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ABSTRACT
Complete algorithms have been proposed to solve problems mod-
elled as distributed constraint optimization (DCOP). However,
there are only few attempts to address real world scenarios using
this formalism, mainly because of the complexity associated with
those algorithms. In the present work we compare three complete
algorithms for DCOP, aiming at studying how they perform in com-
plex and dynamic scenarios of increasing sizes. In order to assess
their performance we measure not only standard quantities such as
number of cycles to arrive to a solution, size and quantity ofex-
changed messages, but also computing time and quality of theso-
lution which is related to the particular domain we use. Thisstudy
can shed light in the issues of how the algorithms perform when ap-
plied to problems other than those reported in the literature (graph
coloring, meeting scheduling, and distributed sensor network).

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence ]: Distributed Artificial Intelligence
Multiagent Systems, Coherence and Coordination, Intelligent
Agents

General Terms
Algorithms

Keywords
Coordination, Traffic Control, Distributed Constraint Optimization

1. INTRODUCTION AND MOTIVATION
It is generally accepted that the formalism underlying distributed

constraint optimization problems (DCOP) represents a generic
framework for the resolution of distributed problems in multiagent
systems (MAS), especially in problems where the challenge is to
find the best value attribution for a set of variables that have inter-
dependencies. However there is also a general perception that com-
plete (i.e. not approximate) algorithms proposed to solve DCOP’s
have problems with efficiency [8]. Although this has not prevented
the use of these algorithms in real world scenarios, comparison of
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methods has been restricted to a few problems such as graph col-
oring, meeting scheduling, and distributed sensor network. There
is a lack of studies about how to employ DCOP in other classes of
problems, especially in dynamic changing environments. There, it
is not obvious how the DCOP formalism performs.

In a DCOP, differently from a distributed constraint satisfaction
problem (DisCSP) [20], the interest is to optimize the restrictions
and not only to satisfy them. DCOP is represented by a global func-
tion and the objective is to maximize or minimize it. This function
depends on a cost value associated with each restriction.

Approaches for dealing with DCOP in real life problems should
consider that the agents must be able to optimize the global func-
tion in a distributed way, using only local communication. ADCOP
algorithm should also be capable of finding the solution withthe
agents working in an asynchronous way, and provide quality guar-
antees. Besides these intrinsic characteristics of the algorithms,
these must also be evaluated regarding the quality of the solution in
the particular scenario or problem where it is applied.

In [8] a real world application of DCOP is discussed in which,
while using complete algorithms (in this case ADOPT), heuris-
tics for better communication structure and precomputing best case
bounds were necessary. Authors report that they have encountered
fundamental differences between abstract scenarios (e.g.graph col-
oring), and concrete ones (meeting scheduling, sensor networks).
This has enabled them to handle scenarios with up to 47 variables
(roughly agents).

Later, in [15] this was extended to more than hundred variables
with the use of another kind of DCOP algorithms, this time based
on dynamic programming. This algorithm, DPOP, is linear in the
number of agents. The disadvantage is that performance is achieved
with a high increase in message size and memory (the growth is
exponential in the width of the tree).

Both [8, 15] concentrate on the the analysis of the computational
efficiency, but less on their efficiency and effectiveness regarding
the real world problem they are addressing.

In the present paper we test and compare three DCOP algorithms
in a problem of the domain of traffic, namely synchronizationof
traffic lights. This problem can be seen as an assignment problem
because the objective is to find the best signal plan for each traf-
fic light in order to maintain a progressive system (see Section 3
for an explanation). This assignment is challenging because the
progression cannot be done in more than one traffic directionfor
each traffic light. Therefore each must select a signal plan that best
matches the traffic load not only locally but also in the neighbor-
hood. Moreover, it is a dynamically changing environment.

The algorithms we compare areAsynchronous Distributed Op-
timization (ADOPT) [10], Optimal Asynchronous Partial Over-
lay (OptAPO) [9], andDynamic Parameter Optimization Problem
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(DPOP) [15].
In the next section the DCOP framework is briefly presented;

Section 3 explains the domain, the problem of synchronization
(progressive system), and describes the scenario. The experiments
and their analysis appear in Section 4. Section 5 reports thecon-
clusions and future work.

2. DISTRIBUTED CONSTRAINT OPTI-
MIZATION PROBLEMS

In the last decade, several DCOP algorithms were proposed; here
we restrict the analysis to three complete ones: ADOPT, DPOP,
and OptAPO. Being complete, they must guarantee an optimum
solution. Another characteristic is that in these algorithms, agents
are asynchronous (execute at the same time).

