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ABSTRACT

Complete algorithms have been proposed to solve problends mo
elled as distributed constraint optimization (DCOP). Hoere
there are only few attempts to address real world scenasiog u
this formalism, mainly because of the complexity assodiatiéh
those algorithms. In the present work we compare three catepl
algorithms for DCOP, aiming at studying how they performame
plex and dynamic scenarios of increasing sizes. In ordessess
their performance we measure not only standard quantities a&s
number of cycles to arrive to a solution, size and quantitgef
changed messages, but also computing time and quality ciothe
lution which is related to the particular domain we use. Fhisly
can shed light in the issues of how the algorithms performne
plied to problems other than those reported in the liteeafgraph
coloring, meeting scheduling, and distributed sensor ot
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1. INTRODUCTION AND MOTIVATION

Itis generally accepted that the formalism underlyingribsted
constraint optimization problems (DCOP) represents a mgene
framework for the resolution of distributed problems in tragent
systems (MAS), especially in problems where the challesge i
find the best value attribution for a set of variables thaehater-
dependencies. However there is also a general perceptibodin-
plete (i.e. not approximate) algorithms proposed to sol@OP’'s
have problems with efficiency [8]. Although this has not Eneted
the use of these algorithms in real world scenarios, corspardf
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methods has been restricted to a few problems such as gr&ph co
oring, meeting scheduling, and distributed sensor netwdtere

is a lack of studies about how to employ DCOP in other claskes o
problems, especially in dynamic changing environmenterahit

is not obvious how the DCOP formalism performs.

In a DCOP, differently from a distributed constraint satctfon
problem (DisCSP) [20], the interest is to optimize the iiegtns
and not only to satisfy them. DCOP is represented by a glaivet-f
tion and the objective is to maximize or minimize it. This étion
depends on a cost value associated with each restriction.

Approaches for dealing with DCOP in real life problems skioul
consider that the agents must be able to optimize the gloina}f
tion in a distributed way, using only local communicationDEOP
algorithm should also be capable of finding the solution it
agents working in an asynchronous way, and provide qualiy-g
antees. Besides these intrinsic characteristics of theritigs,
these must also be evaluated regarding the quality of theigolin
the particular scenario or problem where it is applied.

In [8] a real world application of DCOP is discussed in which,
while using complete algorithms (in this case ADOPT), heuri
tics for better communication structure and precomputiest base
bounds were necessary. Authors report that they have eteredn
fundamental differences between abstract scenariosgiegh col-
oring), and concrete ones (meeting scheduling, sensoronetyv
This has enabled them to handle scenarios with up to 47 Vesiab
(roughly agents).

Later, in [15] this was extended to more than hundred vagmbl
with the use of another kind of DCOP algorithms, this timedohs
on dynamic programming. This algorithm, DPOP, is linearha t
number of agents. The disadvantage is that performanchievac
with a high increase in message size and memory (the growth is
exponential in the width of the tree).

Both [8, 15] concentrate on the the analysis of the compmnati
efficiency, but less on their efficiency and effectivenegmrding
the real world problem they are addressing.

In the present paper we test and compare three DCOP algsrithm
in a problem of the domain of traffic, namely synchronizatasn
traffic lights. This problem can be seen as an assignmentgunob
because the objective is to find the best signal plan for eath t
fic light in order to maintain a progressive system (see 8e@i
for an explanation). This assignment is challenging bexdhe
progression cannot be done in more than one traffic dire¢tion
each traffic light. Therefore each must select a signal plankest
matches the traffic load not only locally but also in the nbigh
hood. Moreover, it is a dynamically changing environment.

The algorithms we compare afsynchronous Distributed Op-
timization (ADOPT) [10], Optimal Asynchronous Partial Over-
lay (OptAPO) [9], andDynamic Parameter Optimization Problem



(DPOP) [15].

In the next section the DCOP framework is briefly presented;
Section 3 explains the domain, the problem of synchroromati
(progressive system), and describes the scenario. Theiegues
and their analysis appear in Section 4. Section 5 reportsdhe
clusions and future work.

2. DISTRIBUTED CONSTRAINT OPTI-
MIZATION PROBLEMS

In the last decade, several DCOP algorithms were proposee; h

we restrict the analysis to three complete ones: ADOPT, DPOP
and OptAPO. Being complete, they must guarantee an optimum

solution. Another characteristic is that in these algonghagents
are asynchronous (execute at the same time).

ADOPT performs a distributed search using cost commurigati
as a guide for the agents to choose the optimum values foaiits v
ables. OptAPO uses direct constraint communication asma &ér
partially centralize the problem, through a mediator. Theice of
the mediator is done during the resolution process usiraipes
given to the agents. The mediator uses a centralized optiioiz
in order to find an optimum solution to its portion of the preiol.
DPOP is based on dynamic programming, propagating utiity i
tree-like network of agents. The growth of the number of rages
is linear; messages’ size is domain-specific.

