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ABSTRACT

Many multiagent problems comprise subtasks which can be con
sidered as reinforcement learning (RL) problems. In aolito
classical temporal difference methods, evolutionary rlgms are
among the most promising approaches for such RL problems. Th
relative performance of these approaches in certain suaitem
(e.g. multiagent learning) of the general RL problem remain
open question at this time. In addition to theoretical asialypbench-
marks are one of the most important tools for comparing wffe

RL methods in certain problem domains. A recently proposed m
tiagent RL benchmark problem is the RoboCup Keepaway bench-
mark. This benchmark is one of the most challenging multiage
learning problems because its state-space is continualifigh
dimensional, and both the sensors and the actuators ane nois
this paper we analyze the performance of the neuroevohtycap-
proach called Evolutionary Acquisition of Neural Topolegi{EANT)
in the Keepaway benchmark, and compare the results obtased
ing EANT with the results of other algorithms tested on thesa
benchmark.
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1. INTRODUCTION

Evolutionary algorithms can be considered as reinforcement learn-
ing algorithms, where the fitness value of an individual is an ac-
cumulated reward received by the individual after it has operated
in a given environment [26]. Unlike in traditional reinforcement
learning algorithms, where a reward signal is provided after each
action executed by the individual, in evolutionary algorithms a fit-
ness value (return) is assigned to the individual at the end of the
life time of the individual or after the individual has carried out a
sequence of actions (an episode). This property of evolutionary al-
gorithms make them directly applicable to episodic reinforcement
learning tasks such as game playing, where they search for optimal
value functions or optimal policies directly in the space of value
functions or policies, respectively.

It has been shown using standard benchmark problems that a
combination of neural networks and evolutionary methods (neu-
roevolution) can perform better than traditional reinforcement learn-
ing methods in many domains, especially in domains which are
non-deterministic and only partially observable [5, 22]. One advan-
tage of neuroevolutionary methods is that the policy is represented
using an artificial neural network (ANN), which is useful for learn-
ing tasks involving continuous (noisy) state variables. This is due
to the fact that ANNs provide a straightforward mapping between
states perceived by the sensors and actions executed by the actua-
tors. Additionally, ANNs are robust to noise: since their units are
typically based upon a sum of several weighted signals, oscillations
in the individual values of these signals do not drastically affect the
behavior of the network [12].

In this paper, we present a performance evaluation of the neu-
roevolutionary method Evolutionary Acquisition of Neural Topolo-
gies (EANT) on the Keepaway benchmark [19], which is a sub-
problem of the RoboCup Soccer Simulator. This benchmark prob-
lem is challenging since the states are continuous and only partially
observable and the sensors and actuators of the agents are noisy.
The paper is organized as follows: first, a review of work in the
area of neuroevolution is given. Then, an introduction to EANT
is provided along with a brief description of the Keepaway bench-
mark problem. After this, experimental results on the performance



of EANT on the benchmark problem are presented, and thetgeffec
of several components of EANT are analyzed. Finally, sonme co
clusions and a future outlook are provided.

2. REVIEW OF WORK IN NEUROEVOLU-

TION

The field of Neuroevolution (NE) can be divided into two major
areas of research: in the first area, the structure of the AN pt
fixed and only the weights are optimized by the EA. In the sdcon
area, both the structure and the weights are evolved inlplarghis
paper will focus on the second, more general area. For avenfie
the work in the evolution of neural networks covering botbear
see Yao [27].

All methods which evolve the structure of the network assume
a certain type oembryogeny The term embryogeny refers to the
growth process which defines how a genotype maps onto a pheno
type. According to Bentley and Kumar [3], three differenpég
of embryogenies have been used in evolutionary systemerrnztf
explicit and implicit. Externalmeans that the developmental pro-
cess (i. e. the embryogeny) itself is not subjected to eimiliut is
hand-designed and defined globally and externally witheesmw
the genotypes. lexplicit (evolved) embryogeny the developmen-
tal process itself is explicitly specified in the genotypas] thus it
is affected by the evolutionary process. Usually, the emgeny
is represented in the genotype as a tree-like structuresolp the
paradigm of genetic programming. The third kind of embrygge
isimplicit embryogeny, which comprises neither an external nor an
explicit internal specification of the growth process. éast, the
embryogeny "emerges" implicitly from the interaction arutia-
tion patterns of the different genes. This kind of embryggeas
the strongest resemblance to the process of natural emoluti

