
Decentralised Coordination of Low-Power Embedded
Devices Using the Max-Sum Algorithm

A. Farinelli⋆, A. Rogers⋆, A. Petcu†, N. R. Jennings⋆

⋆ School of Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ, UK.
{af2,acr,nrj}@ecs.soton.ac.uk

† AI Laboratory (LIA), Swiss Federal Institute of Technology in Lausanne, CH-1015 Lausanne, Switzerland.
adrian.petcu@epfl.ch

ABSTRACT
This paper considers the problem of performing decentralised co-
ordination of low-power embedded devices (as is required within
many environmental sensing and surveillance applications). Specif-
ically, we address the generic problem of maximising social wel-
fare within a group of interacting agents. We propose a novel
representation of the problem, as a cyclic bipartite factor graph,
composed of variable and function nodes (representing the agents’
states and utilities respectively). We show that such representation
allows us to use an extension of the max-sum algorithm to generate
approximate solutions to this global optimisation problem through
local decentralised message passing. We empirically evaluate this
approach on a canonical coordination problem (graph colouring),
and benchmark it against state of the art approximate and complete
algorithms (DSA and DPOP). We show that our approach is robust
to lossy communication, that it generates solutions closer to those
of DPOP than DSA is able to, and that it does so with a commu-
nication cost (in terms of total messages size) that scales very well
with the number of agents in the system (compared to the exponen-
tial increase of DPOP). Finally, we describe a hardware implemen-
tation of our algorithm operating on low-power Chipcon CC2431
System-on-Chip sensor nodes.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Artificial Intelligence—Dis-
tributed Artificial Intelligence

General Terms
Algorithms, Experimentation

Keywords
Sum-product, DCOP, sensor networks, coordination

1. INTRODUCTION
Increasing attention is currently being devoted to applications in-
volving low-power, wireless devices that are deployed within the
environment, and seek to acquire and integrate information. Rel-
evant examples include rescue robotics [12] and the use of sensor
networks for performing wide-area surveillance in security [5] and

Cite as: Decentralised Coordination of Low-Power Embedded Devices
Using the Max-Sum Algorithm, A. Farinelli, A. Rogers, A. Petcu and N.
R. Jennings,Proc. of 7th Int. Conf. on Autonomous Agents and Mul-
tiagent Systems (AAMAS 2008), Padgham, Parkes, Müller and Parsons
(eds.), May, 12-16., 2008, Estoril, Portugal, pp.639-646.
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

for monitoring environmental phenomena [10]. Within all these do-
mains, a fundamental challenge is to coordinate the activities of the
physically distributed devices in order to achieve good system-wide
performance, given the specific constraints of each device (such as
limited power, communication and computational resources), and
the fact that each device can typically only communicate with the
few other devices in its local neighbourhood (due to the use of low-
power wireless transceivers, the small form factor of the device and
antenna, and the hostile environments in which they are deployed).
Additional challenges arise through the need to perform such co-
ordination in a decentralised manner such that there is no central
point of failure and no communication bottleneck, that the compu-
tation required for the coordination is shared over the distributed
resources available, and that the solution scales well as the number
of devices within the network increases.

Given this background, a multi-agent systems (MAS) approach
is a natural one for modelling such autonomous decentralised sys-
tems, and within the academic literature of MAS, problems similar
to those described above are often represented asDistributed Con-
straint Optimisation Problems(DCOPs). Furthermore, a number
of complete algorithms that generate optimal solutions have been
proposed for solving them: including OptAPO [4], ADOPT [8] and
DPOP [11]. More specifically, OptAPO uses a partially centralised
approach in which mediator agents compute solutions for portions
of the overall problem. In contrast, both ADOPT and DPOP pre-
process the constraint graph, arranging it into aDepth First Search
(DFS) tree, and then exchange messages over this tree.