ADOPT performs a distributed search using cost communication
as a guide for the agents to choose the optimum values for its vari-
ables. OptAPO uses direct constraint communication as a form of
partially centralize the problem, through a mediator. The choice of
the mediator is done during the resolution process using priorities
given to the agents. The mediator uses a centralized optimization
in order to find an optimum solution to its portion of the problem.
DPOP is based on dynamic programming, propagating utility in a
tree-like network of agents. The growth of the number of messages
is linear; messages’ size is domain-specific.

The solution of distributed constraint optimization problems re-
quires a set of agents that use communication to find the best value
attribution to their variables. Two agents sharing a restriction are
called neighbors. A DCOP can be formalized as follows:

• a set ofn agents,A = {a1, a2, ..., an};

• a set ofn variables,V = {v1, v2, ..., vn};

• a set of domainsD = {d1, d2, ..., dn}, wherevi ∈ di. Each
di is finite and discrete;

• a distributed mappingQl : vi → aj assigning each variable
to an agent.Q(vi) = aj means that the agentaj is responsi-
ble for the variablevi.

• a set of cost functionsfi,j : di× dj → N, to the pair of vari-
ablesvi andvj . Cost functions are also called restrictions;

• an objective functionF , defined as an aggregation over the
set of restrictions. The objective is to find the set of val-
uesO∗ for the variablesV , minimizing or maximizing the
objective function. The functionF is defined asF (O) =
P

fi,j(vi, vj), wherevi ← di, vj ← dj in O.

In the next section we give details about how to use this formal-
ism in the particular scenario we tackle here.

3. TAKING DCOP TO (ANOTHER) REAL
WORLD PROBLEM: A CASE STUDY
ON SYNCHRONIZATION OF TRAFFIC
LIGHTS

3.1 Motivation
A classical approach to reduce traffic jams is to maintain a so-

called progressive system, i.e. to coordinate or synchronize traffic
lights so that vehicles can traverse an arterial in one traffic direction,
keeping a specific speed, without stopping. Classical approaches
to building a progressive system are [6, 19]. Thus, coordination
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Figure 1: Time-space diagram of a progression in an arterial

here means that if appropriate signal plans are selected to run at the
adjacent traffic lights, a “green wave” is built so that drivers do not
have to stop at junctions. Details are given in Section 3.2).

To solve this kind of problem, we are interested in achieving
a compromise between totally autonomous coordination without
explicit communication, and classical solutions which areeither
centralized or do not deal with network optimization. Here we
approach the problem using DCOP algorithms. It is importantto
remember that these algorithms were not primarily designedfor
dynamic environments. However, traffic control scenarios are in-
trinsically dynamic. The ultimate goal is to design protocols for
traffic light control to work without intervention of trafficexperts.

The specific objective of the scenario is to find the best sig-
nal plan configuration for the traffic lights. The configuration is
achieved by selecting the best signal plan for the current traffic sit-
uation constrained by the synchronization possibilities.The traf-
fic models are implemented and their results evaluated usingIT-
SUMO, an agent-based traffic simulation framework [18].

3.2 Progressive Systems: Traffic Light
Synchronization

Control of traffic lights is turning more important given thein-
creasing demand for urban mobility. Since it is not always feasible
to increase the existing network, one option is to efficiently use this
infrastructure. Thus, intelligent control systems are necessary in
order to increase the automation of the traffic control [14].Traffic
lights are normally operated based on pre-established traffic signal
plans which are designed to work with given nominal volume ofve-
hicles. However this is not flexible and cannot cope with changes
in these volumes.

The aim of the use of DCOP in this scenario is to assign a traffic
signal plan (henceforth signal plan for short) to each traffic light
in order to guarantee synchronization of these lights. Synchroniza-
tion means that adjacent traffic lights will be coordinated so that
vehicles departing at traffic light A (upstream) will be ableto pass
traffic light B (downstream) without stopping. This is achieved by
a synchronization of the plans which differ only by an offset(time
between the beginning of the green phase of two consecutive traffic
signals). Of course this offset is a function of the distancebetween
traffic lights and the desired (average) speed of vehicles.