The solution of distributed constraint optimization pratols re-
quires a set of agents that use communication to find the bast v
attribution to their variables. Two agents sharing a resitm are
called neighbors. A DCOP can be formalized as follows:

e asetofnagentsA = {a1,az,...,an};

e asetofn variablesV = {v1,v2, ..., vn};

e asetofdomain®d = {d1,ds, ...,dn}, wherev; € d;. Each
d; is finite and discrete;

e adistributed mappin@; : v; — a; assigning each variable
to an agent@(v;) = a; means that the ageay is responsi-
ble for the variabley;.

e aset of cost functiong; ; : d; x d; — N, to the pair of vari-
ablesv; andv;. Cost functions are also called restrictions;

e an objective functior¥’, defined as an aggregation over the
set of restrictions. The objective is to find the set of val-
uesO™ for the variablesl’, minimizing or maximizing the
objective function. The functiod is defined as’'(O) =
Z fi,j (Ui, Uj), Wherevi — di, V5 — dj in O.

In the next section we give details about how to use this férma
ism in the particular scenario we tackle here.

3. TAKING DCOP TO (ANOTHER) REAL
WORLD PROBLEM: A CASE STUDY
ON SYNCHRONIZATION OF TRAFFIC

LIGHTS

3.1 Motivation

A classical approach to reduce traffic jams is to maintain-a so
called progressive system, i.e. to coordinate or syncheotmaffic
lights so that vehicles can traverse an arterial in one ¢rdiifection,
keeping a specific speed, without stopping. Classical @mhes
to building a progressive system are [6, 19]. Thus, cootitina
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Figure 1: Time-space diagram of a progression in an arterial

here means that if appropriate signal plans are selectenh @t the
adjacent traffic lights, a “green wave” is built so that drivdo not
have to stop at junctions. Details are given in Section 3.2).

To solve this kind of problem, we are interested in achieving
a compromise between totally autonomous coordinationowith
explicit communication, and classical solutions which aither
centralized or do not deal with network optimization. Here w
approach the problem using DCOP algorithms. It is important
remember that these algorithms were not primarily desigoned
dynamic environments. However, traffic control scenari@sia-
trinsically dynamic. The ultimate goal is to design protiscfior
traffic light control to work without intervention of traffiexperts.

The specific objective of the scenario is to find the best sig-
nal plan configuration for the traffic lights. The configuoatiis
achieved by selecting the best signal plan for the curreiffidrsit-
uation constrained by the synchronization possibiliti€be traf-
fic models are implemented and their results evaluated u3ing
SUMO, an agent-based traffic simulation framework [18].

3.2 Progressive Systems: Traffic Light
Synchronization

Control of traffic lights is turning more important given thre
creasing demand for urban mobility. Since it is not alwaysiiele
to increase the existing network, one option is to efficieatle this
infrastructure. Thus, intelligent control systems areessary in
order to increase the automation of the traffic control [T#hffic
lights are normally operated based on pre-establishefittsidnal
plans which are designed to work with given nominal volunessf
hicles. However this is not flexible and cannot cope with gjesn
in these volumes.

The aim of the use of DCOP in this scenario is to assign a traffic
signal plan (henceforth signal plan for short) to each tdijht
in order to guarantee synchronization of these lights. Byoriza-
tion means that adjacent traffic lights will be coordinatedttsat
vehicles departing at traffic light A (upstream) will be aldepass
traffic light B (downstream) without stopping. This is acéd by
a synchronization of the plans which differ only by an offg¢ehe
between the beginning of the green phase of two consecdiffie t
signals). Of course this offset is a function of the distalpesveen
traffic lights and the desired (average) speed of vehicles.

Figure 1 shows a space-time diagram of the synchronizecber pr
gressive system in an arterial with 5 crossings (depictetiateft
side of the diagram). The progression is effective for Velsitrav-
eling from the First to the Fifth Street (northbound). Oneadya
width is shown: vehicles entering the arterial in the intet®n
with the First Street from time 22 to 54 will be able to pass the
whole arterial without stop. Notice that this is not the ceegard-
ing a vehicle traveling southbound (shown in the figure) ostwe
and eastbound (not shown).



A traffic light has a library of plans, each allowing the syr@h
nization in a different traffic direction. In general, the maeigh-
bors that are synchronized, the shorter the queues. Syrizhtion
in two opposing directions of an arterial can be achieveadding
on the geometry of the arterial: in a Manhattan-like grid vetthe
spacing among intersections is the same, synchronizatioppo-
site directiondn the same streds possible but demanding. Syn-
chronization in four traffic directions is not possible iraptice.
Therefore, an agent at a junction mgsiecta signal plan to give
priority to the synchronization in a particular traffic diten.

