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ABSTRACT

In this paper we propose interaction-driven Markov games
(IDMGs), a new model for multiagent decision making under
uncertainty. IDMGs aim at describing multiagent decision
problems in which interaction among agents is a local phe-
nomenon. To this purpose, we explicitly distinguish between
situations in which agents should interact and situations in
which they can afford to act independently. The agents
are coupled through the joint rewards and joint transitions
in the states in which they interact. The model combines
several fundamental properties from transition-independent
Dec-MDPs and weakly coupled MDPs while allowing to ad-
dress, in several aspects, more general problems. We in-
troduce a fast approximate solution method for planning in
IDMGs, exploiting their particular structure, and we illus-
trate its successful application on several large multiagent
tasks.

Categories and Subject Descriptors

1.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems

General Terms
Algorithms, Theory

Keywords

Planning under uncertainty, cooperative multiagent systems,
team Markov games.

1. INTRODUCTION

Decision making under uncertainty is an important skill
for any intelligent agent. In this paper we consider situations
in which a group of independent intelligent agents co-exist
in a common environment. Each agent has been assigned its
own task which it must fulfill independently of the remain-
ing agents’ tasks. However, as the agents inhabit the same
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environment, it may happen that two or more agents should
interact in order for each of them to complete its task. For
example, multiple agents might need to share some common
resource, such as space. When this interaction is necessary,
we assume it to be local. A set of robots which all have to
navigate in the same physical environment form a prime ex-
ample of the type of problems we are considering. Although
each robot has its own destination which it can reach in-
dependently, it is beneficial for them to reason about inter-
actions such as potential collisions in tight corridors. We
are interested in addressing these types of decision problems
while assuming minimum communication.

Markov decision processes (MDPs) [4] are a popular fra-
mework for sequential decision making for single agents,
when an agent’s actions have a stochastic effect on the state
of the environment. For the cooperative multiagent case,
team Markov games (also known as multiagent MDPs [5])
arise as a natural model to address such sequential deci-
sion problems, and several methods have been proposed to
address decision making for this model. However, the vast
majority of such methods takes advantage of the underlying
assumption of continuous tmplicit communication, as each
agent is aware of the complete state as well as the actions
played by all agents at all time steps. This is, indeed, an
appealing feature of these models, which however is seldom
verified in practice. Many actual problems require richer
models that include partial observability in both state and
action perception.

When considering partial state observability and lack of
joint-action observability, the literature provides an abun-
dance of models that include partially observable stochas-
tic games [11], decentralized MDPs and POMDPs [3], or
interactive POMDPs [8]. However, when considering par-
tial observability of states and actions, the optimal decision-
making problem significantly hardens. As shown in [3], even
in the case where all agents have the same payoff function
(Dec-MDPs), the problem of acting optimally is provably
undecidable. As such, to address this class of problems sim-
plified models such transition independent Dec-MDPs [1] as
well as approximate algorithms [7,19] have been proposed.

In this paper we propose a new model for decentralized
decision-making problems that takes advantage of local in-
teractions between the agents. Our model is dubbed inter-
action-driven Markov game (IDMG) and its main feature is
the distinction between those states where interaction occurs
and those where interaction can be ignored. In the former
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tween agents. In the remaining states, we take each agent as
independent, reverting to a single-agent decision problem.
IDMGs bring several important advantages over standard
Markov games and other multiagent planning approaches
such as Dec-MDPs. Namely, IDMGs alleviate assumptions
on state and joint-action observability and continuous com-
munication usually adopted (either implicitly or explicitly)
in Markov game models, without suffering from the large
computational burden of Dec-MDPs. Furthermore, IDMGs
provide more realistic models for many practical multiagent
problems as they explicitly consider local interaction and
communication; they thus capture important features in-
herent to many practical multiagent decision problems. We
introduce a fast approximate solution method for planning
in IDMGs, exploiting their particular structure, and we illus-
trate its successful application on several multiagent tasks.

2. BACKGROUND

We start by introducing MDPs as a model for single-agent
sequential decision making, and Markov games for multia-
gent decision making.