Figure 1 shows a space-time diagram of the synchronized or pro-
gressive system in an arterial with 5 crossings (depicted asthe left
side of the diagram). The progression is effective for vehicles trav-
eling from the First to the Fifth Street (northbound). One band-
width is shown: vehicles entering the arterial in the intersection
with the First Street from time 22 to 54 will be able to pass the
whole arterial without stop. Notice that this is not the caseregard-
ing a vehicle traveling southbound (shown in the figure) or west
and eastbound (not shown).
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A traffic light has a library of plans, each allowing the synchro-
nization in a different traffic direction. In general, the more neigh-
bors that are synchronized, the shorter the queues. Synchronization
in two opposing directions of an arterial can be achieved depending
on the geometry of the arterial: in a Manhattan-like grid where the
spacing among intersections is the same, synchronization in oppo-
site directionsin the same streetis possible but demanding. Syn-
chronization in four traffic directions is not possible in practice.
Therefore, an agent at a junction mustselecta signal plan to give
priority to the synchronization in a particular traffic direction.

In order to explain our approach we use Manhattan-like grids.
However, for the sake of generalization, the plans we have designed
do not allow synchronization in more than one traffic direction in
the same street.

3.3 Related Work on Progressive Systems
Classical algorithms were proposed in the sixties and seventies

to analyze traffic patterns and to set synchronization in arterials.
The most known is TRANSYT, anoff-line optimization tool [19].
SCOOT [6] and SCATS [7] work similarly to TRANSYT but are
traffic responsive. A new approach is TUC [4], conceived for large
scale networks. Authors report positive results compared to a situ-
ation with fixed time synchronization. On the other hand, in TUC
the computation is centralized and the conflits are solved either by
a traffic expert or by a priori rules, in a clear contrast with atrend
of decentralization of control.

It is important to note that none of these approaches deals with
optimization at the level of grid. SCOOT and SCATS work pre-
dominantely at the level of crossings. TRANSYT is able to op-
timize an arterial (not necessarily one single, straight street) but
does not deal with the kind of grid we use in the present paper.In
TRANSYT, crossings that form a progressive system must be de-
fined in advance, whereas in our case the groups of coordination
emerge from the optimization process. TUC, as mentioned before,
deals with networks but the conflicts (e.g. which progression group
each crossing belongs) must be solved manually.

In [1] a MAS based approach is described in which each traf-
fic light has a set of pre-defined signal plans to coordinate with
neighbors. This approach uses techniques of evolutionary game
theory: self-interested agents receive a reward or a penalty given
by the environment. The benefits of this approach are threefold: it
is not necessary to have a central agent to determine the direction of
the coordination; agents can dynamically build subgroups of traffic
light coordination which meet their current needs in terms of allow-
ing vehicles to pass in one given direction; it avoids communica-
tion between agents when they have to decide in which direction to
coordinate. However, payoff matrices (or at least the utilities and
preferences of the agents) are required, i.e these figures have to be
explicitly formalized by the designer of the system. This makes the
approach time-consuming when many different options of coordi-
nation are possible and/or the traffic network is complex.

In [13] an approach based on swarm intelligence is proposed.
There, each intersection (plus its traffic lights) behaves like a social
insect that grounds its decision-making on mass recruitment mech-
anisms found in social insects. Signal plans are seen as tasks to be
performed by the insect without any centralized control or task al-
location mechanism. Stimuli to perform a task or to change tasks,
are provided by the vehicles that, while waiting for their next green
phase, continuously produce some “pheromone”. No other infor-
mation is available to the agents. Quantitatively, when theagents
are free to decide coordinating according to the swarm approach,
the system behaves almost as a central decision support system.
Experiments show that the agents achieve synchronization without

any central management. However, the time needed to converge to
a stable coordination can be high, which is a negative aspectespe-
cially in highly dynamic environments.

Another approach based on an algorithm for DCOP is proposed
in [12]. OptAPO was employed and tested in an environment
that changes dynamically. One first shortcoming of the mediation-
based method is that the mediation may end up being performedby
a single agent, thus in a centralized way. Additionally, themedia-
tion process may take time, as it was reported in [12] for a network
with 25 agents.

In summary, there are classical and AI and/or multiagent based
approaches to traffic light synchronization. Besides these, other
approaches – not for synchronization – were proposed, e.g. based
on reinforcement learning [3, 11, 17] or crossings with no lights
[5].

3.4 DCOP Model
The problem of traffic light synchronization or coordination, for-

malized as a DCOP, is described by the tuple< A, D, F > where:

• A = {a1, ..., an} is the set of variables/agents, wheren is
the number of crossings;

• D = {d1, ..., dn} is the domain of the variables, represent-
ing the possible signal plans for each crossing agent;

• F = {f1,1, ..., fn,n} is the set of constraints among the vari-
ables, where constraintfi denotes the associated cost; each
constraint has a cost for a given pair of values of the two
variables.