In order to explain our approach we use Manhattan-like grids
However, for the sake of generalization, the plans we hasigded
do not allow synchronization in more than one traffic directin
the same street.

3.3 Related Work on Progressive Systems

Classical algorithms were proposed in the sixties and siegen
to analyze traffic patterns and to set synchronization ieriats.
The most known is TRANSYT, aoff-line optimization tool [19].
SCOOT [6] and SCATS [7] work similarly to TRANSYT but are
traffic responsive. A new approach is TUC [4], conceived éogé
scale networks. Authors report positive results compaveiditu-
ation with fixed time synchronization. On the other hand, WCT
the computation is centralized and the conflits are solvieteby
a traffic expert or by a priori rules, in a clear contrast wittnend
of decentralization of control.

It is important to note that none of these approaches dedlfs wi
optimization at the level of grid. SCOOT and SCATS work pre-
dominantely at the level of crossings. TRANSYT is able to op-
timize an arterial (not necessarily one single, straigtget) but
does not deal with the kind of grid we use in the present pdper.
TRANSYT, crossings that form a progressive system must be de
fined in advance, whereas in our case the groups of coordimati
emerge from the optimization process. TUC, as mentioneoregef
deals with networks but the conflicts (e.g. which progresgimup
each crossing belongs) must be solved manually.

In [1] a MAS based approach is described in which each traf-
fic light has a set of pre-defined signal plans to coordinaté wi
neighbors. This approach uses techniques of evolutionanyeg
theory: self-interested agents receive a reward or a pegasien
by the environment. The benefits of this approach are thiceito
is not necessary to have a central agent to determine traiditef
the coordination; agents can dynamically build subgrodpsaéfic
light coordination which meet their current needs in terirelow-
ing vehicles to pass in one given direction; it avoids comitam
tion between agents when they have to decide in which dinetti
coordinate. However, payoff matrices (or at least thetigdiand
preferences of the agents) are required, i.e these figuresthde
explicitly formalized by the designer of the system. Thiskemthe
approach time-consuming when many different options ofdieo
nation are possible and/or the traffic network is complex.

In [13] an approach based on swarm intelligence is proposed.
There, each intersection (plus its traffic lights) behaikesd social
insect that grounds its decision-making on mass recruitmech-
anisms found in social insects. Signal plans are seen &s tiasle
performed by the insect without any centralized controlesktal-
location mechanism. Stimuli to perform a task or to changksa
are provided by the vehicles that, while waiting for theixtngreen
phase, continuously produce some “pheromone”. No other-inf
mation is available to the agents. Quantitatively, whenabhents
are free to decide coordinating according to the swarm ambr,0
the system behaves almost as a central decision suppoensyst
Experiments show that the agents achieve synchronizatidrout
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any central management. However, the time needed to canterg
a stable coordination can be high, which is a negative agsp&-
cially in highly dynamic environments.

Another approach based on an algorithm for DCOP is proposed
in [12]. OptAPO was employed and tested in an environment
that changes dynamically. One first shortcoming of the niiedtia
based method is that the mediation may end up being perfobyed
a single agent, thus in a centralized way. Additionally, riedia-
tion process may take time, as it was reported in [12] for avoek
with 25 agents.

In summary, there are classical and Al and/or multiagen¢dbas
approaches to traffic light synchronization. Besides theteer
approaches — not for synchronization — were proposed, aspd
on reinforcement learning [3, 11, 17] or crossings with rghts

[5].
3.4 DCOP Model

The problem of traffic light synchronization or coordinatjdor-
malized as a DCOP, is described by the tuplel, D, F' > where:

e A = {au,..,a,} is the set of variables/agents, wheres
the number of crossings;

e D = {du,...,dn} is the domain of the variables, represent-
ing the possible signal plans for each crossing agent;

e F={fi1,..., fnn}isthe setof constraints among the vari-
ables, where constrairft denotes the associated cost; each
constraint has a cost for a given pair of values of the two
variables.

As in the majority of DCOPs, constraints are binary i.e. tbey
cur between two traffic light agents. Beg; the density of vehicles
in the lanei — j (how heavy is the load). We then defige; to
represent the fraction of traffic at intersectipthat is coming from

directioni:
Bi; = <L
D DI

wherez is the set of all nodes which send vehicles to ngde

Further,y expresses the degree two consecutive agents agree (are
synchronized); the value of 1.5 is used when agents are gynch
nized; otherwise we use 2. Another quantity,expresses the de-
gree agents are coping with the volume of vehicles. For el@mp
if g indicates a higher volume of vehicles westwards and thetagen
is synchronizing in this direction, then the agent is exiecuits
best plan (it is synchronized in the direction of higher vo&) and
has the lowest cost: assumes different values. Table 1 shows all
values ofr, for different traffic and synchronization conditions for
lanes between crossingnd crossing.