2.1 Markov decision processes

Let {X ()} a X-valued controlled Markov chain, where X'
is some finite set. The transition probabilities are given by

PIX(t+1) =y | X(t) = 2, A@t) = ] = P*(z,p). Y,y € X
(2.1)
The A-valued process {A(t)} represents the control process:
A(t) is the control action at time instant ¢ and A is the finite
set of possible actions. A decision maker must determine the
control process {A(t)} so as to maximize the functional

V{A®M},2) =E |Y A'R(X(¢),At) | X(0) == |,

(2.2)
where 0 < v < 1 is a discount factor and R(z,a) repre-
sents a random “reward” received for taking action a € A
in state x € X. We assume throughout this paper that
there is a deterministic real function r defined on X x A x X
assigning a reward r(z,a,y) every time a transition from
x to y occurs after taking action a and that E [R(x,a)]
ZyGX P (x,y)r(z,a,y). We refer to the tuple (X, A,P,r,~)
as a Markov decision process [4].

Given an MDP (X, A,P,r,~), the optimal value function
V™ is defined for each state z € X as

V*(x):{ril(agc}IE kZ:Oth(X(t),A(t)) | X(0)=z| (2.3)

and verifies the Bellman optimality equation [4]. The opti-
mal Q-values Q" (z,a) are defined for each state-action pair
(r,a) € X x A as

Q' (x,a) = 3 P(a,y) [r(a,a,y) + 1V ().

yeXx

(2.4)

From Q" we can define the optimal policy for the MDP
as 7 (z) = argmax,Q"(z,a). Dynamic programming tech-
niques such as value iteration [4] can be readily applied to
compute Q*, and hence ™.

In this section, we review the framework of Markov games,
a cornerstone for the developments in this paper.
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2.2 Markov games

An N-agent Markov game or stochastic game is a tuple
(N, X, (Ag),P,(rk),7), where X is the state space, A =
xN_, Ay is the finite set of joint actions, P denotes the tran-
sition probabilities, r is the reward function for agent k, k =
1,..., N, and ~ is the discount factor. Notice that the dif-
ferences between a Markov game and an MDP lie, first of
all, on the fact that the action space A of the former is the
Cartesian product of the N individual action spaces Ay, and
corresponds to the joint-action space. This means that, in a
Markov game, the transition probabilities depend on the ac-
tions of all agents. Furthermore, unlike MDPs, the reward
function in Markov games may differ from one agent to the
other. We say that a Markov game is fully cooperative if
all agents share the same reward function. In this case, the
model is equivalent to a multiagent MDP (MMDP) [5].

The purpose of decision maker k is to determine the indi-
vidual control process {A(t)} maximizing the functional

o]

Vi({A®)},2) =E | Y 7" Re(X(t), A1) | X(0) = 2|,

t=0
(2.5)
where 0 < v < 1 and Rj(x, a) represents the random reward
received by agent k when all agents take action a € A in
state x € X. It is important to emphasize that an individual
policy in a Markov game is a mapping 7 (¢) defined over &X' x
Ay, for each t and such that the process { Ax(t)} generated by
m(t) verifies P [Ax(t) = ax | X () = 2] = mr(t; 2, "), with
a® € A*. An individual policy w4 (t) is a pure policy if, for
each ¢ and each z € X, m(t;2,ax,) = 1 for some action in
Ay, and is a mized policy otherwise. A stationary individual
policy is a policy that does not depend on t. In the remain-
der of the paper, we only consider stationary policies. A
joint policy is a vector m = (m1,...,nn) of individual poli-
cies, and is stationary if each 7 is stationary. We refer to
m_k as a reduced policy, obtained from 7 by removing the
individual policy of agent k. Finally, we write V; (z) instead
of Vi({A(t)}, z) if {A(t)} is generated from policy 7.
An individual policy 7, is a best response of agent k to a
reduced policy m_j if agent k cannot improve its expected
value by using any other individual policy 7, i.e.,

V@) 2 T @), vee X (26)

A Nash equilibrium is a policy profile 7* = (7{,...,7x) in
which each individual policy 7, is a best response to the re-
duced policy 7= ;. Every finite Markov game has at least one
Nash equilibrium. If the Markov game is fully cooperative,
i.e., 71 = ...=rn, there is always a pure Nash equilibrium
that yields maximum payoff for all agents (a Pareto optimal
equilibrium). We refer to a joint policy as being optimal if
it is a Pareto optimal Nash equilibrium.