The following encodings utilize an external embryogenygén
line et al. developed a system called GNARL (GeNeralizeduhcq
sition of Recurrent Links) which uses only structural miatatof
the topology, and parametric mutations of the weights agtiyen
search operators [1]. The main shortcoming of this methalas
genomes may end up having many extraneous disconnected stru
tures that have no contribution to the solution. The Neusheion
of Augmenting Topologies (NEAT) [18] starts with networké o
minimal structures and increases their complexity alorgetrolu-
tion path. The algorithm keeps track of the historical origf every
gene that is introduced through structural mutation. ThEghy is
used by a specially designed crossover operator to matangsn
which encode different network topologies. Unlike GNARLEAT
does not use self-adaptation of mutation step-sizes. ddstach
connection weight is perturbed with a fixed probability byliad
a floating point number chosen from a uniform distributionpo$-
itive and negative values.

of the network and this saves space in the genome since ngt eve
connection and node needs to be explicitly specified in theme.
Defining a crossover operator for CE is still difficult, andsitnot
easy to analyze how crossover affects the subfunctions ib&E
cause they are not explicitly represented.

The last class of embryogeny (the implicit one) is utilizgtloe
following encodings: Vaario et al. have developed a biatally in-
spired neural growth based on diffusion field modelling corat
with genetic factors for controlling the growth of the netiw23].
One weak point of this method is that it cannot generate nésvo
with recurrent connections or networks with connectionsvben
neurons on different branches of the resulting tree stractNolfi
and Parisi have modelled biological development at the atsm
level using a reaction-diffusion model [13]. This methodizes
growth to create connectivity without explicitly descrigi each
connection in the phenotype. The complexity of a structhe t
the genome can represent is limited because every neurdn is d

rectly specified in the genome. Other work in implicit emlggoy
has borrowed ideas from systems biology, and simulated tig@ene
Regulatory Networks (GRNS), in which genes produce sigthais
either activate or inhibit other genes in the genome. Typicaks
using GRNs include those of Bongard and Pfeifer [4] and Rgési
[14].

3. EVOLUTIONARY ACQUISITION OF
NEURAL TOPOLOGIES

The Evolutionary Algorithm we use Bvolutionary Acquisition
of Neural Topologie$EANT, http://sourceforge.net/projects/mm)lf/
[7]. EANT uses a unique dual-timescale technique in whi@h th
neural network’s connection weights are optimized on a Kina-
scale, and the neural network’s structure evolves graglafi a
larger timescale). EANT starts with networks of minimal quex-
ity, which are gradually complexified. Although EANT can lzed
with any arbitrary genetic encoding which can representaieet-
works, we have chosen to use tBemmon Genetic Encodiri§],
an encoding with features that make it well suited for usehin t
evolution of neural networks.

3.1 Common Genetic Encoding

The Common Genetic Encoding (CGE) is a general framework
for encoding and modifying neural networks (tpleenotypes It
can be applied as an encoding with external or explicit edgpy
[9]. The encoding has important properties that make iablstfor
evolving neural networks [8]: It isompletdn that it is able to rep-
resent all types of valid phenotype networks, and tlesed i. e.
every valid genotype represents a valid phenotype. Furibe,
the encoding ilosed under genetic operatossich as structural
mutation and crossover (defined below) that act upon thetgpeo

As opposed to these encodings with external embryogeny, the Another important feature of CGE is that an encoded pheeotyp

following encodings adopt an explicit (internal) embryoge Ki-
tano’s grammar based encoding of neural networks uses inde
mayer systems (L-systems) [11] to describe the morphogenés
linear and branching structures in plants [10]. Sendhoéleex-
tended Kitano’s grammar encoding with a recursive encodihg
modular neural networks [16]. Their system provides a means
of initializing the network weights, whereas in Kitano'sagtmar
based encoding, there is no direct way of representing thieem
tion weights of neural networks in the genome. Gruau’s Callu
Encoding (CE) method is a language for local graph transferm
tions that controls the division of cells which grow into atifecial
neural network [6]. The genetic representations in CE anepawt
because genes can be reused several times during the deeakop
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can be directly evaluated without needing first to decodepties
notype from the genotype. Details on how this is done araidised

by Kassahun [7]. While we use CGE here to encode networks that
are interpreted as neural networks, CGE is not limited t® plir-
pose [9].