Costs are given by the volume of vehicles that use the egistin
lanes between the traffic lights, and also by the degree tahwhi
these lights are synchronized. Thus the ¢fstassociated with a
constraint between two neighboring crossingsdj is:

Jij =Bij X1 X7y

Plan run by agent | Planrun by agenf | 7
@ @ 0
© ® 1
b S 1.5
© o 2

Table 1: 7 for different configurations of plans and traffic vol-
ume. @ means that plan is synchronized and agrees with the
direction of higher traffic volume; & means that plan is syn-
chronized in a direction other than that of higher traffic volume



3.5 Scenario Description 4.3 Case Studies

For the experiments reported here, we use four differemtasee In addition to the two situations where we change the inerti
ios or grids with different sizes (3x3, 5x5, 7x7, and 9x9)uslhe rate or keep it constant, we also run different case studiesern-
parameten is setto 9, 25, 49, and 81. ing what kind of signal plans agents use. We summarize thiswbe

All networks have source nodes that insert vehicles at angive ) ] )
rate. In the case of the 5x5 network, there are 10 such squrces ©® Case 1 (signal plans are not synchronized)wve set signal

one for each street. Each street is one-way. However, \&shoein plans at each agent to mismatch completely those running
turn in each crossing with a given probability. Also, vebickcan at neighbors, aiming at a quite bad configuration (a kind of
decelerate with a given probability. The higher these podiies, lower bound);

the more traffic there is at any given instant. Each crossasyeh

set of signal plans defined in Section 4.1 e Case 2 (signal plans are synchronized in a pre-defined di-

rection): here we use the EW/WE, aiming at testing a com-
3.6 Metrics for Evaluation mon situation when signal plans are designed to cope with a

We perform two types of comparison: evaluation of the perfor specific pattern but changes accur in an unexpected way.;

mance of the algorithms themselves, and the quality of tiérab
they achieve in this particular domain of traffic lights sgraniza-
tion. In order to evaluate the former we measure: the numimr-o DCOP algorithms are: ADOPT fronit t p: //t eantore.

cles (as in other works, one DCOP cycle is defined as all agents  usc. edu/ dcop/ ; OptApo implemented according to [9]; and

e Case 3 (use of DCOP algorithms to perform the control)

ceiving all incoming messages and sending all outgoing agess; DPOP fromht t p: / /| i awww. epfl . ch/frodo/.
execution time; average size of the messages exchangedydh®on . .
agents; and the total number of messages exchanged. 4.4 Evaluation of the Algorithms

To evaluate the DCOP based control we measure averages of to- |n this subsection we present the evaluation of the comiputzit
tal number of stopped vehicles and density (vehicles pér fior- performance of the algorithms in terms of the standard nreasu
malized between 0 and 1). In all cases the averages are dver al(number of DCOP cycles, messages) and also include rurinieg t
lanes of the network. The evaluation in terms of the efficiency at controlling theftc is

presented in the next subsection. In any case we use theriesena

4. EXPERIMENTS AND RESULTS and DCOP modeling described in sections 3.4 and 3.5, as well a

the signal plans, traffic volumes and case studies desceibedk.

Tables 3 to 7 show the averages over the whole simulation time
and over 10 repetitions of the simulation. These numbekes tef
Situation 2 i.e. with changing ininsertion rate. Table &refto ex-
ecution time and number of cycles for the three DCOP algmisth
used. Tables 4 to 7 then show the number of messages exchanged
and the size of these messages.

For all three algorithms, the execution time was adequatieen
4.1 Signal Plans sense that this time is below the time the agent at the clpgsn
forms a control action (as said, 720 time steps). In othedsidhe
running times achieved are compatible with the decisioningak
frequency. The only exception is ADOPT when the grid is 9xB. |
this case, the time necessary to reach a solution was altistds
higher than the control period. Apart from this exceptior, gan
conclude that, even if the agent control frequency wouldehav
be higher (and hence the time between two interventionsleral
there would still be some room for agents to run a DCOP assign-
ment since the time to find a solution is below the time a signal
plan runs a complete cycle through all phases of the tradfit ([60
4.2 Changing the Volume of Traffic steps) in the following cases: network 3x3 and 5x5 (all athars),

We consider situations with both dynamic and static flow of ve OFXAPO anbd DP[?PPC;Bt_he tr:etwrc‘)rk 7X75 f ovel d
hicle in the network (situations 1 and 2 as defined below). éles; note about IS that the number of cycles and messages

“static” does not mean that queues are deterministic as trertwo Is linear in .the ”“”.‘ber of agents and .depends on the heighpof t
sources of stochastic behavior in the simulation: turnirapabili- tree associated with the problem being modelled. According
ties at each crossing, and deceleration probabilitiesh(eabicle).