3. COOPERATIVE INTERACTION

As discussed in the introduction, we are interested in ad-
dressing multiagent decision problems in which the interact-
ion between the different agents exhibits a strong locality.
In this section, we introduce and motivate the IDMG fra-
mework for sequential decision making. This model differs
from standard Markov game models in a fundamental way:
no joint-state or joint-action observability is assumed. We
do admit local state observability, which makes our model
closer to Dec-MDPs than to more general models such as
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Figure 1: Illustration of the H-shaped example envi-
ronment. The bottom-left state is the goal location
for robot 2, and the top-right state is robot 1’s goal.
The shaded states correspond to those in which in-
teraction may be required.

Dec-POMDPs or I-POMDPs. Throughout the paper we il-
lustrate our ideas with a simple problem that we introduce
next.

3.1 Local interaction in multiagent settings

Consider a problem in which two mobile robots have to
navigate in a common environment, each trying to reach its
own goal state, as depicted in Fig. 1. Each robot has 4 pos-
sible actions (namely “Move North”, “Move South”, “Move
East” and “Move West”) that we represent succinctly as N,
S, F and W. Each action moves the robot in the corre-
sponding direction with a 0.8 probability and, with a 0.2
probability, it has an unexpected outcome and moves the
robot in any of the other directions. The actions of one
robot do not affect the movement of the other.

It is possible to “separate” this problem in two distinct
problems, in each of which one robot must reach its own goal
state and completely disregards the existence of the other
robot. This separation is possible since the task of one robot
can be completed “independently” of the task of the other.
Each robot can thus be modeled independently as an MDP
and there is no need to consider interaction between the two
robots. As such, referring the two robots as robot 1 and
robot 2, we could model our multiagent problem as a pair
(M1, Ms). Each M, is an MDP My, = (X, Ak, P, 7k, )
where

e X, ={1,...,21} represents the possible states for ro-
bot k;

e A, ={N,S, E,W} represents the possible actions for
robot k;

e Pj represents the transition probabilities for robot k,
conditioned on the robot’s action as described above.

e 7, represents the reward function for robot k. For
example, we could set 74 (z,a,y) = 10 if y = GOAL;
and 0 otherwise;

e Finally, v is a discount factor.!

Each such MDP can be solved separately as mentioned in
Section 2.1, resulting in a Qj,(k, ax) function for each robot.

'For consistency, we assume both robots to assign the same
“importance” to the future rewards and hence the common
discount factor.

527

However, there may be situations where interaction is
mandatory. This is the case either if the transition probabil-
ities or the rewards (or both) for at least one agent depend
on the actions of the other agents. In this situation there is
an implicit interaction between the agents, since the action
choice of each agent may influence the dynamics and/or re-
wards of all other agents. A typical example is when multiple
agents attempt to simultaneously use one common resource
such as space, tools, raw materials or shared communication
channels, which requires them to interact.

In our work, we are interested in considering situations
in which this interaction is local. This means that each
agent can generally choose its actions irrespectively of the
other agents’ states/actions but, in some specific situations,
the agents will mutually influence each others’ transitions
and/or rewards. For example, considering once again the
scenario above, it may be undesirable that both robots cross
the doorway simultaneously, as the robots may crash and get
damaged. As such, a negative reward may be issued to both
robots if they both simultaneously end up in the doorway.
This means that the robots should coordinate when both
are close to the doorway (darker states in Fig. 1).

We will now formalize this model and describe some of its
important aspects.

3.2 Interaction-driven Markov games

For simplicity of presentation, we consider a 2-agent sce-
nario, remarking however that the formalism easily gen-
eralizes to any number of agents. As before, let M,
(X1, A1,P1,71,7) be an MDP modeling agent 1 and its indi-
vidual task. Similarly, let M2 = (X2, A2, P2, 72,7) describe
agent 2 and its individual task. Let X = X} x AXs.

DEFINITION 1. We define an interaction-driven Markov
game (IDMG) as a tuple (Mi, Ma, {i./\/lz,i =1,...,n}),
where M1 and Mz are as defined above and each M is an
interaction game, i.e., a two-agent, fully cooperative Markov
game ‘M = (iX17A,iP17ir1) where

e ‘X7 is a set of interaction states. This is a subset of X
and consists of a set of adjacent joint states (in terms
of transition probabilities) where interaction should oc-
cur (in the form of coordination);

e A is the set of joint actions, i.e., A = A1 X Aa;
e ‘P is a transition probability matriz where
Pi(a,y) =PX(t+1) =y | X(t) =z, At) = q],
forxz € X,y € X and a € A;

o ‘rr: X} x Ax X — R is the joint interaction reward
that the agents receive at each interaction state for each
joint action.