Now, while these algorithms represent significant contributions
in their own domain, they do not address many of the additional
challenges that are present when the agents correspond to embed-
ded devices. In particular, optimality demands that some aspect of
these algorithms is exponential. For example, within OptAPO me-
diator agents may be required to perform calculations that grow ex-
ponentially with the size of the portion of the overall problem that
they are responsible for. Similarly, the number of messages that
agents exchange when using ADOPT is exponential in the height
of the DFS tree, and for PDOP, it is exponential in the width of
the tree. Such exponential relationships are simply unacceptable
for embedded devices that exhibit constrained computation, band-
width and memory resources. For example, our work is motivated
by the problem of coordinating the sense/sleep cycles of energy-
harvesting sensor nodes within a network deployed for wide-area
surveillance. Within this application, the requirement to operate
for an indefinite lifetime imposes the use of extremely low-power
devices, and thus we are using the Chipcon CC2431 System-on-
Chip (see section 7 for further details). This device incorporates
a RF transceiver whose message buffer is limited to just 8 kByte
RAM, and thus, such optimal algorithms are unusable for all but

639



the very smallest of networks. Furthermore, this RF transceiver ex-
hibits lossy communication such that messages may be lost, and
nodes may be temporarily disconnected from the network. Thus, a
practical decentralised coordination algorithm must also be robust
to this lossy communication, and only limited results exist for these
optimal algorithms [7].

In contrast, a large number of approximate stochastic algorithms
have also been proposed for solving DCOPs. These algorithms
are typically based upon entirely local computation, whereby each
agent updates its state based only on the communicated (or ob-
served) states of those local neighbours that influence its utility. As
such, these approaches are well suited for large scale distributed ap-
plications, and in this context, the Distributed Stochastic Algorithm
(DSA) is one of the most promising; having been proposed for
decentralised coordination within sensor networks [1] and bench-
marked on DCOP problems [15]. However, algorithms of this type
often converge to poor quality solutions since agents do not explic-
itly communicate their utility for being in any particular state, but
only communicate their preferred state (i.e. the one that will max-
imise their own utility) based on the current preferred state of their
neighbours.

Thus, against this background, there is a clear need for coordi-
nation algorithms that make efficient use of constrained computa-
tional and communication resources, and yet are able to effectively
represent and communicate complex utility relationships through
the network. It is this requirement that we address in this paper,
and to this end, we present an approximate decentralised solution
that can be applied to the general problem of maximising the social
welfare of a group of agents (i.e. maximising the sum of the utilities
of each individual agent) when the utility of any individual agent is
dependent on its own state, and the state of a number of interact-
ing neighbours. Our solution is based upon message passing tech-
niques that are frequently used in the context of information theory
to decompose complex computations on single processors. How-
ever, they have never previously been exploited as a basis for multi-
agent coordination. In particular, we exploit the extensive evidence
that demonstrates that the sum-product algorithm (and its deriva-
tive, the max-sum algorithm) generate good approximate solutions
when applied to cyclic graphs (in the context of approximate infer-
ence through ‘loopy’ belief propagation on Bayesian networks [9],
iterative decoding of practical error correcting codes [2], and solv-
ing large scale K-SAT problems involving thousands of variables
[6]), due to their ability to propagate information around the net-
work such that they converge to aneighborhood maximum, rather
than a simple local maximum [14].

Thus, in more detail, this paper makes the following contribu-
tions:

1. We show that a novel representation of the social welfare
maximisation problem, as a cyclic bipartite factor graph com-
posed of variable and function nodes (representing the agents’
states and utilities), allows us to use an extension of the max-
sum algorithm to generate approximate solutions to this global
optimisation problem through decentralised local message
passing between interacting agents.

2. We empirically evaluate this approach on a canonical coor-
dination problem (graph colouring). We benchmark our ap-
proach against local best response, a state of the art approxi-
mate algorithm (DSA), and a complete algorithm (DPOP).
We show that our algorithm converges to better solutions
than the approximate algorithms (showing up to 1/5 of the
total number of conflicts over time), exhibits a near linear in-
crease in total message size as the number of agents increases
(compared to the exponential increase of DPOP), and is ro-
bust to lossy communication (performing well when even
90% of messages are dropped).

3. We prove the practical application of our approach by de-
scribing how we have implemented the graph colouring prob-
lem benchmarked above in hardware on the Chipcon CC2431
System-on-Chip (a wireless embedded device developed to
form the core of future low-power sensor nodes).

Our results indicate that our formalism provides a resource efficient
means to perform decentralised coordination within networks of
low-power embedded devices.

The remainder of this paper is structured as follows: in section 2
we formally describe the social welfare maximisation problem that
we tackle. In section 3 we describe message passing algorithms in
general, before describing our decentralised coordination algorithm
in section 4. In section 5 we describe our graph colouring bench-
mark, and then present our empirical evaluation in section 6. In
section 7 we describe a hardware implementation of our algorithm,
before concluding in section 8.

