement of virtual machines or appli-
cations to consolidate servers [2] in that we employ load
balancing to route work away from servers, allowing them
to be powered off. To our knowledge, we are unique in of-
fering a multi-agent, more de-centralized approach, which
we believe is increasingly necessary as the system scales up
in size, as well as an implemented system in which real (as
opposed to simulated) servers are powered on and off, and
in which actual power measurements are taken.

3. ARCHITECTURE
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Application

Manager  1

Application

Manager  2

Server 1 Server 3 Server 4Server 2
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Power Power 
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Figure 1: Unity architecture for optimal resource
allocation in a data center.

This paper builds upon our prior “Unity” architecture for
implementing self-management in a data center via inter-
actions amongst a population of autonomous agents [16].
Unity supports multiple, logically separated Application En-
vironments, each providing a distinct application service.
Each Application environment is represented by an Appli-
cation manager agent, which is responsible for local per-
formance optimization within the application and commu-
nicating with a Resource Arbiter agent regarding resource
needs (Figure 1). Agent-based resource allocation in the
data center is achieved as follows. Each Application Man-
ager i periodically computes and reports to the Arbiter a
utility function Ui(ni) estimating expected business value to
the application of receiving an allocation of ni homogeneous
servers. Business value within an application may be de-
fined, e.g., by a performance-based Service Level Agreement
(SLA), which stipulates payments or penalties as function
of one or more performance metrics. Unity assumes that all
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utility functions share a common scale of valuation, such as
money. Given the most recent utility information, the Re-
source Arbiter periodically solves for the globally optimal al-
location maximizing total expected business value summed
over the applications. The Arbiter then conveys a list of
assigned servers to each application, which are then used in
dedicated fashion until the next allocation decision.

Our current research aims ultimately to extend our Unity
architecture to encompass optimization over multiple com-
peting criteria: application performance and power con-
sumption. We propose to achieve this by including a power
cost model in the utility functions Ui(ni), and extending
the Arbiter’s calculations to include an optimal number of
servers Noff to be powered off in the data center, as well
as the above computation of optimal allocated servers {ni}
to each application. This paper describes our initial exper-
iments in which performance and power tradeoffs are made
solely within a single application. In this case there was no
need to employ the full Unity architecture for optimizing
across multiple applications.

Figure 2 provides a high-level overview of an Application
Manager in our prototype data center. In brief, a Work-
load Generator produces a single workload with dynamically
varying intensity, which is routed by a Workload Distributor
to a set of blade servers contained in a single IBM BladeCen-
ter chassis. The Workload Distributor’s routing policy is set
within the Performance Agent. Power consumption on each
blade is managed dynamically in accordance with a control
policy set by the Power Agent. A Coordination Agent man-
ages interactions between the Performance Agent and the
Power Agent in accordance with a power-performance pol-
icy generated by the Policy Generator. The Policy Genera-
tor takes as input a user-specified power-performance utility
function and a system model derived from power and per-
formance measurements. In the current implementation it is
a simple optimization algorithm that is run just once prior
to the beginning of the experiment. The workload genera-
tor, workload distributor, and agents are implemented using
a mixture of open-source software and internally developed
tools and firmware; these are described next.

3.1 The Performance Agent
The Performance Agent in our setup was primarily based

on Apache 2.2.6, a robust, commercial-grade, featureful,
open-source HTTP (Web) server [19]. One of the blades is
set up as a reverse proxy server (using the Apache extension
modules mod_proxy and mod_proxy_balancer) to perform
load balancing among the HTTP servers in the data center.
The mod_proxy_balancer module uses its Request Counting
scheduler algorithm to distribute the HTTP requests. The
scheduler can be reconfigured dynamically through a web in-
terface at http://proxy-server-name/balancer-manager to
change the share of total workload a particular server re-
ceives. If the share for an HTTP server is zero, it is consid-
ered to be off-line. Once the HTTP server is off-line, Apache
can be stopped and the server can be powered down by the
Power Agent. Naturally, this sequence of actions is reversed
when starting the HTTP server and such coordinated se-
quence of control actions was managed by the Coordination
Agent in our data center as explained in Section 3.3. Fi-
nally, we made use of Apache’s base module mod_status

to determine how well a server is performing by obtaining
current server statistics via the webpage http://server-
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Figure 2: Overview of an Application Manager in
our prototype data center with the Coordination
Agent managing interactions between the Power
Agent and Performance Agent.

name/server-status.