We note that each interaction game ‘M describes a “sit-
uation” where the agents should coordinate. In the corre-
sponding interaction states, ‘X7, each agent explicitly com-
municates all information useful to the decision process, and
we assume that communication is unlimited and noise-free.
Also, at these states, the rewards depend on the joint state
and on the joint action of the agents, as prescribed by the
functions ‘r;. As such, interaction states are defined as parts
of the joint state space where interaction may lead to an im-
provement of the joint overall performance. For example, in



the navigation example of Fig. 1, there would be a single
M component, whose states would correspond to the joint
states in which both robots are in the shaded area. In gen-
eral, there will be several distinct My components.

To clarify the evolution of an IDMG, suppose that, at
time ¢, agent 1 is at state Xi(t) = x1 and agent 2 is at
state X2(t) = x2. Each agent k chooses an action A(t)
following some underlying decision rule. Then, given the
joint action A(t) = (Ai(t), A2(t)), if the joint state z =
(x1,2) is an interaction state, i.e., if x € ‘X; for some i,
the agents move at time ¢+ 1 to state y = (y1, y2) according
to the probabilities in iP?(t) (z,y). Otherwise, the agents
move to state y according to the probabilities

PAD (7, y) = pAI®

z,y) (z1,y1)P52 " (22, o).

Each agent k then receives a reward Ry = 7, (Tk, ak, yx) +
iri(x,a,y), where “rr(z,a,y) = 0 if y ¢ “X;. The process
repeats with X1(t 4+ 1) = y1 and Xa2(t + 1) = yo.

When N > 2 agents are considered, the structure of the
IDMG is similar, but should now be augmented to accommo-
date the individual MDPs for each agent, Mi,..., Mxy. In
this more general situation, the interaction states in each in-
teraction game ¢ M1 will consist of a subset of Xy XX ka
for some ki, ..., kp. In particular, each interaction game de-
scribes a situation where p agents interact. We will stick to
the two-agent scenario for ease of exposition.

In many situations it is quite reasonable to assume com-
munication only when the agents need to interact. In robotic
tasks, for example, two robots equipped with wireless com-
munication devices might only be able to communicate when
they are spatially close. As the distance between them in-
creases, their interaction capabilities will in general decrease
and they will act more and more independently. This be-
havior is captured naturally by the IDMG model. Moreover,
disregarding agent interaction in many of the states greatly
simplifies the decision-making process, since the number of
possible situations to consider is greatly reduced.

3.3 Redated models

Several methods addressing related multiagent sequential
decision problems have been proposed. Independent agents
have been considered in [17]. Although focusing on a com-
pletely different application, the authors resort to the frame-
work of non-interacting Markov games to address problems
where a group of agents independently fulfill different tasks
in a common environment. Other works [12,21] address the
problem of weakly coupled MDPs. These works tackle prob-
lems modeled using large MDPs that can be decomposed
into smaller, independent MDPs. Given the solutions for
the smaller MDPs, a method is proposed to merge these
solutions into an optimal or near-optimal solution for the
composite MDP. Our setting is somewhat more general than
that considered in the latter works. We allow some degree of
dependence both in terms of rewards and transitions. How-
ever, we do admit that this dependence is local, in that it
does not “occur” over the complete joint state space. Our
setting is also different from those above since we admit that
there are multiple independent decision makers.

The work presented in this paper is also essentially distinct
from most Dec-(PO)MDP approaches, both general ones
(see, for example, [2,14] and references therein) as well as
techniques designed to exploit locality of interaction [13,15].
The latter model the interactions between agents in a graph,
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which is either stationary [13] or can develop over time [15].
Although these techniques exploit factored models, due to
the complexity of solving Dec-POMDPs, their scalability is
limited.

Unlike Dec-(PO)MDPs, we assume that in most situa-
tions the multiagent decision problem can be decomposed
into simpler independent single-agent problems. In this re-
spect, our model bears some resemblances with transition-
independent Dec-MDPs [1]. On the other hand, it is some-
what more general in that, in some situations, transitions
may depend on the actions of several/all agents. A second
fundamental difference is that we assume that when inter-
action is required, the agents are able to communicate.