2. PROBLEM DESCRIPTION
As described above, our goal is to solve general coordination prob-
lems, and thus, we consider the general case in which there areM
agents, and the state of each agent may be described by a discrete
variablexm. Each agent interacts locally with a number of other
agents such that the utility of an individual agent,Um(xm), is de-
pendent on its own state and the states of these other agents (defined
by the setxm). We make no assumptions regarding the structure
of the individual utility functions and there is no requirement that
they are known to other agents.

Within this setting, we wish to find the state of each agent,x
∗,

such that social welfare of the whole system (i.e. the sum of the
individual agents’ utilities) is maximised:

x
∗ = arg max

x

M
∑

m=1

Um(xm) (1)

Furthermore, in order to enforce a truly decentralised solution, we
assume that each agent only has knowledge of, and can directly
communicate with, the few neighbouring agents on whose state its
own utility depends. In this way, the complexity of the calculation
that the agent performs depends only on the number of neighbours
that it has (and not the total size of the network), and thus, we can
achieve solutions that scale well.

Given this problem description, we now describe a general class
of algorithms which have previously been used to solve similar
problems, before presenting the details of our formalism for ad-
dressing the specific problem at hand.

3. THE MESSAGE PASSING APPROACH
The fundamental algorithm on which we base our formalism is
commonly used in the context of information theory in order to de-
compose complex calculations by exploiting the fact that the func-
tions being handled can be factorised (i.e. expressed as the product
of simpler expressions) [3]. In particular, we focus on the sum-
product algorithm, and then describe how derivatives of this algo-
rithm (specifically the max-sum algorithm) can be used to max-
imise social welfare within a decentralised agent system.

3.1 The Sum-Product Algorithm
Let us initially consider a function,F , that is dependent onN vari-
ables,x = {x1 . . . xN}, and is defined as a product ofM factors1,

1Note that this is the same as the number of agents above, and the
reason for this will become clear in section 4.

640



IR
q3→2

r2→3

x1 x2 x3

f1 f2

Figure 1: Example acyclic factor graph for the function F =
f1(x1, x2)f2(x2, x3), squares represent function nodes and cir-
cles variable nodes.

such that:

F (x) =

M
∏

m=1

fm(xm) (2)

where each of the factorsfm(xm) is a function of a subsetxm

of the variables that make upx. A function of this form can be
represented using afactor graph, which is a bipartite graph com-
posed of two kinds of element: variable nodes and function nodes.
Variable nodes are connected only to function nodes and func-
tion nodes are only connected to variable nodes. For example,
figure 1 shows a bipartite graph representation for the function
F = f1(x1, x2)f2(x2, x3).

This factor graph representation can be applied in many settings.
For example, to represent a graphical model in probability theory
where each factor represents a probability distribution over the vari-
ables to which it is connected, or an error correcting code where
variables and functions represent source bits and parity-check bits
[3]. A common requirement in these settings (in order to calculate
the marginal probability of a variable within a graphical model or
to calculate the probability that a particular code word was trans-
mitted) is to calculate the marginal function,zn(xn), that describes
the total dependency of the global functionF (x) on variablexn. It
is given by:

zn(xn) =
∑

{x
n
′},n′ 6=n

F (x) (3)

The sum-product algorithm provides an efficient local message
passing procedure to compute the marginal functions of all vari-
ables simultaneously. It does so by iteratively propagating mes-
sages along the edges of the corresponding factor graph. These
messages take two forms: messages from functions to variables,
rn→m, and messages from variables to functions,qm→n. The mes-
sages are specified as follows:

From variable to function:

qn→m(xn) =
∏

m′∈M(n)\m

rm′→n(xn) (4)

From function to variable:

rm→n(xn) =
∑

xm\n



fm(xm)
∏

n′∈N (m)\n

qn′→m(xn′)



 (5)

whereN (m) is the set of indexes of variables connected to the
functionfm, M(n) is the set of indexes of functions connected to
the variablexn, and finallyxm\n ≡ {xn′ : n′ ∈ N (m) \ n}.