As in the majority of DCOPs, constraints are binary i.e. theyoc-
cur between two traffic light agents. Beρi,j the density of vehicles
in the lanei → j (how heavy is the load). We then defineβi,j to
represent the fraction of traffic at intersectionj that is coming from
directioni:
βi,j =

ρi,j
P

z ρz,i

wherez is the set of all nodes which send vehicles to nodej.
Further,γ expresses the degree two consecutive agents agree (are

synchronized); the value of 1.5 is used when agents are synchro-
nized; otherwise we use 2. Another quantity,τ , expresses the de-
gree agents are coping with the volume of vehicles. For example,
if β indicates a higher volume of vehicles westwards and the agent
is synchronizing in this direction, then the agent is executing its
best plan (it is synchronized in the direction of higher volume) and
has the lowest cost.τ assumes different values. Table 1 shows all
values ofτ , for different traffic and synchronization conditions for
lanes between crossingi and crossingj.

Costs are given by the volume of vehicles that use the existing
lanes between the traffic lights, and also by the degree to which
these lights are synchronized. Thus the costfi,j associated with a
constraint between two neighboring crossingsi andj is:

fi,j = βi,j × τ × γ

Plan run by agenti Plan run by agentj τ

⊕ ⊕ 0
⊖ ⊕ 1
⊕ ⊖ 1.5
⊖ ⊖ 2

Table 1: τ for different configurations of plans and traffic vol-
ume. ⊕ means that plan is synchronized and agrees with the
direction of higher traffic volume; ⊖ means that plan is syn-
chronized in a direction other than that of higher traffic vol ume
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3.5 Scenario Description
For the experiments reported here, we use four different scenar-

ios or grids with different sizes (3x3, 5x5, 7x7, and 9x9). Thus the
parametern is set to 9, 25, 49, and 81.

All networks have source nodes that insert vehicles at a given
rate. In the case of the 5x5 network, there are 10 such sources,
one for each street. Each street is one-way. However, vehicles can
turn in each crossing with a given probability. Also, vehicles can
decelerate with a given probability. The higher these probabilities,
the more traffic there is at any given instant. Each crossing has a
set of signal plans defined in Section 4.1.

3.6 Metrics for Evaluation
We perform two types of comparison: evaluation of the perfor-

mance of the algorithms themselves, and the quality of the control
they achieve in this particular domain of traffic lights synchroniza-
tion. In order to evaluate the former we measure: the number of cy-
cles (as in other works, one DCOP cycle is defined as all agentsre-
ceiving all incoming messages and sending all outgoing messages);
execution time; average size of the messages exchanged among the
agents; and the total number of messages exchanged.

To evaluate the DCOP based control we measure averages of to-
tal number of stopped vehicles and density (vehicles per link, nor-
malized between 0 and 1). In all cases the averages are over all
lanes of the network.

4. EXPERIMENTS AND RESULTS
All simulations were performed in the ITSUMO traffic simula-

tor, running in an Intel Centrino Core Duo with 1.6GHz, 512MB
RAM memory, under Suse Linux 10.2. Values reported here are
averages and standard deviations over at least 10 repetitions of
the simulation. Control actions happen once each 720 time steps
(12 minutes) as it is not common practice in traffic engineering to
change the signal plan within small time frames.

4.1 Signal Plans
Signal plans were designed to allow synchronization in either

the NS/SN direction or in the EW/WE directions (remember lanes
are one way). There are two phases, each allowing 30 seconds of
green time to a given direction. Thus the traffic light cycle time is
60 seconds.

Domainsdi = {1, 2}, where 1 means EW/WE direction and 2
means NS/SN direction. As said, synchronized plans in neighbor-
ing intersections differ only by an offset. Given the speed of 15 m/s
and the distance of 300 meters, the offset is 20 seconds.

4.2 Changing the Volume of Traffic
We consider situations with both dynamic and static flow of ve-

hicle in the network (situations 1 and 2 as defined below). However,
“static” does not mean that queues are deterministic as there are two
sources of stochastic behavior in the simulation: turning probabili-
ties at each crossing, and deceleration probabilities (each vehicle).
Therefore, the word static here means only that the insertion rate of
vehicles is constant.

1. Situation 1 - Sources with Constant Insertion Rate: in this
case all sources generate vehicles with a fix rate of 0.4 during
9000 time steps (2.5 hours);

2. Situation 2 - Sources with Changing Insertion Rate: in
this case there are changes in the insertion rate each 5000
steps, according to Table 2.