Therefore, the word static here means only that the ingeréite of D Time Frame | Rate Rate

vehicles is constant. NS/SN | EW/WE
Before 6 a.m. 0 to 5000 0.10 0.10
Morning 5000 to 10000| 0.10 0.40
Afternoon 10000 a 15000 0.40 0.10
Rush Hour | | 15000 a 25000 0.30 0.30
2. Situation 2 - Sources with Changing Insertion Rate in Rush Hour II' | 25000 a 30000| 0.50 0.50
this case there are changes in the insertion rate each 5000 Night 30000 to 35000, 0.10 0.10
steps, according to Table 2.

All simulations were performed in the ITSUMO traffic simula-
tor, running in an Intel Centrino Core Duo with 1.6GHz, 512MB
RAM memory, under Suse Linux 10.2. Values reported here are
averages and standard deviations over at least 10 repstitib
the simulation. Control actions happen once each 720 tiepsst
(12 minutes) as it is not common practice in traffic engirmegid
change the signal plan within small time frames.

Signal plans were designed to allow synchronization inegith
the NS/SN direction or in the EW/WE directions (remembeetan
are one way). There are two phases, each allowing 30 secénds o
green time to a given direction. Thus the traffic light cydted is
60 seconds.

Domainsd; = {1,2}, where 1 means EW/WE direction and 2
means NS/SN direction. As said, synchronized plans in heigh
ing intersections differ only by an offset. Given the spektizom/s
and the distance of 300 meters, the offset is 20 seconds.

1. Situation 1 - Sources with Constant Insertion Rate in this
case all sources generate vehicles with a fix rate of 0.4 gurin
9000 time steps (2.5 hours);

Table 2: Changes in insertion rates at sources (situation 2)
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[Net. ] Alg. | Time(sec) | Cycles |
3x3 || ADOPT 0.65+0.15 2186.13+ 648.03
OptAPO 0.164+0.39 29.084+ 23.20
DPOP 0.07+ 0.01 18
5x5 || ADOPT 16.07+ 2.29 6197.814 1520.67
OptAPO 3.90+1.11 56.54+ 15.76
DPOP 0.224+0.02 50
7x7 || ADOPT | 112.90+ 33.39 | 12387.84+ 3098.56
OptAPO | 21.16+ 17.53 75.33+ 14.02
DPOP 13.59+0.01 98
9x9 || ADOPT | 6727.461+182.98 | 325512.42+10108.67
OptAPO | 295.75+31.56 174.30+18.41
DPOP 180.71+£15.35 152.00

Table 3: Average time and number of cycles (situation 2)

[15], the number of cycles is two times the height of the psenee
(one propagation of the “util” message, and one propagatidine
“value” message). Since the tree does not change from oe¢i+ep
tion to the other of the simulations, the deviation is zero.
OptAPO can be seen as a good compromise in terms of execu- Table 6: Network 7x7: average number and size of messages
tion time and communication (message exchange). Howewer, f
bigger networks, where there is a huge number of restristaom
costs are higher due to the increase on the insertion raesne-
diation process becomes more frequent. This mediation srtéan
there is a partial centralization, which can be an issue asterd
to have a distributed solution. In order to address thisaigroach
proposed in [2] could be tried. Another issue is that our enpgn-
tation of OptAPO is not fully distributed. If it were, we walikee
an increase on the number of message exchanged and that would
affect the execution time.
For a better comparison of numbers regarding the executia t
of all algorithms in the four scenarios, we show these in Fadl
Regarding the number and size of the exchanged messages (s
Figure 3), as mentioned, DPOP is linear in the number of agent
Thus, in general, the DPOP algorithm performed better intests
in terms of number of exchanged messages (also regarding-exe
tion time and number of cycles). However, the same cannatide s
about the size of the messages, which are much higher, alipeci
when the number of agents increases, see Figure 4. Thisimppe
because each message has more information, aggregatethfrom
communication between parents and children in the treeeah r
world applications, it is generally the case that there isnédtion
in the communication bandwidth, and this can be an issue.
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Figure 2: Running times (log scale) for the three algorithms
for 9, 25, 49 and 81 agents (Situation 2).
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Alg. Nb. of Msgs Msgs size | Total
(bytes) (MB)
ADOPT | 298.25+ 63.37 | 47.39+14.90| 13.8
OptAPO | 203.58+ 153.05| 6.80+1.98 | 1.35