CGE encodes a network usindiaear genome This genome
consists of a string of genes, where each gene is eithertex gene
(representing a vertex in the network, also callegaron geng an
input gengrepresenting an input in the network), ouanper gene
(representing an explicit connection between verticegchEgene
possesses one or more attributes which provide informathamut
the gene. For example, each gene can possess a weight (which
modifies its output), and each vertex gene possesses a ukique



(@)

(b)

[Va[Ta[to[Ve[Ta]ts]ts]  [va][Ve]Ra[Zs]Ts] [12] [Ve[Fe]Ts[Ts]
() (d)

Figure 1: Different examples illustrating CGE: (a) a simple
three input network, (b) two subnetworks in parallel, (c) two
subnetworks in cascade, (d) two subnetworks connected to a
main network, including forward and recurrent jumper con-
nections. Each example includes a neural network represeat
tion, and the corresponding CGE genome representation. All
vertex genes in the genome representations possess a “numbe
of inputs” attribute d;, = 3.

and a “number of inputs” attributg; , .

A genome can be subdivided into one or msubgenome®ach
of which is a valid genome in itself. The simplest sort of setgme
consists of a vertex gene followed by several input genes,ion
put gene for each input of the vertex represented by thexgetee
(see Figure 1a). Such a subgenome encodes a simple netvihrk wi
oneoutput verteXa vertex gene whose output is an output of the
network). To encode a network containing two of these ndtsior
in parallel, two identical copies of the subgenome are sjraph-
catenated together to form a new genome that encodes a tywatou
network (see Figure 1b). On the other hand, to connect orfesét
simple networks (network B) as an input to another simplevagk
(network A), one of the input vertices in network A's genorse i
replaced with the entire genome of network B (see Figure 1c).

In the last example, the vertex in network Bg( is implicitly
connected to the vertex in network A4). The output ofvg can
have only one such implicit connection to another vertexmnbre
complex networks, there is typically a need to define mora tha
one connection from a vertex’s output to other verticessThac-
complished in CGE by the use of jumper genes. A jumper gene
possesses a “source ID” attribute which refers to the unidp®s-
sessed by a vertex gene. A jumper gene acts like a “virtuaf'aafp
the vertex gene to which it refers, providing the output af trer-
tex as an input to another vertex. Therefore, if one wantslteam
additional connection fromeg’s output to a vertex other tham
(for example, tove in Figure 1d), a jumper gene referring t@
can be put in the place of one of's input genes. Jumper genes
are either forward or recurrent. The forward jumgés provides
the output ofv 5 immediately tovc, while the recurrent jumpeR 4
providesv4's output tove in the next evaluation of the network.
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3.2 Genetic Operators

Several genetic operators have been developed for CGE which
operate on one or two linear genomes to produce another linea
genome [7]. The three operators we used arg#rametric muta-
tion, thestructural mutatiorand thestructural crossover

3.2.1 Parametric Mutation

The Parametric Mutation operator performs a random peaturb
tion of the connection weights of each gene. Each genomesstor
a learning rater, which acts as the standard deviation of each
weight's modification:w; = w; + N(0,0), whereN(0,0) is a
real number drawn from a normal distribution with me@amand
standard deviation. The learning rate itself is modified during the
parametric mutation according to the rale= o * N(0, 1). This
kind of parametric mutation allows for the self adaptatidistoat-
egy parameters, a paradigm proposed in the field of Evolation
Strategies [15].