For cycle-free graphs (e.g. trees) the sum-product algorithm cal-
culates the exact marginal function for each variable, and has an
efficient update rule in which the messages converge after a num-
ber of steps equal to the diameter of the graph [3]. Following this
update rule, leaf nodes (i.e. nodes which have only one neighbour)

initiate the process by sending to all their parents an identity mes-
sage. Specifically, each leaf variable node,xn, sends a message
qn→m(xn) = 1, and each function leaf node,fm, sends a message
rm→n(xn) = fm(xn). Each time a node receives a message from
an edgee, it computes outgoing messages based on equations 4 and
5, then sends the messages to all remaining edges. When a variable
node has received a message from all its neighbours it can compute
the exact marginal value according to the following equation:

zn(xn) =
∏

m∈M(n)

rm→n(xn) (6)

In addition, to the procedural update rule described above, nodes
may also be initialised randomly, and then update their outgoing
messages at any time and in any sequence (i.e. asynchronously). In
this case, the messages are still guaranteed to converge, and hence,
the marginal values calculated using equation 6 also converge to
the exact solution. The convergence time in this case is again pro-
portional to the diameter of the graph [3].

3.2 The Max-Product Algorithm
The max-product algorithm is a derivative of the sum-product that
computes the values ofx that maximise the functionF (x). Since
our final goal is to maximise social welfare, the max-product algo-
rithm is more useful within our formalism. It is obtained by simply
replacing the summation function in the expression for the ‘func-
tion to variables’ messages by a maximum function:

From variable to function:

qn→m(xn) =
∏

m′∈M(n)\m

rm′→n(xn) (7)

From function to variable:

rm→n(xn) = max
xm\n



fm(xm)
∏

n′∈N (m)\n

qn′→m(xn′)



 (8)

Crucially, now rather than calculating the marginal functions of
any variable, the algorithm calculatesarg maxx F (x), and the prod-
uct of the messages flowing into any variable now represents:

zn(xn) = max
xm\n

M
∏

m=1

fm(xm) (9)

such that ifx∗ = arg maxx

∏M

m=1 fm(xm) then each individual
component is given byx∗

n = arg maxxn
zn(xn). Thus, a global

maximisation task is solved via local message passing, and again,
this result is optimal for acyclic graphs.

3.3 Cyclic Graphs
While the algorithms described above are onlyprovableoptimal
and guaranteed to converge when applied to acyclic graphs, it is
common to apply them to cyclic graphs anyway. This is often
called ‘loopy belief propagation’, and means that the aggregation
of messages flowing into each variable now only represents an ap-
proximate solution to the maximisation problem:

zn(xn) ≈ max
xm\n

M
∏

m=1

fm(xm) (10)

The performance of the sum-product and max-product algorithms
when applied to cyclic graphs has been the subject of much recent
research within the areas of statistical physics and machine learn-
ing. While only limited theoretical results exist for the validity of

641



A1 A3

A2 A1

A2

A3

x1

x2

x3

U2

U1 U3

(a) (b)

Figure 2: Diagram showing (a) the interactions of agents,A1, A2 andA3, and (b) the resulting cyclic factor graph.

this approach on graphs of arbitrary topology2 [13, 14], there ex-
ists extensive empirical evidence of their effectiveness in practical
problems. Examples include their use for the iterative decoding of
error correcting codes [2], and their use within the Survey Propa-
gation algorithm where they represent the state of the art approach
to solving constraint satisfaction problems, and have been applied
to K-SAT problems involving up to 10,000 variables [6].

Since messages now propagate in loops their value might grow
indefinitely, and thus, we must normalise the variable to function
message as they are updated (i.e. “on-the-fly” normalisation):

From variable to function:

qn→m(xn) = αnm

∏

m′∈M(n)\m

rm′→n(xn) (11)

whereαnm is a scaler chosen such that
∑

xn

qn→m(xn) = 1 (12)

This normalisation prevents us from explicitly calculating the value
of maxx

∏M

m=1 fm(xm), however, we are still able to compute
arg maxx

∏M

m=1 fm(xm), which is all that we require to address
the social welfare maximisation problem described in section 2.