DPOP 36 55.54+ 2.66 | 1.95

Table 4: Network 3x3: average number and size of messages

Alg. Nb. of Msgs Msgs size | Total
(bytes) (MB)
ADOPT | 4123.70+ 2130.45| 66.38+13.84 | 231
OptAPO | 766.36+ 141.46 | 25.22+ 6.44 19
DPOP 112 295.10+3.80| 33

Table 5: Network 5x5: average number and size of messages

Alg. Nb. of Msgs Msgs size Total

(bytes) (MB)

ADOPT | 15972.9+ 4503.9 86.08+13.02 1343
OptAPO | 1202.164+ 202.07 57.23+ 5.51 67

DPOP 228 19451.22+ 222.26 | 4331

Alg. Nb. of Msgs Msgs size Total
(bytes) (MB)
ADOPT | 358962.4+ 1690.4| 125.40+ 20.79 | 43958
OptAPO | 4015.66+ 68.70 93.45+ 8.15 366
DPOP 322 69286.78+ 721.12 | 21787

Table 7: Network 9x9: average number and size of messages

As for ADOPT, the main point remains the number of cycles and
exchanged messages necessary to reach a solution. It $eenad t

clgast in this domain, ADOPT is more susceptible to the viamat

in the constructions of the constraints. Thus ADOPT perfodift
ferently in different time frames of a single simulation. rFex-
ample, in the beginning, when there are less constraintshthe
high costs (hence less conflicts), ADOPT performs better tha
other algorithms in terms of running time. However, as theber
of constraints with high cost increases, ADOPT needs muate mo
time to reach a solution. This cannot be seen in Table3 bedaus
shows only the average over the whole simulation time. Agwoth
issue is that ADOPT tends to have high deviations from oneisim
lation to the other.

In general, we noticed that the algorithm that dealt bettiéh w
the increase of the number of agents was DPOP. However the iss
of size of the messages remains (see Figure 4) and DPOP had its
overall performance affected by this. It would have perfedrbet-
ter than others if there were the same kind of commitment en th
size of messages, as it has on the number of messages and on the
number of cycles. This kind of improvement is discussed 6].[1

4.5 Network Evaluation

To analyse the quality of the solution, we start by discugSit-
uation 1 (as defined in Section 4.2) i.e. with constant inserate.
This situation is interesting to study because the insertites are
the same in both NS/SN and EW/WE directions. Therefore, any
control measure has difficulty coping with traffic patterigeg that
agents must synchronize @medirection only and both can be con-
gested. For this situation, in order to assess the perfarenafithe
DCOP algorithms in different grid sizes we use mean density a
mean number of stopped vehicles over the whole simulatidngbe



[ Net. | Experiment [ Stopped Veh] Density
Case 1 10.21+£2.28 | 0.29+ 0.06
Case 2 6.724+1.37 | 0.23£0.03
3x3 || Case 3 (ADOPT)| 1.884+0.53 | 0.11+ 0.02
Case 3 (OptApo)| 1.97+0.60 | 0.11+0.01
Case 3 (DPOP) | 2.42+0.46 | 0.13+ 0.02
Case 1 9.224+2.36 | 0.28+ 0.04
Case 2 6.95+1.82 | 0.23£0.03
5x5 || Case 3 (ADOPT)| 1.78+0.80 | 0.11+0.01
Case 3 (OptApo)| 1.904+ 0.59 | 0.12+ 0.01
Case 3 (DPOP) | 3.08+0.40 | 0.144+ 0.02
Case 1 8.91+2.29 | 0.27£0.04
Case 2 5.82+1.31 | 0.21+£0.02
7x7 || Case 3 (ADOPT)| 1.97+0.50 | 0.12+0.01
Case 3 (OptApo)| 1.914+0.49 | 0.12+ 0.01
Case 3 (DPOP)| 2.90+0.62 | 0.14+ 0.01
Case 1 8.05+2.17 | 0.14£0.01
Case 2 5.35+0.97 | 0.10£0.01
9x9 || Case 3 (ADOPT)| 2.04+0.77 | 0.12+0.01
Case 3 (OptAPO) 1.98+ 0.85 | 0.11+ 0.01
Case 3 (DPOP) | 2.88+0.72 | 0.13+ 0.02

Table 8: Comparison of performance among control via DCOP,
with fixed plans, and without synchronization

(Table 8). Performances of the DCOP algorithms are compared
with the cases where signal plans are not synchronized (Qaze

are synchronized in a fixed direction (case 2). After, we ufisc
Situation 2 (with changing insertion rates).