3.2.2 Structural Mutation

The Structural Mutation operator inserts either a new rariylo
generated subgenome, a forward jumper, or a recurrent juafige
an arbitrarily chosen neuron gene. The inserted subgenoames
sist of a new neuron gene (with unused uniguiefollowed by an
arbitrary number of input and jumper genes. This kind ofcttrtal
mutation differs from the one proposed in NEAT [18] by thetfac
that whole subnetworks can be introduced at once without¢lee
to add all their nodes and edges separately. This might help t
method to find network topologies of sufficient complexitgtér
(see Section 5.4), though at the cost of missing the simfapst-
ogy potentially. Initially, the weights of the newly addedustures
are set ta), in order to avoid that these can affect the genome’s
overall performance. When a forward jumper gene is addeldeto t
genome, care is taken to avoid closed cycles of forward jumpe
genes, since this would cause infinite looping problems late
during the evaluation of the network.

3.2.3 Structural Crossover

The third genetic operator defined is the Structural Cra=msop-
erator. This operator exploits the fact that structuresctvlarigi-
nate from the same ancestor structure have some parts in@emm
These parts are detected using the uniglief the genes, which
act as historical markers. By aligning the common parts af tw
randomly selected structures, it is possible to generdteddtruc-
ture that contains the common and disjoint parts of the twthero
structures. The resulting structure formed in this way mtaps
valid phenotype network. This type of crossover was intoeadi
and is used by Stanley [18].

3.3 Elements of EANT

Our implementation of EANT follows the basic steps of an Evo-
lutionary Algorithm: initialization, selection, mutatio crossover,
and fitness evaluation. In this work, we use Stochastic Usale
Sampling [2] as selection mechanism. Mutation and crogsisve
accomplished by the genetic operators presented in Se8tibn
Some parts of EANT are designed specifically for the needs of
neuroevolution; these are presented in this section. Fomgplete
overview over EANT we refer to [7].

3.3.1 Initialization

The first thing that must be done in an evolutionary algorithm
is to create an initial populatio®, of individuals that contains
a sufficient amount of diversity. Since we are following the a
proach of minimizing dimensionality through incrementabwth



from minimal structure [18], the members B should be as sim-
ple as possible. For a task withstate dimensions (inputs) and
possible actions (outputs), we create the initial popatatis fol-
lows: first, we generate a “proto” individugl, consisting ofm
neuron nodes (encoding the outputs) anedm input genes (con-
necting all inputs with each output neurom), encodes a network
with no hidden layers. All individuals of the initial poptien P,
are descended from this proto individual by applying thecttiral
mutation operator up to five times onto a copygef This guaran-
tees that we have a sufficiently diverse initial populatiathvairly
simple structures. Furthermore, since any two randomigcsed
individuals (and all members of later populations) have mmon
ancestor, they can be aligned by the structural crossowratp.

3.3.2 Exploitation / Exploration

As in classical reinforcement learning methods [21], inroeuo-
lutionary approaches there is a trade-off between expioitaof
existing structures (i. e. optimizing the weights of theaded net-
works) and exploration of new structures (i. e. generatieg net-
works). While in conventional neuroevolutionary apprceeshboth
occur at the same time, we explicitly divide the evolutighgro-
cess into two phases (as proposed by Kassahun [7]): irexhe
ploitation phasethe structural mutation and crossover are disabled
(hence no new structures are created) and thus, only theptees
(i. e. the weights) of existing structures are modified. kemnore,
population wide selection does not take place. After a oentam-
ber of generations..pi0i:, the exploitation phase is finished and
an exploration phaseés started, where the structural operators are
activated fomezpiore generations.

The purpose of this approach is to give newly created struc-
tures time to optimize their weights, before they have to peta
population-wide with all other structures in the explaratphase.
The quantitynezpiore is usually settd while the choice Ofieapioit
is a trade-off: larger values allow structures a bettemojation of
their weights before competing, while smaller values iasgethe
frequency at which new, promising structures occur. We etes
value ofnegpioic = 5, Which has proven to be a good compromise.

3.3.3 Speciation and Fitness Sharing

As mentioned above, in the exploitation phase there is ne pop
ulation wide competition, since this would penalize newiyra-
duced structures whose weights are unoptimized. Instdatiea
beginning of an exploitation phase, the population is dididnto
so calledspecieqan idea introduced to the field of neuroevolution
by Stanley [18]). This division is done using a distance meas
defined on the level of genotypes:

— 1 — N(1)NN(g2) [ +1I(91)NJ (g2)]
IN(91)UN(g2)+[J(91)UJ (g2)]

d(g1, g2)

where g1, g2 are arbitrary genotypesy(g) is the set of neuron
genes, and/(g) is the set of jumper genes containedgn An
individual is part of a species if and only if its mean distario
the members of this species is below a certain thresholchelet
is no such species, this individual forms a new species.rgutie
exploitation phase, competition (i. e. selection basecherfitness
values) only takes place within a species, i. e. betweenwithakls
with similar structures.