4.3 Case Studies
In addition to the two situations where we change the insertion

rate or keep it constant, we also run different case studies concern-
ing what kind of signal plans agents use. We summarize this below:

• Case 1 (signal plans are not synchronized): we set signal
plans at each agent to mismatch completely those running
at neighbors, aiming at a quite bad configuration (a kind of
lower bound);

• Case 2 (signal plans are synchronized in a pre-defined di-
rection): here we use the EW/WE, aiming at testing a com-
mon situation when signal plans are designed to cope with a
specific pattern but changes occur in an unexpected way;

• Case 3 (use of DCOP algorithms to perform the control).

DCOP algorithms are: ADOPT fromhttp://teamcore.
usc.edu/dcop/; OptApo implemented according to [9]; and
DPOP fromhttp://liawww.epfl.ch/frodo/.

4.4 Evaluation of the Algorithms
In this subsection we present the evaluation of the computational

performance of the algorithms in terms of the standard measures
(number of DCOP cycles, messages) and also include running time.
The evaluation in terms of the efficiency at controlling the traffic is
presented in the next subsection. In any case we use the scenarios
and DCOP modeling described in sections 3.4 and 3.5, as well as
the signal plans, traffic volumes and case studies describedabove.

Tables 3 to 7 show the averages over the whole simulation time
and over 10 repetitions of the simulation. These numbers refer to
Situation 2 i.e. with changing in insertion rate. Table 3 refers to ex-
ecution time and number of cycles for the three DCOP algorithms
used. Tables 4 to 7 then show the number of messages exchanged
and the size of these messages.

For all three algorithms, the execution time was adequate inthe
sense that this time is below the time the agent at the crossing per-
forms a control action (as said, 720 time steps). In other words, the
running times achieved are compatible with the decision making
frequency. The only exception is ADOPT when the grid is 9x9. In
this case, the time necessary to reach a solution was almost 10 times
higher than the control period. Apart from this exception, we can
conclude that, even if the agent control frequency would have to
be higher (and hence the time between two interventions smaller),
there would still be some room for agents to run a DCOP assign-
ment since the time to find a solution is below the time a signal
plan runs a complete cycle through all phases of the traffic light (60
steps) in the following cases: network 3x3 and 5x5 (all algorithms),
OptAPO and DPOP in the network 7x7.

A note about DPOP is that the number of cycles and messages
is linear in the number of agents and depends on the height of the
tree associated with the problem being modelled. Accordingto

ID Time Frame Rate Rate
NS/SN EW/WE

Before 6 a.m. 0 to 5000 0.10 0.10
Morning 5000 to 10000 0.10 0.40

Afternoon 10000 a 15000 0.40 0.10
Rush Hour I 15000 a 25000 0.30 0.30
Rush Hour II 25000 a 30000 0.50 0.50

Night 30000 to 35000 0.10 0.10

Table 2: Changes in insertion rates at sources (situation 2)
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Net. Alg. Time (sec.) Cycles

3x3 ADOPT 0.65± 0.15 2186.13± 648.03
OptAPO 0.16± 0.39 29.08± 23.20
DPOP 0.07± 0.01 18

5x5 ADOPT 16.07± 2.29 6197.81± 1520.67
OptAPO 3.90± 1.11 56.54± 15.76
DPOP 0.22± 0.02 50

7x7 ADOPT 112.90± 33.39 12387.84± 3098.56
OptAPO 21.16± 17.53 75.33± 14.02
DPOP 13.59±0.01 98

9x9 ADOPT 6727.46±182.98 325512.42±10108.67
OptAPO 295.75±31.56 174.30±18.41
DPOP 180.71±15.35 152.00

Table 3: Average time and number of cycles (situation 2)

[15], the number of cycles is two times the height of the pseudotree
(one propagation of the “util” message, and one propagationof the
“value” message). Since the tree does not change from one repeti-
tion to the other of the simulations, the deviation is zero.

OptAPO can be seen as a good compromise in terms of execu-
tion time and communication (message exchange). However, for
bigger networks, where there is a huge number of restrictions and
costs are higher due to the increase on the insertion rates, the me-
diation process becomes more frequent. This mediation means that
there is a partial centralization, which can be an issue as weintend
to have a distributed solution. In order to address this, theapproach
proposed in [2] could be tried. Another issue is that our implemen-
tation of OptAPO is not fully distributed. If it were, we would see
an increase on the number of message exchanged and that would
affect the execution time.

For a better comparison of numbers regarding the execution time
of all algorithms in the four scenarios, we show these in Figure 2.