3.2 The Power Agent
The Power Agent in our data center was based on an IBM

internal program called Energy Management Tool (EMT).
EMT is written entirely in [Incr Tcl] scripting language
and provides a way to quickly prototype advanced power
management features. Individual blade servers run inter-
nally developed prototype firmware that provide basic func-
tions such as monitoring a server’s power consumption and
setting a server’s power cap [12]. EMT uses these functions
by communicating with this prototype firmware over Eth-
ernet using the industry-standard IPMI protocol [8]. IPMI,
which defines a set of common interfaces to computer hard-
ware and firmware and operates independently of the op-
erating system, allows administrators to remotely manage
a system even when monitored system is not powered on.
The service processor on our blade servers which runs the
IPMI communication stack remains powered on, even when
the blade is turned “off”. The power measurements are
taken by a power measurement circuit built-in to IBM blade
servers which measures the entire DC power of the blade [12].
This is the same method by which the IBM Active Energy
Manager product provides server power measurements. The
power measurements are accurate to 0.1 W.

In previous work [9], we exploited the ability of EMT to
throttle the CPU clock to achieve energy savings in the range
of 10%. In contrast, in this work we achieve greater energy
savings via a more drastic approach: powering individual
servers on and off. We modified EMT to power blades up
and down automatically by sending IPMI commands Chas-
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sis Control - power up or Chassis Control - initiate

soft shutdown to individual servers. When a blade server
is turned “off”, it consumes under 10W of power. The soft
shutdown command invokes the normal shutdown procedure
of the operating system.

In addition, we extended EMT to monitor the BladeCen-
ter blower (fan) speeds and the temperature of each proces-
sor core on the blades. The temperature of each core in the
Intel Woodcrest processor is measured by digital tempera-
ture sensors built into the cores. The temperature values are
obtained by reading the IA32 THERM STATUS register in
the Intel Woodcrest Xeon processor. Periodically, EMT uses
ssh protocol to login to each server and run a program we
wrote to read the IA32 THERM STATUS registers.

If the Power Agent receives multiple power-on or power-off
control signals from the Coordination Agent within too short
a span of time, it may choose to ignore them, or it may cancel
an operation that is already in progress. It communicates
to the other agents the power state of the individual servers
as necessary.

3.3 Coordination Agent
We designed and implemented a Coordination Agent in

Java to not only coordinate the interactions between the
Performance Agent and the Power Agent, but also to pro-
vide a coherent control policy to manage the data center
based on predefined utility functions and a system model.
The Coordination agent was placed on a separate server and
was configured to have no-password ssh (a secure clone of
rsh with RSA encryption based authentication) access to all
servers in the data center.

The information flowing between the Coordination Agent
and the Performance Agent or the Power Agent can be
broadly categorized into two types: (i) monitored perfor-
mance and power data, and (ii) control signals for policy
enforcement. The list of various information flows between
the agents in our data center is presented in Table 1.

3.4 Policy Generator
The Policy Generator is not an agent in the current imple-

mentation, but it plays an important role in the multi-agent
system because it derives the power-performance policy that
governs the control signals sent by the Coordination Agent
to the Power and Performance agents.

The Policy Generator takes as input a power-performance
utility function and a system model. As in prior work [9],
the utility function has the form:

Upp(Perf ,Pwr) = UPerf(Perf) + ε ∗ UPwr(Pwr) (1)

where ε is a tunable coefficient expressing the relative value
of power and performance objectives, Perf is a vector of
performance metrics of interest (e.g. response time and/or
throughput for one or more service classes, CPU utilization),
and Pwr is a vector that represents all energy-related at-
tributes of interest (e.g., the total power consumption and
the set of intake and/or processor temperatures)2. In the
experiments reported in this paper, we take Perf to be a
simple scalar RT representing the response time of a single

2Note that the constant ε is not strictly necessary, since the
function UPwr can be scaled. However, in practice it is useful
to define the two utilities independently and then use ε to
adjust their relative importance.

service class, while Pwr is a simple scalar Pwr representing
the total power used by all of the servers in the cluster.