Speciation gives new structures time to optimize their Wwisig
during the exploitation phase. However, it does not prewen
successful structure/species from taking over the whabeljadion.
To prevent this, the selection mechanism in the exploragpizase
usesfitness sharing18]. Fitness sharing means that an individual
with fitnessf, which is part of a specieB; and a populatior?,,

gets assigned a new fitnesg: = f x (1 — F=2), where|P, |

294

(center)

K: Keeper
T: Taker

Figure 2: The state variables provided by the benchmark: 11
distances, and two angles.

and|FP.| are the sizes oP, and P., respectively. Fitness sharing
decreases the fitness of individuals which are members afja la
species. This modification is motivated by the observatiwt in
nature, species share an ecological niche and thus, mewoifitbes
same species must compete for the same resources. If asgetse
larger, the selection pressure on its individuals increashich can
be seen as a decrease of their fitness.

4. THE KEEPAWAY BENCHMARK

Keepaway is part of the RoboCup Soccer Simulator and was in-
troduced as a benchmark by Peter Stone et al. [19]. In thesBiser
2 (3vs2) Keepaway benchmark, a team of thkeepersattempts
to maintain possession of a ball in a two-dimensional plgyfiald
(usually20m x 20m) while a team of twdakerstries to intercept
the ball. The actions performed by the keeper that is cuyrémt
possession of the ball are controlled by a learned polisshereas
the actions performed by the keepers not in possession dfalhe
are determined by a fixed policy given by the benchmark, as are
the actions performed by the takers. The benchmark is siclediv
into episodes, each starting in a similar (but not identisshrt
state and ended when the ball is either intercepted by a taker
goes out of the bounds of the field. The goal of the learning sys
tem is to learn a policyr that optimizes the behavior of the active
keeper (i.e. maximizes the episode duration). This episide-
tion is a machine-independent simulation time and can be ase
a fitness/quality measure of the policy implemented by thenag
Since both sensors and actuators are exposed to noise Vi@eisa
a highly stochastic benchmark, and the duration of a sirgjkode
is not a reliable estimate of a policy’s fithess; rather, therage
duration of multiple episodes played with the same policy et-
ter estimate. One question that arises is whether Keepaarahe
considered to be a multiagent learning task, since theypobn-
trols only one agent at a time. However, Stone et al. [20kstat
that the benchmark’s complexity comes not so much from ttie in
vidual learning task, but from the multiagent componentotimer
words, learning all three keepers in parallel is actuallydbathan
learning one keeper with two pre-trained teammates.

The state provided by the benchmark consists of 13 contguou
state variables: 6 of the distances between the playersténdies
from the players to the center of the field, and two anglescitsal
with the passing lanes of the ball-possessing keeper (eepédc
#1). These state variables are depicted in Figure 2. Theypodin
choose from one of three predefined, discrete macro-agtidrish
are performed by keeper #1: hold the ball, pass the ball tpdee
#2, and pass the ball to keeper #3. Since the “pass” actionthaigt
longer than one time step (0.1sec), the problem is a semikdvar
decision process (SMDP). Furthermore, since the sensersxar



posed to noise, the problem ispartially observable SMDPAII
results reported below have been obtained using versioof @t
Keepaway benchmark.

Following the method described in Section 3.3.1, networtkisky
can act as policy for Keepaway in EANT have been encoded as fol
lows: In 3vs2 Keepaway, the policy maps a state consistint3of
variables onto one of 3 actions. If one wants to encode suohicyp
in an ANN, the ANN should have 3 outputs and 13 inputs. There-
fore, the proto individuay, consists of exactly 42 genes. Given a
certain state, the action corresponding to the output wakimal
activation is chosen. Thus, the network encodes directiytiicy
and no explicit value function is involved.