4.5.1 ConstantInsertion Rate

In general, the use of a DCOP algorithm (case 3) has yielded
an improvement regarding all metrics (defined in Section), 3r6
comparison to case 2 or case 1. Here, DPOP has performetlysligh
below the other two algorithms: more stopped vehicles amdée
higher densities. We now discuss this in detail for all foetwork
sizes.

Table 8 shows the average values for stopped vehicles and den
sity. Averages are over the entire simulation time, 10 igpas,
for networks of size 3x3 (9 agents), 5x5 (25 agents), 7x7 (49
agents), and 9x9 (81 agents) respectively. It is possiblete a
clear reduction on the number of stopped vehicles when DQOP a
gorithms are used, as well as lower density values. Thidipesi
performance can be observed in all sizes of networks.
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Figure 3: Number of exchanged messages (log scale) for the
three algorithms, for 9, 25, 49 and 81 agents (situation 2).
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4.5.2 Changing Insertion Rate

Here tabular results would not provide a good picture bexaus
the simulation time is divided in 6 time frames with complgte
different characteristics (Table 2); averages would noivep the
details. Therefore we plot the curves for density along tifoe
all three DCOP algorithms and compare them with the casesewhe
signal plans are not synchronized (case 1) or are synclawriz
a fixed direction (case 2). We do not show all plots due to ldck o
space. Figure 5 shows results for the network with 49 agéfus.
the Before 6 a.mperiod there is no difference between the control
types due to the low insertion rate.

A different picture can be observed regarding kherning and
Afternoonscenarios, where the DCOP control — no matter the algo-
rithm — shows that it is more flexible: when insertion ratearaje,
all DCOP algorithms are able to keep the density lower than th
other two types of control. In thé&fternoonscenario in particu-
lar, the synchronized plans completely mismatch the iserate,
given that they were designed to deal with higher insertadas in
the EW/WE directions, but the higher rates come actuallynftioe
NS/SN direction. In the Morning scenario, the higher irisertate
does agree with the synchronized plans.

The improvement yielded by DCOP algorithms is also noticed
on theRush Hour Iscenario. InRush Hour I| due to the high
insertion rates irboth traffic directions, which affect the synchro-
nization results (since, as said, synchronization canope avith
both directions), the performance is almost as good as ipldues
were synchronized in a fixed way, that means in one direclibe.
only exception is for DPOP.

Regarding the performance of DCOP algorithms with the in-
crease of the network, we notice that the performance depemd
this size. Best results were achieved in the 5x5 and 7x7 mkswo
where some form of control makes more sense. In the 3x3 net-
work, there is probably no room for a sophisticated conggdlen
the simple network; also, travel times tend to be fast bexatithe
size of the network. Contrarily, in the 9x9 network, the \rakiof
vehicles is higher and the size of the problems — in terms wihar
of constraints — is huge. Despite this, except for the Rustr Ho
DCOP was able to cope with the volume of traffic, performing at
least as good as a fixed synchronization.

4.5.3 Performance in Terms of Number of Groups

The last issue we want to discuss is how big the groups formed
by the DCOP algorithms are. This is important because theo&im
our approach to synchronization is to emerge groups of beigh
agents running coordinated signal plans. This is not plessitih
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Figure 4: Size of exchanged messages (log scale) for the thre
algorithms, for 9, 25, 49 and 81 agents (situation 2).
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current algorithms (TRANSYT, TUC, etc.).

Thus, the analysis of the number of groups, as well as thegssi
measures how agents are organizing themselves as the praffic
tern changes. One important issue is whether they are ahsgn
nizing in accordance to the traffic direction that has moadfitr
volume. If not all are doing this, how many are?

We discuss here the most complicated situation regardiisg th
issue, namely when both traffic directions get the same ioput
vehicles, namely a rate of insertion of 0.3. Since this ratthe
same in both directions, we expect agents to be in conflich@s
can only synchronize in one of these directions). Otherrélyns
mentioned (e.g. TUC) resolves these conflicts manually. uin o
case too many conflicts usually mean that the size of the group
tend to be small.

We can consider the quality of the DCOP control (no matter the
algorithm) as a good one if at least groups of a reasonabée siz
form. Reasonable is grid size dependent. Here we consideath
group is formed when at least half of the agents in one street a
synchronized. Thus, in the 5x5 grid for example, we consaler

Algorithm / || Nb. Groups || Size Groups|| Max. Size
Net. Size || hor. | vert. || hor. | vert. || hor. | vert.
ADOPT 25 || 3.25| 3.75|| 3.25| 3.50 4 4
OptAPO 25|| 3.75| 3.75 || 3.25| 3.25 4 4
DPOP 25 || 3.00| 3.25|| 3.0 | 2.75 4 3
ADOPT 49 6.0 | 4751 45 | 4.25 5 5
OptAPO 49 || 6.25| 5.50 || 4.25| 4.50 5 5
DPOP 49 5.25| 5.00|| 3.25| 3.50 5 4
ADOPT 81 7 7.5 55 | 5.75 7 6
OptAPO 81 7 7.25 || 5.75| 5.25 7 6
DPOP 81 6.75 7 525| 5.0 7 6