The system model expresses the performance and power
vectors as functions of the control parameters and observable
metrics, both of which can be represented as vectors:

Perf(ControlParams,Observables) (2)

Pwr(ControlParams,Observables) (3)

As will be illustrated in Section 4.3, the system model can
be learned from data3. We use an off-line approach in which
the model is learned during an initial training episode during
which the system is subjected to a controlled workload de-
signed to explore the space of environmental conditions that
are likely to hold under typical system operation. An on-
line approach, in which the system model would be adapted
during system operation, could also be employed.

The Policy Generator substitutes the system model into
the utility function, resulting in a system-level utility func-
tion

Upp(Perf ,Pwr) = U
′

pp(ControlParams,Observables)
(4)

Then, the Policy Generator computes the policy. There
are a number of possible approaches. The Policy Generator
can simply send the system-level utility expressed in Eq. 4.
Then, when the Coordinating Agent observes a specific sys-
tem state, it can compute the set of control parameters that
maximizes U ′

pp, and pass the appropriate components to the
Performance and Power agents. A second approach, which
we employ, is for the Policy Generator to precompute the
optimal set of control parameters sets for each possible set
of observables. This information is stored in a lookup ta-
ble, which constitutes the policy used by the Coordination
Agent. If the observable space contains continuous variables,
then the policy cannot be pre-computed for all possible ob-
servables, and the optimal control parameters are evaluated
on a grid. These values are stored in a lookup table, and the
Coordination Agent uses them as the basis for interpolation
or extrapolation.

4. EXPERIMENTS
First, we describe our experimental setup, including specifics

on the platforms and their configuration. Then, after detail-
ing the workload and how it is generated, we discuss off-line
experiments that we used to establish system models. Fi-
nally, we describe results of experiments in which we dynam-
ically turned servers on and off in an effort to save energy
while maintaining an acceptable level of performance.

4.1 Experimental setup

4.1.1 Data center Hardware and Topology
Our prototype two-tier data center consisted of four IBM

BladeCenter HS21 blade servers featuring two 3.0 GHz dual-
core Intel Woodcrest Xeon processors and 1 GB memory
per blade, all residing in a single chassis. The BladeCen-
ter supports dynamically powering individual blades on or
off without interfering with operation of other blades in the
chassis. Apache was installed and configured on one blade to

3Of course, as delineated in our earlier work [9], the sys-
tem model can also be based on queueing theory or control
theory.
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Performance
Monitoring Control

Attribute Platform (Command) Attribute Platform (Command)

%CPU Utilization Unix (top) Server Schedule mod_proxy_balancer (En/Disable)
Process Queue Length Unix (top) Share of Workload mod_proxy_balancer (lbfactor=?)
Response Time Workload Generator, Apache Urgency of Workload mod_proxy_balancer (lbstatus=?)
Throughput Workload Generator, Apache Start/Stop Server Apache (apachectl start/stop)
Workload Intensity Workload Generator, Apache Multithreading on Cores OpenMP (OMP_NUM_THREADS=4)

Power
Monitoring Control

Attribute Platform Attribute Platform (Command)

Power Server power measurement circuit Power up/down Server IPMI (Chassis Control power up)
Ambient Temperature BladeCenter Management Module Power Capping set by EMT prototype firmware [12]
Fan Speed BladeCenter Management Module Power Saving set by EMT prototype firmware
CPU Temperature Intel Xeon temperature sensor
CPU Frequency EMT prototype firmware
CPU Voltage EMT prototype firmware

Table 1: Monitoring Data and Control Signals between Agents

function as the reverse proxy server with the load balancer
(by modifying its Apache webserver’s httpd.conf file). On
the remaining three blades, the power-intensive LINPACK
application was installed, and Apache was configured as an
application server to process transactional requests to LIN-
PACK. To reduce the effects of network latency, we also
used additional blades mounted on the same chassis to host
the Workload Generator, the Power Agent (AEM) and the
Coordination Agent. The server hosting the Coordination
Agent had root no-password ssh access to all blades in the
data center. In terms of available power a BladeCenter chas-
sis has two power domains and is configured with four 2000
W power supplies total. Each power domain is redundantly
connected to two of the power supplies so that in the event
of a single supply failure, the domain continues operating
with the remaining power supply.