5. RESULTS AND COMPARISON

In this section we present results obtained with EANT in the
Keepaway domain and relate them to results of other reiafoent
learning method published by other authors. Unfortunatbbyre-
sults published by other authors are often not directly cnaiple
since they use different versions of Keepaway and differoimes
important parameters, e. g. the field size, the number otpégyer
team, and whether the sensors are noisy or not. In orderai@rible
performance of EANT to these results, we applied EANT inediff
ent settings, namely in Partially Observable and Fully ®lzde
Keepaway on a0m x 20m field, and in Partially Observable Keep-
away on &5m x 25m field.

5.1 Partially Observable 3vs2 Keepaway

Partially observable (PO) 3vs2 Keepaway is the standatihget
for the Keepaway benchmark: three keepers play againstiveos
on 20m x 20m field, and both sensors and actuators are exposed
to noise. We performed 8 independent runs of EANT in the stan-
dard Keepaway benchmark; the results are shown n Figuretga. T
average performance of a generation’s champion (i. e. tsiepee-
forming individual of a population) over the 8 runs is platteas
well as the corresponding standard deviation. The avergigede
duration afte800h training time wasl4.9sec with a standard de-
viation of 1.25sec, indicating that the method always converges to
reasonable solutions. The mean episode duration &fter train-
ing time of the best run waks.6sec, while the mean episode dura-
tion of the worst run was2.9sec.

5.2 Fully Observable 3vs2 Keepaway

Fully observable (FO) 3vs2 Keepaway differs from the stathda
setting in Section 5.1 in that the sensors are free of noisee T
actuators, however, are still subject to noise and the staté is
stochastic. It is important to note that (even though thisiree
is usually referred to as fully observable Keepaway) théesis
still not truly Markovian since it does not include playerdae-
ties. However, Taylor et al. [22] argue that the state is€eff
tively Markovian” since players have low inertia and thedibhs a
high coefficient of friction which means that velocity does help
agents learn in practice.

We performed independent runs of EANT in FO 3vs2 Keep-
away benchmark; the results are shown in Figure 3b. Plogtttbi
performance of the champion of a generation (i.e. the beast pe
forming individual of a population), averaged over theuns, as
well as the corresponding standard deviation. Unsurmfigime-
moving the sensor noise simplifies the task for the learnystesn.
The average episode duration ai@0h training time wad 9.2sec
with a standard deviation df 16sec.
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Figure 3: Average episode duration of EANT in: (a) partially
observable 3vs2 Keepaway on 20m x 20m field (averaged over
8 independent runs), (b) fully observable 3vs2 Keepaway on
a 20m x 20m field (averaged over 9 independent runs), and
(c) partially observable 3vs2 Keepaway on 5m x 25m field
(averaged over 6 independent runs).

5.3 Partially Observable 3vs2 Keepaway on a
Larger Field

In order to assess if the policies learned by EANT would also
benefit from a larger field, we set the fieldsize2ton x 25m and
performeds runs of partially observable Keepaway. As can be seen
in Figure 3c, the average episode duration increased signtfy in
comparison with the average episode duration @@ x 20m
field: on average, EANT evolves a policy with an approximate
fitness 0f19.4sec with a standard deviation ¢f.2sec after 500k
training time. We suspect that the increase of the averaigedp
duration is due to the fact that the Keepers have more spatteeon
field and that the evolved policies have learned to expldstfect.

5.4 Comparison with other methods

Stone et al. [20] have used an application of episodic SMDP
Sarsa R) with linear tile-coding function approximation and vari-
able ) to learn higher-level decisions in the keepaway benchmark.
They have reported that their agents learned policies tbaifis
cantly outperformed a range of benchmark policies as weibdis



EANT NEAT Sarsak)
MED TT SD MED | TT SD MED | TT SD
PO 3vs20m x 20m || 14.9 | =200 | £1.25 || 14.1 | 800 | ~ +1.75 || 12.5 | 50 | =~ £0.1
FO 3vs220m x 20m || 19.2 | =600 | £1.16 || 15.5 | 800 | ~ +1.00 || 17.6 | 50 | ~ £0.1