Note that in the extreme case where X7 = X' x X2, the
IDMG model reduces to a standard Markov game (with the
corresponding assumption of continuous communication).
On the other hand, if X7 = ), we are back to the situation
of independent MDPs. In the former scenario, the complex-
ity of solving an IDMG is still a great deal inferior to that
of solving Dec-MDPs, at the cost of continuous communica-
tion [18]. In the latter scenario, the complexity of solving
an IDMG is similar to that of single-agent problems.

4. PLANNING INIDMG MODELS

We now describe an approximate solution method for ID-
MGs that takes advantage of the particular structure of this
model. We start by deriving an equivalent Markov game
model that will provide the ideas leading to our solution
method. We then discuss several important features of this
method, namely its effective use of the particular IDMG
structure. We also argue that, although encompassing some
approximations, our method is actually able to produce good
performance (as seen in the experimental results in the next
section).

4.1 An equivalent Markov game model

Given an IDMG I' = (M1, Mo, {iMhi =1,... ,n})7 we
define an equivalent Markov game model as follows:

° X:X1></Y2;
o A=A x Ay;
e For any a € A and x,y € X, set

P(z,y) = Pt(x,y) if x € ‘X7 for some i
e Pit(z1,y1)P3%(22,y2) otherwise;

e For any a € A and any =,y € X, set

r(x,a,y) = ri(Tk, ak, yr) + Zirz(m,a, y). (4.1)

7

The tuple T' = (2, X, (Ax),P, (7),7) is a Markov game
which is equivalent to the IDMG defined in Section 3.2. Now
given any joint policy 7, it follows that

oo

Vi (@) = Bx | Y 7' Re(X(1), A(1) | X(0) = x|,
t=0

where we denoted by Ry (X (t), A(t)) the random reward re-

ceived by agent k when all agents take action A(t) at the

joint state X (¢) and is given by (4.1) upon the knowledge of
X(t+1). To simplify the notation, we henceforth consider

(4.2)



IDMGs (M1, M2, M) with a single interaction game My,
noting that everything trivially extends to the case of multi-
ple such games. We also drop the explicit mention that the
expectation is to be conditioned on X (0) = x.

Using (4.1), we can decompose (4.2) as

‘7]: (.’L‘) =

E, [i Y RF(X (1), A(t))

t=0

K, [Z 7' Rie (Xk(t), Ak(t)) + Rr (X (t), A(t))

= Vit (@x) + VI ().

Similarly, we can write the Q-function for a policy 7 as

Qk(z,a) =

Notice that the above expression states that, for any policy,
the corresponding @-values can be decomposed into an in-
dividual component @5 and an interaction component Q.
For the particular case of a Nash equilibrium 7*, we have

i (@, an) + QF (z,a). (4.3)

QF (x,0) = QfF (z1, ar) + QF (2, a).

We emphasize that, although the above expression appears
to decouple the individual and the interactive components
of the @Q-function, this decoupling is nothing more than ap-
parent. In fact, the function @} still depends on the joint
policy T and, as such, there is an implicit coupling (in terms
of action choice) between each of the components Q;* and
QT -

As seen in [9], each Nash equilibrium 7" has an associated
Q-function that verifies, for all k, the following recursion

QZ* (x,a) = Z lBa(l’vy) [f’c(m7a7 y) +

yex

v Nash§(QT ,...,Q% )], (44)
where Nash!(Q7 ", ..., Q% ) is a max-like operator denoting
the Nash value for agent k at_state y with respect to the
game defined by the matrices Q7 .

We now consider that X7 = (). This means that, in (4.3),

Qn(z,a) = QpF (zk, ak),

and each agent can decide independently of the other agents.
Moreover, each agent has an optimal individual policy whose
corresponding @-function verifies

k=1,...,N

Qi(zr,ar) = Y Pilz,y) [re(er, ar, yn) +

YR EXy

v max Qi(yk, bi)].  (45)

On the other hand, suppose that rr = 0 for all k. Then
we get Qp (r,a) = QT (v, a) and the game reduces to a fully
cooperative Markov game. This means that there is an op-
timal joint policy whose corresponding Q-function verifies