4.2 Workload Generation

4.2.1 Workload
While we have experimented in the past with I/O-bound

and memory-bound transactional workload, here we focus
solely on CPU-bound HTTP workload. More precisely, our
data center was designed to provide a linear equation solver
service. Upon the arrival of each HTTP request, the Apache
webserver invoked the Intel Optimized (SMP) LINPACK
Benchmark 10.0 linpack_xeon64 [7] application which ran
on the same server as Apache itself. This version of LIN-
PACK, which solves a dense system of linear equations Ax =
b, used the Intel Math Kernel Library and has been highly
tuned for maximum performance on 64-bit Intel processor-
based systems. Each HTTP request sets both the number
of linear equations in Ax = b and the leading dimension
of the two dimensional matrix A to 1000. Moreover, in or-
der to simultaneously leverage all four cores on the blade
servers, the CGI script ran linpack_xeon64 in a 4-way mul-
tithreaded fashion by first setting OMP_NUM_THREADS=4.

4.2.2 Workload Trace
Our emulation of time-varying demand experienced by

data centers in the real-world was based on traces of all
HTTP requests to the NASA Kennedy Space Center web-
server in Florida in July and August of 1995. These we-

blog traces, which are freely available at the Internet Traf-
fic Achive [11], fully preserve the originating host and the
HTTP requests with timestamps that have 1 second reso-
lution. We processed the logs to measure the number of
unique users (by originating URL) in every 10 minute inter-
val and obtain a new time-series Tc to quantify the number
of clients logging into the data center at each time interval4.
The time series of clients Tc clearly showed regular periodici-
ties at both daily and weekly time scales, with peak-to-mean
load ratios of ≈ 2 in each case. The combination of two
time-scales resulted in significantly different peak workload
conditions on weekdays and weekends, so we distinguished
the two timeframes in our experiments.

4.2.3 Workload Generator
Since the number of clients defined the magnitude of the

workload intensity in all our experiments, we configured our
Java-based multithreaded workload generator to generate
HTTP requests from an adjustable number of clients in a
closed queueing network, all of which have exponentially dis-
tributed think times with a mean of 1 second. To complete
the emulation of real-world workload, the workload gener-
ator then adjusted the number of clients in each time in-
terval according to the time-series Tc. In our experiments,
the workload generator adjusted the number of clients ev-
ery minute. Therefore, we drove the original NASA weblog
trace through our system 10 times faster than the original
rate.

4.3 Multicriteria Utility Function
The Performance Agent’s utility function was defined us-

ing the following sigmoid function:

UPerf(Perf) = 1000 ∗

(

1 −
1

1 + e0.01∗(RT−RT0)

)

(5)

where RT was the average response time in milliseconds dur-
ing a given time interval and RT0 was the target response
time. Thus the utility UPerf(RT) ranges between 0 and 1000,
and is equal to 500 when RT = RT0.

Initial experiments showed that, for the maximum inten-
sity of workload in the time-series Tc we consider in this
4We rescaled Tc by a factor of 3.5 to match our data center
setup.
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paper (= 55 clients), all three servers are necessary to pro-
vide an average response time of 1000 milliseconds. This
response time was set as the SLA target: RT0 = 1000 mil-
liseconds.

The Power Agent’s utility function was defined as a linear
function of the sum total of power consumed by all of the
servers:

UPwr(Pwr) = −1.2 ∗ Pwr (6)

where Power is measured in watts. Note that, unlike the
performance utility, there is no lower bound on UPwr(Pwr).
If none of the servers were powered on, the power utility
would reach its upper bound of zero. However, the op-
tion of turning all of the servers off is never taken in our
prototype. The Proxy Server and at least one LINPACK
server are always available, and therefore the upper bound
on U(Pwr) ≈ −400, corresponding to the power consumed
under the lowest workload conditions.

The multicriteria utility function to be maximized by the
Policy Generator was then represented as

Upp(RT, Pwr) = 1000∗

(

1 −
1

1 + e0.01∗(RT−1000)
− 0.0012 ∗ Pwr

)

(7)

4.4 Model Learning and Policy Generation
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Figure 3: Experiment to determine model-based
policy, displaying as a function of time and as the
number of servers turned on is decreased in steps
from 3 to 1, the a) number of clients, b) through-
put, c) response time (scaled down by a factor of
10), and d) power consumption of all servers when
idle servers are turned off.