Figure 4: Summarized performance of three different reinfacement learning methods (EANT, NEAT, and Sarsal)) in different
versions of Keepaway. Depicted are the maximal mean episoderation (MED), the training time required for reaching thi s optimum
(TT), and the standard deviation over the different runs (SD. MED and SD are given in seconds, and TT in hours. Results faKEAT

and Sarsag\) are obtained from Taylor et al. [22] and Whiteson et al. [25](exact values based on personal communication).

cies learned with Q-learnifg Recently, Taylor et al. [22] and
Whiteson et al. [25] have given a detailed empirical corguari
between a variant of SMDP Sarsg (21] and the neuroevolution

method NEAT [18] in the Keepaway benchmark. The results they

obtained are summarized (along with the results of EANT gaibl&
4,
They found that in general NEAT learns better policies thars&

in PO Keepaway, though it requires many more evaluationto d

so. Moreover, they found that Sarsa learns better policidsQ
Keepaway and NEAT learns faster when the task is deterranist
(i.e. the start state is fixed and neither sensors nor actuate
influenced by noise). As can be seen, EANT achieves bettgltses
than NEAT and Sarsa in both PO Keepafvapd FO Keepaway
Furthermore, it converges to good solutions with less ingitime
than NEAT. These results reinforce results of Siebel etk ¥/-
sual Servoing Task [17], where EANT also performed bettanth
NEAT. A possible explanation is that the structural mutatpera-
tions of NEAT are more fine-grained, and thus NEAT would regjui
more mutations to reach a topology with sufficient compiextn
other explanation might be the explicit separation of theligion
into exploitation and exploration phases.

6. DETAILED ANALYSIS
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The previous section has shown that EANT is able to learn good

policies for the Keepaway problem. However, these resiltsmp

indication of the components of EANT that are and are not nec-

essary to enable this kind of learning facility. In this sact we
analyze the contribution of different parts of EANT to theepv
all learning performance. All results presented were ole@iin
the standard setting for Keepaway (i. e. partially obsde/8ws2
Keepaway on 20m x 20m field).

6.1 Structural exploration

What distinguishes neuroevolutionary approaches sucANSE
from conventional artificial neural network learning sysseis that

the topology of the network does not need to be fixed by the de-

signer, but is generated and optimized by the system itdeif
worth considering the question of what performance a syst@m
achieve that uses a means of weight optimization simila’Ab'E
but does not search the space of network structures (i. es rulate
explore). To answer this question, we deactivated the tsiraic
mutation and crossover operators and applied this impairstm

to the Keepaway task. The results of three independent mans a

depicted in Figure 5a. The mean episode duration in partidit

1The absolute values of episode duration they reported dréino
rectly comparable with the results reported below since&tt al.
used an older version of the benchmark.

2This result is statistically significant for the comparisonSarsa
(p < 0.0005).

3This result is statistically significant for the comparisonboth,
Sarsaf < 0.002) and NEAT p < 107°).

Figure 5: Average episode duration of impaired versions of
EANT in partially observable 3vs2 Keepaway: (a) results of
EANT when structural exploration is disabled, (b) results d

EANT when the genotype is not allowed to contain recurrent
jumpers. The results are significantly worse than the resuk

obtained by the full system indicated by the dashed line.

servable 3vs2 Keepaway1(.1+0.83sec after700h, averaged over
3 independent runs) is significantly worge € 0.015) than those
of the full system discussed in Section 5.1, indicating strtctural

exploration significantly improves the performance of EANT

6.2 Recurrent jumpers

Since the policy is represented as an ANN with recurrentecnn
tions, which give a neuron; at time step the output of a neuron
n; attime steg —1 (possiblyn; = n;), the actioru; chosen by the
policy at timet is not necessarily based only on the the statieut
can also be based 65 for » > 0. This should not provide any

advantage to system when used with an MDP. However, as the au-

thors of the benchmark state, Keepaway is not truly Markoiat
only nearly since the velocities of the players are not idetlin the
state and the sensors are noisy. Thus, one might expect $iyat a

tem which has some kind of a memory might perform better than

one without memory. In order to analyze whether EANT’s apili
to evolve ANN's with recurrent connections actually impeevits
performance in non-Markovian environments, we deactil/aie
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Figure 6: Development of the species of a population during
one evolution. The width of a species (in y-direction) indiates
the relative size of this species while the color representse
fithness of the best individual of this species.