4. THE MAX-SUM DECENTRALISED
COORDINATION ALGORITHM

As described in section 2, we are seeking to solve a global social
welfare maximisation problem in a decentralised manner through
local message passing. In order to use the results of the previ-
ous section, we must first express this problem in terms of a factor
graph, and to do so, we note that we can represent an agent as a
function and a variable representing its state and utility. The utility
of any agent is a function of its own state, and the state of a small
number of neighbouring agents, and thus, the function node of a
single agent is connected to its own variable node, and the variable
nodes of a number of neighbouring agents.

For example, consider the case shown in figure 2a where three
agents interact, and agent 1’s utility is dependent on its own state
and that of agent 2, agent 3’s utility is dependent on its own state
and the state of agent 2, and finally, agent 2’s utility is dependent on
its own state and that of agents 2 and 3. The equivalent factor graph
is show in figure 2b, and in this case the social welfare is defined as
∑3

m=1 Um(xm) = U1(x1, x2) + U2(x1, x2, x3) + U3(x2, x3).
Having represented the social welfare maximisation problem as

a factor graph, we can simply apply the max-product algorithm
2These results indicate that when the algorithm converges, it does
not converge to a simple local maximum, but to a neighborhood
maximum that is guaranteed to be greater than all other maxima
within a particular large region of the search space. Depending on
the structure of the factor graph, this neighborhood can be expo-
nentially large [14].

described in the previous section, in order to calculate the mes-
sages that should be exchanged between agents. More precisely,
since in this case we are maximising a summation, rather than
a product, we operate in the logarithm space, and thus, we use
the a derivative of the max-product algorithm; the max-sum algo-
rithm. Thus, we defineRm→n = log rm→n, Qn→m = log qn→m,
Zn(xn) = log zn(xn) andUm(xm) = log fm(xm). Using these
identities and taking logarithms of both sides of the update rules of
the max-product algorithm (with on-the-fly normalisation) shown
in equations 11 and 12 allows us to write:

From variable to function:

Qn→m(xn) = αnm +
∑

m′∈M(n)\m

Rm′→n(xn) (13)

whereαnm is a scaler chosen such that:

∑

xn

Qn→m(xn) = 0 (14)

From function to variable:

Rm→n(xn) = max
xm\n



Um(xm) +
∑

n′∈N(m)\n

Qn′→m(xn′)





(15)
Again, we may calculate the sum of messages flowing into each
variable in order to calculate the marginal function of each variable:

Zn(xn) =
∑

m∈M(n)

Rm→n(xn) (16)

Sincelog F (x) =
∑M

m=1 log fm(xm) =
∑M

m=1 Um(xm), these
marginal functions represent solutions to the social welfare max-
imisation problem. However, under our representation the factor
graphs that we deal with will almost always contain cycles, since
the dependency between the agents is usually mutual (i.e. agent
1’s state affects the utility of agent 2, and likewise, agent 2’s state
affects the utility of agent 1), and thus, they will be approximate
solutions:

Zn(xn) ≈ max
xm\n

M
∑

m=1

Um(xm) (17)

By simply finding arg maxxn
Zn(xn), each individual agent is

thus able to determine which state it should adopt such that social
welfare is maximised. Furthermore, note that the largest calcula-
tion that any agent performs (the update of the function to variable
messages shown in equation 15) is exponential only in the number
of neighbours that it has. This is typically much less than the total
number of agents within the system, and thus the algorithm scales
well as more agents are added to the system.

The cyclic nature of the factor graph that we face means that
there is no need for a formal update schedule, and the agents may

642



simply randomly initialise their outgoing messages, and then up-
date them whenever they receive an updated message from a neigh-
bouring agent. Furthermore, since the calculation described in equa-
tion 17 can be performed at any time (using the most recent mes-
sages received), agents have a continuously updated estimate of
their optimum state3. The final state of the algorithm depends on
the structure of the agents’ utility functions (as we shall show in
section 6), and, in general, we observe three behaviours: i) The
preferred states of all agents converge to fixed states that represent
either the optimal solution, or a solution close to the optimal, and
the messages also converge (i.e. the updated message is equal to
the previous message sent on that edge), and thus, the propaga-
tion of messages ceases. ii) The agents’ preferred states converge
as above, but the messages continue to change slightly at each up-
date, and thus continue to be propagated around the network. iii)
Neither the agents’ preferred states, nor the messages converge and
both display cyclic behaviour.