As detailed earlier, in this work we focus on energy savings
in the data center by powering individual servers on and off.
In principle, we can represent the control parameters as a
vector in which each component represents the power state
of an individual server. However, given that the servers
are all identical in our setup, we can collapse the vector
into a scalar: the number of servers powered on. Thus the
Coordination Agent’s policy can be represented as a function
mapping the observable state (or a portion of the observable
state deemed relevant, such as the number of clients) into
a number of servers to be powered on. The Coordination

Agent relays the identities of the desired servers to the Power
Agent and Performance Agent, which then take individual
actions to ensure that the indicated servers can be powered
on or off. Since the proxy server has to be powered on all
the time to distribute workload in the data center, only the
LINPACK servers can be turned or or off by the policy.

The Coordination Agent’s policy was computed by the
Policy Generator by the method described in Section 3.4.
To obtain the model, we monitored each of the performance
and power attributes listed in Table 1 on all four blades as we
varied the number of servers powered on and the workload
intensity. Figure 3 presents the time-series of the workload
intensity, the number of powered servers, the average re-
sponse time, the throughput and the consumed power in the
entire data center observed in this experiment5. Although
the Coordination Agent had access to information about a
large number of attributes, as in our prior work [9], we first
attempted to derive a policy based on a single data cen-
ter state variable: the workload intensity. This experiment
allowed us to characterize the relationship of the various at-
tributes including response time and power as a function
of the number of clients. To show the efficacy of our ap-
proach, for each level for servers powered on, we directly fit-
ted the experimental data for response time and power vs.
the number of clients to simple quadratic models without
any pre/post-processing as shown in Figure 4(a-b). With
these models in hand, we could estimate the joint utility
function values of performance and power for all levels of
workload intensity using Equation 7. Figure 4(c) plots these
estimated utility values as a function of the number of clients
for the three control settings (i.e., number of servers to turn
on). Since the goal is to maximize utility, in this case it is
easy for the Policy Generator to derive the following policy:

when C < 17, power on one server;
when 17 ≤ C < 34, power on 2 servers;
when 34 ≤ C < 57, power on 3 servers;
when C > 57, power on 1 server

where C is the number of clients in the system. Although
we do not have experimental data when workload intensity
is more than 56, the utility estimates in Figure 4(c) suggests
that the system would maximize utility by actually turn-
ing on only one server in such adverse workload conditions.
Since UPerf(RT) is bounded from below by zero, further in-
creasing the workload under such conditions results in neg-
ligible loss of utility when only one is server turned on. On
the other hand, when three servers are turned on in such
scenarios, UPerf(RT) continues drop sharply as the response
time is close to the target of 1000 milliseconds.

4.5 Experimental results
The results in this paper focus on four consecutive days

(96 hours) from the NASA data starting on the first Thurs-
day in July 1995 and ending on the following Sunday; due
to temporal scaling in replaying the workload time-series Tc,
our experiments took 9.6 hours, or 576 minutes.

We performed two independent experiments, both of which
entailed replaying the tape of workload intensity Tc. In the
first experiment, all four servers were powered on all of the
time. In the second experiment, the servers were powered
on or off as dictated by the pre-computed policy.

5Thus the power measurements include the proxy server
which was always turned on.
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Figure 4: Observed (a) response time, (b) power consumption, and (c) estimated utility values for 1 server,
2 servers and 3 servers powered on. The utility values for policy derivation are obtained from quadratic fits
of the data as shown in (a) and (b).

Period Energy (kWh) Energy (kWh) Energy
without Policy with Policy Saved

Weekdays 16.9 13.5 20.1%
Weekends 14.6 8.5 41.8%
Week 113.7 84.5 25.7%

Table 2: Average energy (kilowatt-hour) usage in
our data center with 4 IBM HS21 blades with and
without power management policy.

In our experiments, we find that blades running Linux can
take anywhere from 5 to 10 minutes to boot up and resume
processing workload. Thus, if we actually turned off servers
in these experiments, the temporal scaling by a factor of 10
is equivalent to the servers taking up to 100 minutes per re-
boot, which is clearly unrealistic. Therefore, in the second
experiment only, the Power Agent was modified so that it
would not execute the request from the Coordination Agent
to power servers off. However, it interacted with the other
agents as if it had done so, and reported the power state as
if it took 1 minute (10 minutes of simulated time) to power
on a server in response to a request. It reported the power
consumption during the “off” period as 10 W (rather than
the actual power in the idle state, which is much higher).
The simulated latency of 10 minutes provides a slightly pes-
simistic estimate of the amount of energy savings we can
attain. All other agents perform as usual, e.g. the Perfor-
mance Agent stops sending HTTP requests to servers that
are “powered down” by the policy.