Regarding the number and size of the exchanged messages (see
Figure 3), as mentioned, DPOP is linear in the number of agents.
Thus, in general, the DPOP algorithm performed better in ourtests
in terms of number of exchanged messages (also regarding execu-
tion time and number of cycles). However, the same cannot be said
about the size of the messages, which are much higher, especially
when the number of agents increases, see Figure 4. This happens
because each message has more information, aggregated fromthe
communication between parents and children in the tree. In real
world applications, it is generally the case that there is a limitation
in the communication bandwidth, and this can be an issue.
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Figure 2: Running times (log scale) for the three algorithms,
for 9, 25, 49 and 81 agents (Situation 2).

Alg. Nb. of Msgs Msgs size Total
(bytes) (MB)

ADOPT 298.25± 63.37 47.39±14.90 13.8
OptAPO 203.58± 153.05 6.80±1.98 1.35
DPOP 36 55.54± 2.66 1.95

Table 4: Network 3x3: average number and size of messages

Alg. Nb. of Msgs Msgs size Total
(bytes) (MB)

ADOPT 4123.70± 2130.45 66.38±13.84 231
OptAPO 766.36± 141.46 25.22± 6.44 19
DPOP 112 295.10± 3.80 33

Table 5: Network 5x5: average number and size of messages

Alg. Nb. of Msgs Msgs size Total
(bytes) (MB)

ADOPT 15972.9± 4503.9 86.08±13.02 1343
OptAPO 1202.16± 202.07 57.23± 5.51 67
DPOP 228 19451.22± 222.26 4331

Table 6: Network 7x7: average number and size of messages

Alg. Nb. of Msgs Msgs size Total
(bytes) (MB)

ADOPT 358962.4± 1690.4 125.40± 20.79 43958
OptAPO 4015.66± 68.70 93.45± 8.15 366
DPOP 322 69286.78± 721.12 21787

Table 7: Network 9x9: average number and size of messages

As for ADOPT, the main point remains the number of cycles and
exchanged messages necessary to reach a solution. It seems that, at
least in this domain, ADOPT is more susceptible to the variations
in the constructions of the constraints. Thus ADOPT performs dif-
ferently in different time frames of a single simulation. For ex-
ample, in the beginning, when there are less constraints that have
high costs (hence less conflicts), ADOPT performs better than the
other algorithms in terms of running time. However, as the number
of constraints with high cost increases, ADOPT needs much more
time to reach a solution. This cannot be seen in Table3 because it
shows only the average over the whole simulation time. Another
issue is that ADOPT tends to have high deviations from one simu-
lation to the other.

In general, we noticed that the algorithm that dealt better with
the increase of the number of agents was DPOP. However the issue
of size of the messages remains (see Figure 4) and DPOP had its
overall performance affected by this. It would have performed bet-
ter than others if there were the same kind of commitment on the
size of messages, as it has on the number of messages and on the
number of cycles. This kind of improvement is discussed in [16].

4.5 Network Evaluation
To analyse the quality of the solution, we start by discussing Sit-

uation 1 (as defined in Section 4.2) i.e. with constant insertion rate.
This situation is interesting to study because the insertion rates are
the same in both NS/SN and EW/WE directions. Therefore, any
control measure has difficulty coping with traffic patterns given that
agents must synchronize inonedirection only and both can be con-
gested. For this situation, in order to assess the performance of the
DCOP algorithms in different grid sizes we use mean density and
mean number of stopped vehicles over the whole simulation period
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Net. Experiment Stopped Veh. Density

Case 1 10.21± 2.28 0.29± 0.06
Case 2 6.72± 1.37 0.23± 0.03

3x3 Case 3 (ADOPT) 1.88± 0.53 0.11± 0.02
Case 3 (OptApo) 1.97±0.60 0.11±0.01
Case 3 (DPOP) 2.42± 0.46 0.13± 0.02

Case 1 9.22± 2.36 0.28± 0.04
Case 2 6.95± 1.82 0.23± 0.03

5x5 Case 3 (ADOPT) 1.78± 0.80 0.11± 0.01
Case 3 (OptApo) 1.90± 0.59 0.12± 0.01
Case 3 (DPOP) 3.08± 0.40 0.14± 0.02

Case 1 8.91± 2.29 0.27± 0.04
Case 2 5.82± 1.31 0.21± 0.02

7x7 Case 3 (ADOPT) 1.97± 0.50 0.12± 0.01
Case 3 (OptApo) 1.91± 0.49 0.12± 0.01
Case 3 (DPOP) 2.90± 0.62 0.14± 0.01

Case 1 8.05± 2.17 0.14± 0.01
Case 2 5.35± 0.97 0.10± 0.01

9x9 Case 3 (ADOPT) 2.04± 0.77 0.12± 0.01
Case 3 (OptAPO) 1.98± 0.85 0.11± 0.01
Case 3 (DPOP) 2.88±0.72 0.13± 0.02

Table 8: Comparison of performance among control via DCOP,
with fixed plans, and without synchronization

(Table 8). Performances of the DCOP algorithms are compared
with the cases where signal plans are not synchronized (case1) or
are synchronized in a fixed direction (case 2). After, we discuss
Situation 2 (with changing insertion rates).