Qi(z,a) =Y P*(z,)[r1(z,0,9) +ymax Qi (y,b)]. (4.6)

yeX

The above reasoning contains the main ideas in our solution
method, which we will describe next.
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4.2 An approximate solution method

We start by computing the functions Q, and Q7 as defined
in (4.5) and (4.6). The component Qj, accounts for the best
that agent k can do if no interaction takes place, while Q7
accounts for the best that the several agents can do when
acting as a team. We can now approximate each function

QF as
QZ* (xva) ~ QZ(‘Tlﬁak) + Q?(m,a),

and, from the above functions, we define at state x a matriz
game I'y = (2, (Ax), i) where

ge(@) = 3 Pz, y) [Filx, a,y) + YNasht(QF ...

yeX

,Q%)]-

Notice that, in the above approximation, we are disregarding
the coupling between the individual and interactive compo-
nents of Qg*. Determining the Nash equilibrium for each
such game provides each agent with a good approximation
to the optimal policy for the Markov game T.

We remark that the approximation above causes the pol-
icy thus obtained to disregard the long-term effects of the
coupling between the individual and interactive components
of QZ*. In this sense, the obtained policy is somewhat
“shortsighted” with respect to the long-term effects of the
interaction between the agents. However, as our experimen-
tal results illustrate, this effect is often negligible and the
obtained policy will generally be a good approximation to
the actual “optimal” joint policy.

There is, however, one inconvenience: the above computa-
tion can only be conducted in a Markov game, as it requires
knowledge of the joint state of the game. In our IDMG fra-
mework, this knowledge is only available at the interaction
states. Therefore, in the non-interaction states, a different
process must be used to choose the actions. We want to
avoid a complicated modeling of the effects of other agents’
policies, which will be inherently uncertain due to the lim-
ited information available to each agent. Furthermore, in
line with the assumption that each agent can successfully
execute its task independently, we follow a simple heuris-
tic approach that completely disregards the “existence” of
other agents in the non-interaction states. This means that,
in these states, each agent disregards the interaction com-
ponent of Qg* and chooses its individual actions at each

state zx as ap = argmax Q(zk,ar), where Qj, is defined
ap €A

in (4.5). In many situations it is actually possible to define
the interaction games {lMI} so as to minimize the effect
of the interactive component in the non-interaction states,
when that interaction might incur a penalty. In this case,
the action choice in the non-interaction states can be very
close to the optimal. This point is illustrated in our results.

In the interaction states, we assume that communication
is unlimited and noise-free. When in these states, each agent
communicates its current individual state to the other agents
and, if necessary, the corresponding individual @-functions
(if this knowledge is not available beforehand). At this point,
all agents know the joint state of the team and the individual
Q-functions for all agents. Therefore, they can compute
the matrix-games I', and corresponding Nash equilibria and
choose their actions accordingly. Hence, our method needs
to compute several Nash equilibria, but all with respect to
matriz games. For this class of games, several computational
methods are available. In our implementation, we resort to



the fast methods proposed in [16]. In the case of multiple
equilibria, the agents choose the first one according to a
shared lexicographical ordering.

4.3 Discussion

As discussed in Section 3.3, we emphasize that our model
is different from Dec-POMDPs [3] and their transition-in-
dependent variations [1]. Our model resembles the one con-
sidered in [19], in which agents communicate their local
information if they consider it could be useful to improve
team performance. In [20] an algorithm for computing com-
munication-based policies for factored Dec-MDP models is
proposed. However, unlike the last two models, we do not
assume that communication is always possible (even if desir-
able). Instead, we assume communication also to be a “local
ability”, and communication only occurs at the interaction
states. Furthermore, the solution technique presented here
is relatively fast, as we only need to compute an MDP solu-
tion for each agent according to (4.5) and solve an MDP for
each M7, as seen in (4.6). This is in stark contrast with
techniques for Dec-POMDPs, many of which rely on a so-
lution of the centralized decision problem (e.g., [14]), whose
computational cost grows exponentially with the number of
agents.

An approximate technique for Dec-POMDPs that also
uses equilibria concepts has been proposed [7]. However,
there Bayesian games are used with local histories as type,
providing information over the joint state of the agents. The
Bayesian game solutions are used to approximate the opti-
mal policy, which requires solving a Bayesian game for each
possible joint-history depth (an exponentially growing type
space). Instead, we use local solutions which, in the absence
of interaction, are optimal. Furthermore, we only need to
solve a matrix game of constant size for each interaction
state. Our proposed model and solution method offer more
potential for scaling up, while still capturing relevant inter-
actions between agents.