Figure 5 presents the time-series of workload intensity
(number of clients), number of powered servers, response
time, throughput and power from both experiments. The
figure shows that, through the coordinated interactions be-
tween the Performance Agent, the Power Agent and the Co-
ordination Agent, the data center is able to turn servers on
or off based on the derived policy. As would be expected,
the policy correctly powers on all three servers during peak
workload conditions and turns off servers under low condi-
tions of low workload. Although the policy results in in-
creased response time, it successfully met the SLA target in
574 of 576 (99.65%) one-minute intervals in the experiment.
On the other hand, there is little difference between the
throughput of the data center in the two experiments. Fig-

ure 4 helps to explain this observation. When the workload
intensity is low, additional servers do not increase through-
put, as all of the demand is being satisfied. On the other
hand, when workload intensity is high, all three LINPACK
servers are powered on, so there can be no difference from
the unmanaged case. In between these extremes (and indeed
even at these extremes), one can see that the response time
is very much more sensitive to the number of clients than the
throughput, particularly as throughput begins to saturate.
Since the power policy is designed to keep response time at
an acceptable level, it will have the side-effect of keeping the
throughput from getting very deep into saturation.

Figure 5 demonstrates that the model-based policy can
significantly reduce power consumption. Table 2 explores
this issue further by summarizing the energy usage on week-
days and weekends based on our experiments. The weekly
figures, which are estimated by weighting the aggregate re-
sults from weekdays and weekends, show that even in a small
data center environment it is possible to attain over 25% en-
ergy savings using a simple power management policy with-
out incurring SLA penalties for typical daily and weekly
periodic demands experienced in data centers.

5. CONCLUSIONS
Our primary aim in this work has been to develop and

demonstrate the feasibility of applying multi-agent approaches
to managing power and performance in server clusters through
a prototype in which the agents are based on commercial or
commonly available shareware products or research proto-
types thereof. Our testbed employs a commercially available
IBM BladeCenter, and realistic HTTP traffic governed by
time-varying demand logged at a NASA web site. Our sys-
tem makes management decisions in real time, based on live
system measurements, taking into account multiple conse-
quences of the decisions (e.g., on power consumption and ap-
plication performance). Specifically, we demonstrated that
our approach can achieve power savings of more than 25%
while simultaneously meeting the application’s performance
target as specified in its SLA.

The off-line model-building approach used in this paper,
which empirically measures the consequences of all possi-
ble management decisions (number of servers powered on)
over all possible values of independent system state variables
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Figure 5: System behavior on 4 days (Thursday-
Sunday) under the same trace of workload inten-
sity (number of clients) with (solid line) and with-
out (dotted line) power management policy in effect:
number of powered servers, response time (msec),
throughput (requests/minute), power consumption
(watts).

(number of clients), is only feasible in low-dimensional state
and action spaces. Hence this approach will not be viable as
we scale our testbed in size and complexity. Instead, we plan
to make use of more advanced machine learning methods
that rely more heavily on function approximation and are
capable of learning management policies by observing live
trajectories through the system state and action space. One
such approach is Hybrid Reinforcement Learning [18, 17],
which has shown promising initial results in learning poli-
cies in high-dimensional state spaces for computational re-
source allocation, and for simultaneous management of per-
formance and power consumption by dynamically modulat-
ing CPU clock speeds. Other related approaches which we
expect to be of benefit include model-based reinforcement
learning approaches (e.g., [1]) which simultaneously learn
state-transition models along with expected value functions.

In future work, we will extend our prototype system to in-
clude multiple applications, and will make use of our Unity
architecture and a global Resource Arbiter to make system-
wide management decisions regarding the total number of
servers to be powered on/off, as well as the number of servers
to be allocated to each application. We expect the Unity
approach to be highly effective as long as individual appli-
cation states have negligible impact on each other. This
assumption should be valid provided that applications do
not share servers, and that any thermal couplings between
applications are either negligible or unmanaged. However,

in cases where the data center employs an explicit thermal
management discipline, or allocates VMs to applications in-
stead of whole servers, the Unity architecture may need to be
modified so that interacting applications may coordinate to
jointly optimize total business value. An intriguing Machine
Learning approach which holds promise in such scenarios is
Coordinated Reinforcement Learning [5].
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