4.5.1 Constant Insertion Rate
In general, the use of a DCOP algorithm (case 3) has yielded

an improvement regarding all metrics (defined in Section 3.6), in
comparison to case 2 or case 1. Here, DPOP has performed slightly
below the other two algorithms: more stopped vehicles and hence
higher densities. We now discuss this in detail for all four network
sizes.

Table 8 shows the average values for stopped vehicles and den-
sity. Averages are over the entire simulation time, 10 repetitions,
for networks of size 3x3 (9 agents), 5x5 (25 agents), 7x7 (49
agents), and 9x9 (81 agents) respectively. It is possible tonote a
clear reduction on the number of stopped vehicles when DCOP al-
gorithms are used, as well as lower density values. This positive
performance can be observed in all sizes of networks.
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Figure 3: Number of exchanged messages (log scale) for the
three algorithms, for 9, 25, 49 and 81 agents (situation 2).

4.5.2 Changing Insertion Rate
Here tabular results would not provide a good picture because

the simulation time is divided in 6 time frames with completely
different characteristics (Table 2); averages would not convey the
details. Therefore we plot the curves for density along time, for
all three DCOP algorithms and compare them with the cases where
signal plans are not synchronized (case 1) or are synchronized in
a fixed direction (case 2). We do not show all plots due to lack of
space. Figure 5 shows results for the network with 49 agents.For
theBefore 6 a.m.period there is no difference between the control
types due to the low insertion rate.

A different picture can be observed regarding theMorning and
Afternoonscenarios, where the DCOP control – no matter the algo-
rithm – shows that it is more flexible: when insertion rates change,
all DCOP algorithms are able to keep the density lower than the
other two types of control. In theAfternoonscenario in particu-
lar, the synchronized plans completely mismatch the insertion rate,
given that they were designed to deal with higher insertion rates in
the EW/WE directions, but the higher rates come actually from the
NS/SN direction. In the Morning scenario, the higher insertion rate
does agree with the synchronized plans.

The improvement yielded by DCOP algorithms is also noticed
on theRush Hour Iscenario. InRush Hour II, due to the high
insertion rates inboth traffic directions, which affect the synchro-
nization results (since, as said, synchronization cannot cope with
both directions), the performance is almost as good as if theplans
were synchronized in a fixed way, that means in one direction.The
only exception is for DPOP.

Regarding the performance of DCOP algorithms with the in-
crease of the network, we notice that the performance depends on
this size. Best results were achieved in the 5x5 and 7x7 networks
where some form of control makes more sense. In the 3x3 net-
work, there is probably no room for a sophisticated control,given
the simple network; also, travel times tend to be fast because of the
size of the network. Contrarily, in the 9x9 network, the volume of
vehicles is higher and the size of the problems – in terms of number
of constraints – is huge. Despite this, except for the Rush Hour II,
DCOP was able to cope with the volume of traffic, performing at
least as good as a fixed synchronization.

4.5.3 Performance in Terms of Number of Groups
The last issue we want to discuss is how big the groups formed

by the DCOP algorithms are. This is important because the aimof
our approach to synchronization is to emerge groups of neighbor
agents running coordinated signal plans. This is not possible with
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Figure 4: Size of exchanged messages (log scale) for the three
algorithms, for 9, 25, 49 and 81 agents (situation 2).
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Figure 5: Average density for situation 2, network 7x7, running
ADOPT (up), OptAPO (middle) and DPOP (below).

current algorithms (TRANSYT, TUC, etc.).
Thus, the analysis of the number of groups, as well as their sizes

measures how agents are organizing themselves as the trafficpat-
tern changes. One important issue is whether they are all synchro-
nizing in accordance to the traffic direction that has more traffic
volume. If not all are doing this, how many are?

We discuss here the most complicated situation regarding this
issue, namely when both traffic directions get the same inputof
vehicles, namely a rate of insertion of 0.3. Since this rate is the
same in both directions, we expect agents to be in conflict (asthey
can only synchronize in one of these directions). Other algorithms
mentioned (e.g. TUC) resolves these conflicts manually. In our
case too many conflicts usually mean that the size of the groups
tend to be small.