5. EXPERIMENTS

In our experiments we consider several different test prob-
lems for two agents, that we describe next. The first test
problem is the navigation problem in the H-shaped environ-
ment as detailed in Section 3. Each robot has 4 available
actions, move up, down, left and right. There is some noise
in the transitions, causing random moves in a random direc-
tion. Each robot receives a reward of 0.5 for reaching its goal
state. The interaction states correspond to the joint states
where both robots are in the gray area in Fig. 1. Both robots
get a penalty of —5 every time they are simultaneously in
the doorway state.

In the second test problem we consider the problem of a
travel agent that must assign clients to hotels trying to fit
their preferences. A travel agent has available n, rooms in
np, different hotels. At each time step there is a non-zero
probability of a client arriving that wants to go to hotel ¢
(Fig. 2). The agent should decide where to assign the client,
knowing that it will get a reward of 10 for every properly
assigned client, of —10 for every client assigned to a hotel
that is already full, of 2 for every client assigned to a different
hotel from the one it prefers and —1 for refusing a client.
The agent also has the possibility of assigning a client to a
private resort, which will grant the agent with a reward of
5; this resort has no limit on the number of people. For the
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Figure 2: The single-agent version of the hotel prob-
lem.

# Indiv. # Inter. # Inter. MG
States States States Ext.

H-shape 21 49 49 441
Hotel 1 4 3 15 16
Hotel 2 27 180 693 729
ISR 172 944 1,218 29,584
MIT 196 768 1,052| 38,416
SUNY 296 1,296 1,668| 87,616
PENTAGON 208 416 568 | 43,264
CIT 280 656 888| 78,400
CMU 532 3,680 4,574(283, 024

Table 1: Number of individual and interaction states
in the different tests scenarios. In Hotel 1, we set
n, = np = 1 and in Hotel 2 we set n, = np = 2. The
third column corresponds to the tests with extended
interaction states. In the last column, we provide
the number of states of the equivalent Markov game
model T.

purposes of our test, clients never leave hotels.

We considered a multiagent version of this problem, in
which agent k has its own clients and n* rooms available in
each hotel. The interaction states are those in which agents
would want to assign a client to the resort (i.e., an agent has
a client wanting to go to a full hotel, and the other one also
has a client). If they both decide to assign a client to the
resort at the same time, they both get a reward of —5. If we
imagine the resort as a “temporary” solution for the client’s
lodging problem, assigning more than one client to the resort
at the same time causes the resort to get too “crowded” and
hence the received penalty.

Finally, in the last set of problems, we considered several
larger and more elaborate navigation problems, pictured in
Fig. 3 and originating from [6]. Each of two robots must
navigate to one of the states marked with an “x”, while
starting from a location drawn uniformly at random. Each
robot has 3 actions available: “Move forward”, “Turn left”
and “Turn right”. Therefore, the robots can be in each of
the square cells in one of 4 possible orientations. The total
number of states for each problem is listed in Table 1, as well
as the number of interaction states. The interaction states
are those in dark, corresponding to those around the doors,
and grant both agents with a reward of —100 every time
they are both in the location (independent of orientation) in
contiguous/coincident interaction states. Reaching the goal
state is rewarded with 10, after which an agent is transferred
to an absorbing state and can no longer obtain rewards. The
interaction states correspond to the darkest cells in Fig. 3.

We used the solution method described in the previous
section, resorting to the fast search algorithms in [16] to
determine the necessary equilibria. We then compared the
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Figure 3: Large scenarios used in the experiments, from [6]. The dark shaded cells correspond to interaction
states, while the lighter cells form part of the extended set of interaction states.