Table 9: Groups of synchronization: average number of
groups, size of groups, maximum size of groups

nized. For this grid size, there can be at most 5 groups of Btage
each. These 5 groups are, all, synchronize either in thedrdal
(EW/WE) or in the vertical (NS/SN) direction. However thisne
figuration is difficult to reach when simulating a grid withsiar
insertion rates. From Table 9 one can see that even in thisregt
scenario, groups of size above 3 have formed. In this tablgivee
the average of the number of groups that form as well as their a
age sizes. The last column also shows the maximum size @userv
for each grid size.

5. CONCLUSION AND FUTURE WORK

The aim of this paper was to compare the performance of DCOP
algorithms in a real world, dynamic scenario, in terms of pam
tational complexity and quality of the solution. We have dutige
domain of traffic light synchronization, a problem of assigamt of
a coordinated signal plan to each two crossings in a traffieord.

For this kind of problem classical solutions are all ceiiteal [6, 7,

4] and even offline [19]. Moreover, those approaches caroioe s
conflicts at network level without the intervention of rulasa hu-

man expert. We depart from centralization and model thelpnob

as a DCOP. This is intended to be a compromise between that to-
tally autonomous coordination with implicit communicati¢e.g.

[1, 13]) and the classical centralized solution.

It was possible to verify the effectiveness and efficiencyhef
DCOP algorithms in the proposed application. Regardingdhe
mer, adaptability is a key feature in the kind of problem tadk
here, where the changes in the system need to be considated an
evaluated in order to guarantee an efficient control. Spedifiin
the traffic control problem, variations in the traffic volurm@nnot
be totally predicted; thus they are not considered in thelfcantrol
approaches. Changes in volume could be also the resulteieakt
factors, like accidents or meteorological conditions. &dmg ef-
ficiency, we have shown that the three algorithms perfornh{eed.
within the decision-making time frame available to agerlispen-
eral the three show more or less the same performance. Cfesour
there are issues related to number of messages exchange®jpPP
running time (ADOPT), and centralization (OptAPO). Thesed
to be critical in real world applications. Which algorithmm tise
will have to be determined on a case basis, consideringdssieh
as whether there is strong limitation in communication; thike
the control has to react quickly; whether the non local datalme
accessed; and so on.

In general we can say that performances obtained point to the
appropriateness of using DCOP in real-world scenarios thi¢h
size of those discussed here. Note that these are aboutzti®e si
some classical approaches to synchronization can deal(euigh

group is formed when 3 or more agents in one street are synchro TUC) but then the problem remains that conflicts must be solve
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manually in the latter case. Autonomous Agents and Multiagent Systemgua&yes

We are already working on some extensions of the work regorte 438-445, New York, 2004. New York, IEEE Computer
here. One is new experiments with different cost functiargtie Society.
DCOP and different metrics as for instance equivalent caimst [10] P. J. Modi, W. Shen, M. Tambe, and M. Yokoo. ADOPT:
checks. Another is to use the groups formed by the DCOP agpiproa Asynchronous distributed constraint optimization with
as afirst step to other control approaches. quality guaranteedrtificial Intelligence 161:149-180,

Finally, a comparison with a COP (centralized) can be per- January 2005.
formed. This is perhaps the only way to make a comparisonavith  [11] L. Nunes and E. C. Oliveira. Learning from multiple soes.
centralized approach. Another obvious centralized agprcauld In N. Jennings, C. Sierra, L. Sonenberg, and M. Tambe,
be a greedy one where each traffic light runs a signal plarfitsat editors,Proceedings of the 3rd International Joint
the global traffic state. The Only problem here is that it istrigial Conference on Autonomous Agents and Multi Agent Systemsy
to define which is this state. Other approaches such as thsi-cla AAMAS volume 3, pages 1106—1113, New York, USA, July
cal ones cannot be used due to the fact that they do not work for 2004. New York, IEEE Computer Society.
the whole grid unless conflicts are solved by an expert; m@reo  [12] D. Oliveira, A. L. C. Bazzan, and V. Lesser. Using
those are commercial tools. Approaches based on centatie: cooperative mediation to coordinate traffic lights: a case
forcement learning have computational cost that is praiéfor study. InProceedings of the 4th International Joint
networkg other than that of size 3x3 due to the number of pairs Conference on Autonomous Agents and Multi Agent Systems
state-action. (AAMAS) pages 463-470. New York, IEEE Computer

Society, July 2005.
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