possibility of evolving recurrent connections and testes $ystem
in the Keepaway task. The results are depicted in Figure §le. T
mean episode duration of the impaired system in partialseol
able 3vs2 Keepawayi .48 + 0.35sec after 700h, averaged over
5 independent runs) is significantly worge & 0.05) than those
of the full system discussed in Section 5.1, indicating tleatur-
rent jumpers significantly improve the performance of EABY.
contrast, in the early phase of the evolution, the impairedion
of EANT performs better. We suspect that this is due to thadrig
complexity of finding good weights for networks with recurre
jumpers.

6.3 Speciation

The main purpose of speciation is to protect individualshwit
a novel topology from immediately extincting (compare &gtt
3.3.3). Figure 6 shows the development of species duringrbgress
of one sample evolution. As can be seen, even species whieh ha
initially only individuals with low fitness survive for manyenera-
tions. This is due to the usage of fithess sharing, which rsstgzd|
species to survive. Interestingly, the two species whidhiobd the
best performance at the end (after approximatély generations),
were nearly extincted aft&0 generations.

6.4 Fitness sharing

The purpose of fitness sharing (see Section 3.3.3) is to ensur
that the population retains a sufficient amount of diverditying
the progression of the evolution, i. e. to avoid that one igsdakes
over the whole population. We define the “amount of diversifya
populationP. as the average pairwise distance between all individ-
uals in a populationdiv(P.) > d(gi,95),
1,95 €Pc,9:#3;
whered() is the genotypic distance given in Section 3.3.3. If fitness
sharing is disabled, the diversity of a population decrefsen an
initial value of approx0.7 to a diversity of approx0.2 after800h
training time (see Figure 7a). In contrast, when fitnessisfas
enabled, the diversity decreases slower and maintainsie g&ap-
prox. 0.45 (averaged over 4 independent runs) af@bh training
time. The increased diversity allows EANT to cover a largart p
of the search space simultaneously.

_ 1
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g
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Figure 7: (a) Effect of fitness sharing on the diversity of a ppu-
lation. Without fitness sharing, the diversity decreases atinu-
ously to a very small value. In contrast, with fithess sharingthe
diversity maintains a value above 0.45 on average. (b) Dewg-
ment of the learning rate during the evolution. Plotted datais
an average of 8 independent runs.

6.5 Self-adaptation of learning rate

In EANT, each linear genome has a “strategy parameter” {earn
ing rate, which controls how strongly the weights are aéfddby
the parametric mutation operator. This parameter is saaligi
to 1.0 for all individuals. During the course of the evolution, the
learning rate itself is modified randomly by the parametrigtan
tion operator (compare Section 3.2.1). Since this modi6ioaits
unbiased, one might expect that the average learning rake afi-
dividuals remains nearly constant and closé.€oduring the course
of evolution. However, Figure 7b shows that this is not theecale-
picted is the development of the learning rate of the chamfi@.
the fittest individual), averaged over 8 independent runkerfully
observable 3vs2 Keepaway domain. As can be seen, the Igarnin
rate increases initially up to a value of5. After 200h training
time, the learning rate starts to decrease to a value offies®15.

An interpretation of this behavior is as follows: initiglthe val-
ues of the weights are far away from their optimal value. Thus
these weights have to be modified significantly to achieveago
overall performance of the network. Genomes with largamieg
rate can do bigger modifications of their weights in one aapidn
of the parametric mutation and because of that, their affgdnas
a better chance to approach a good set of weights. Hence, thei
offspring has a better chance to survive. This leads to aeased
density of genomes with large learning rates. Aft@dh of train-
ing time, the genomes have increased their performancéfisign
cantly (compare Figure 3b). This indicates that their wisigire
now closer to an optimal setting. The initial advantage ofayees
with large learning rate starts now to turn into a disadvg@taince
the modifications of the parametric mutation operator affeeir
weights more drastically, the probability that their ofisig leaves
the local optimum weight region is greater than for genomits w
lower learning rates. Hence, the average learning rateedses as
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