Ind. IDMG MMDP | IDMG-+IS
H-shape | —0.71 1.34 1.49 1.34
Hotel 1 58.92 74.03 87.63 75.87
Hotel 2 97.84  118.22 133.85 119.08
ISR —8.03 —0.70 10.60 10.57
MIT 3.73 5.09 8.60 8.58
SUNY —1.05 5.20 8.00 7.99
PENTAGON | 6.03 6.69 11.63 11.57
CIT 5.47 6.70 8.93 8.91
CMU —-3.16 —2.21 5.84 5.81

Table 2: Results of our method vs. independent and
centralized agents. The last column considers an
extended set of interactive states.

performance of our approach with two other approaches. In
particular, we also considered the case in which all agents
act independently, i.e., with no coordination and a case in
which the control of the agents is centralized, corresponding
to an MMDP solution [5]. We dub the three methods as
“IDMG”, “Ind.” and “MMDP”. For each experiment we ran
1000 independent trials, each trial consisting of either 15
time steps (in the H-shaped environment) or 50 time steps
(in the others), and we used y = 0.95. We also considered an
extended set of interaction states.? These additional inter-
action states correspond to the cells immediately adjacent
to the darkest cells in Fig. 3 and are also a little shaded.
The results for this set of tests are dubbed as “IDMG+HIS”.

The results in Table 2 clearly illustrate the advantages
of our method over independent agents. This is due to
the fact that our method takes into consideration the lo-
cal interactions occurring at the interaction states. The in-
dependent agents choose their actions according solely to

2Notice that, by extending the number of interactive states,
the performance of the agents is expected to improve. In
fact, as the number of interactive states increases, the so-
lution of the IDMG approaches the optimal solution of the
corresponding Markov game.
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the individual function Q) (as defined in (4.5)). The cen-
tralized solution upper bounds the IDMG performance, as
it assumes full state knowledge for each agent. Further-
more, its computational cost is much higher, as it solves
an MMDP, i.e., an MDP for joint actions and joint states
(at polynomial cost). The last column of Table 1 lists the
number of joint states for the MMDP. For example, to com-
pute the IDMG solution for the ¢MU environment, which
contains relatively many interaction states, we only need to
estimate N - 531 - |Ag| + 3,680 - | Ax|Y = 36,312 Q-values,
vs. 238,024 - | A | = 2,547,216 for the centralized solution.

Another important aspect of the results in Table 2 is re-
lated to the performance of our method in the larger sce-
narios. Even though our approach significantly outperforms
the independent agents, it still falls behind the optimal cen-
tralized controller. This is due to the fact that the agents
always receive a penalty of —100 in the interaction states: if
their initial position is such that the only way to reach the
goal is by potentially “meeting” in an interaction state, then
the robots will do that and collect the corresponding penalty
(in case the other agent is actually also present at the same
location). In other words, our agents generally “choose to
go” through the interaction states, even if this implies the
possibility of collecting a penalty. On the other hand, if we
extend the interaction states to minimize the effect of the
interaction in the non-interaction states, our method is able
to attain mear-optimal performance in these navigation do-
mains. The intuition behind this phenomenon is that by
slightly extending the interaction states, the agents are now
able to avoid the penalties that may arise in the interac-
tive states and “safely cross” the interaction areas without
collecting a penalty.

6. CONCLUSIONS

In this paper, we introduced the framework of interaction-
driven Markov games (IDMGs) to address multiagent de-
cision-making problems in which interaction between the
agents is a local phenomenon. This framework considers



separately the situations in which the agents interact and
those in which the agents can act independently. The agents
are coupled through the joint rewards and joint transitions
in the interaction states.

The fundamental idea behind IDMGs is to reduce the
complexity of the multiagent decision problem to that of
single-agent problems in the states where no interaction ex-
ists. On the other hand, in those states where interact-
ion does exist, we consider communication explicitly as a
means to optimize the exchange of information. Therefore,
the IDMG model captures several properties of many actual
systems in a natural way. In particular, the agents’ ability
to communicate is a local property in IDMGs and there is
no joint state/action observability. Furthermore, an agent
is generally unable to perceive the state of the other agents,
except in situations where they are “close”. The experimen-
tal performance of our algorithm also illustrates that the
IDMG model is well suited to address large multiagent prob-
lems with the features described. Finally, the experimental
results also show that our techniques allow for effective plan-
ning in domains which are too large to be solved by general
methods for partially observable stochastic games.

As future work we would like to further investigate which
classes of problems can adequately be addressed using the
IDMG framework. Another interesting direction of research
is to consider automatic learning of the interaction states.
In this paper we consider the interaction states to be defined
a priori, as part of the problem. However, the agents could
learn the set of states where interaction is fundamental, for
instance along the lines of [10].
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