We can consider the quality of the DCOP control (no matter the
algorithm) as a good one if at least groups of a reasonable size
form. Reasonable is grid size dependent. Here we consider that a
group is formed when at least half of the agents in one street are
synchronized. Thus, in the 5x5 grid for example, we considera
group is formed when 3 or more agents in one street are synchro-

Algorithm / Nb. Groups Size Groups Max. Size
Net. Size hor. vert. hor. vert. hor. vert.

ADOPT 25 3.25 3.75 3.25 3.50 4 4
OptAPO 25 3.75 3.75 3.25 3.25 4 4
DPOP 25 3.00 3.25 3.0 2.75 4 3

ADOPT 49 6.0 4.75 4.5 4.25 5 5
OptAPO 49 6.25 5.50 4.25 4.50 5 5
DPOP 49 5.25 5.00 3.25 3.50 5 4

ADOPT 81 7 7.5 5.5 5.75 7 6
OptAPO 81 7 7.25 5.75 5.25 7 6
DPOP 81 6.75 7 5.25 5.0 7 6

Table 9: Groups of synchronization: average number of
groups, size of groups, maximum size of groups

nized. For this grid size, there can be at most 5 groups of 5 agents
each. These 5 groups are, all, synchronize either in the horizontal
(EW/WE) or in the vertical (NS/SN) direction. However this con-
figuration is difficult to reach when simulating a grid with similar
insertion rates. From Table 9 one can see that even in this extreme
scenario, groups of size above 3 have formed. In this table wegive
the average of the number of groups that form as well as their aver-
age sizes. The last column also shows the maximum size observed
for each grid size.

5. CONCLUSION AND FUTURE WORK
The aim of this paper was to compare the performance of DCOP

algorithms in a real world, dynamic scenario, in terms of compu-
tational complexity and quality of the solution. We have used the
domain of traffic light synchronization, a problem of assignment of
a coordinated signal plan to each two crossings in a traffic network.
For this kind of problem classical solutions are all centralized [6, 7,
4] and even offline [19]. Moreover, those approaches cannot solve
conflicts at network level without the intervention of rulesor a hu-
man expert. We depart from centralization and model the problem
as a DCOP. This is intended to be a compromise between that to-
tally autonomous coordination with implicit communication (e.g.
[1, 13]) and the classical centralized solution.

It was possible to verify the effectiveness and efficiency ofthe
DCOP algorithms in the proposed application. Regarding thefor-
mer, adaptability is a key feature in the kind of problem tackled
here, where the changes in the system need to be considered and
evaluated in order to guarantee an efficient control. Specifically in
the traffic control problem, variations in the traffic volumecannot
be totally predicted; thus they are not considered in the fixed control
approaches. Changes in volume could be also the result of external
factors, like accidents or meteorological conditions. Regarding ef-
ficiency, we have shown that the three algorithms perform well (e.g.
within the decision-making time frame available to agents). In gen-
eral the three show more or less the same performance. Of course,
there are issues related to number of messages exchanged (DPOP),
running time (ADOPT), and centralization (OptAPO). These tend
to be critical in real world applications. Which algorithm to use
will have to be determined on a case basis, considering issues such
as whether there is strong limitation in communication; whether
the control has to react quickly; whether the non local data can be
accessed; and so on.

In general we can say that performances obtained point to the
appropriateness of using DCOP in real-world scenarios withthe
size of those discussed here. Note that these are about the sizes
some classical approaches to synchronization can deal with(e.g.
TUC) but then the problem remains that conflicts must be solved
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manually in the latter case.
We are already working on some extensions of the work reported

here. One is new experiments with different cost functions for the
DCOP and different metrics as for instance equivalent constraint
checks. Another is to use the groups formed by the DCOP approach
as a first step to other control approaches.

Finally, a comparison with a COP (centralized) can be per-
formed. This is perhaps the only way to make a comparison witha
centralized approach. Another obvious centralized approach could
be a greedy one where each traffic light runs a signal plan thatfits
the global traffic state. The only problem here is that it is not trivial
to define which is this state. Other approaches such as the classi-
cal ones cannot be used due to the fact that they do not work for
the whole grid unless conflicts are solved by an expert; moreover
those are commercial tools. Approaches based on centralized rein-
forcement learning have computational cost that is prohibitive for
networks other than that of size 3x3 due to the number of pairs
state-action.
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