Thus, depending on problem being addressed, and the conver-
gence properties observed, the algorithm may be used with two
different termination rules: i) Continue to propagate messages until
they converge, either changing the state of the agent continuously
to match the optimum indicated, or only after convergence has oc-
curred. ii) Propagate message for a fixed number of iterations per
agent (again either changing the state of the agent continuously or
only at termination).

Finally, we note that if messages are continuously propagated,
and the states of the agents are continuously updated, then the algo-
rithm may be applied to dynamic problems where the interactions
between agents, or the utilities resulting from these interactions,
may change at any time. For example, within tracking problems
where the decentralised coordination algorithm is being used to fo-
cus different sensors onto different targets (as described in [15]),
then the utilities of each sensor are continually changing due to the
changing position of targets, and the actions of other sensors. Thus,
by continually propagating messages each agent is able to maintain
a continuously updated estimate of the state that it should adopt in
order to maximise social welfare in this dynamic problem4.

5. GRAPH COLOURING BENCHMARK
In order to empirically evaluate the performance of the decentralised
coordination algorithm described above, we perform a comparison
on a set of instances of distributed graph colouring problems. The
graph colouring problem is a canonical DCOP problem [4, 8], and
is one that has previously been used to benchmark coordination al-
gorithms for sensor networks [1, 15].

More formally, in distributed graph colouring problems, agents
are located at the nodes of a graph, and must select their colour (i.e.
the state) from a set of possible colours (i.e.xm ∈ 1, . . . , c) in
order that they avoid conflicts (i.e. choosing the same colour) with
other agents connected to themselves via an edge. Thus, the utility
of each agent is expressed as:

Um(xm) = γm(xm) −
∑

i∈N (m)\m

xm ⊗ xi (18)

where:

xi ⊗ xj =

{

1 if xi = xj

0 otherwise
(19)

3This is in contrast to optimal methods such as DPOP that require
that the root node of the pseudo-tree informs all the other nodes of
their optimal state once it has received all the necessary messages.
4Again, this is in contrast to optimal solutions that would re-
peatedly “freeze” the problem into a sequence of “frames”, and
then calculate the optimal solution to these increasingly out-of-date
problems.

0: γ1(x1) = [0.1,−0.1]
γ2(x2) = [−0.1, 0.1]
γ3(x3) = [−0.1, 0.1]

1: R1→2(x2) = maxx1
(U1(x1, x2) + Q1→1(x1)) = [−0.1, 0.1]

R1→1(x1) = maxx2
(U1(x1, x2) + Q2→1(x1)) = [0.1,−0.1]

2: Z1(x1) = R1→1(x1) + R2→1(x1) = [0.1,−0.1]
Variablex1 state is 0

3: Q2→3(x2) = R1→2(x2) + R2→2(x2) = [−0.1, 0.1]
Q2→1(x2) = R2→2(x2) + R3→2(x2) = [0, 0]

Q2→2(x2) = R1→2(x2) + R3→2(x2) = [−0.1, 0.1]

4: R2→3(x3) = [0.2,−0.2]
R2→1(x1) = [0.2,−0.2]
R2→2(x2) = [−0.1, 0.1]

5: Z2(x2) = [−0.2, 0.2]
Variablex2 state is 1

6: Q3→2(x3) = R3→3(x3) = [0, 0]
Q3→3(x3) = R2→3(x3) = [0.2,−0.2]

7: R3→2(x2) = [−0.1, 0.1]
R3→3(x3) = [0.0, 0.0]

8: Z3(x3) = [0.2,−0.2]
Variablex3 state is 0

Figure 3: Example execution of our decentralised coordination
algorithm on a 3-agent 2-colour graph colouring problem.

and,γm(xm) << 1, reflects the agents’ preference for any partic-
ular colour in the absence of conflicts5. As before, the goal is to
find the state of each agent such that social welfare is maximised,
and hence, the total number of conflicts is minimised.

Before presenting the full evaluation, we present a simple 2-
colour example (involving three agents connected as shown in fig-
ure 2) to illustrate the operation of the algorithm described in the
previous section (see figure 3). Step 0 shows the preferences for
each agent, and the following steps show the messages from vari-
able to function (as specified in equation 13), from functions to
variables (as specified in equation 15) and the marginal function
computation (as specified in equation 16) for each agent. Notice
that messages are functions of length equal to the number of pos-
sible states (colours) of each agent, and that the messages flowing
into any variable represent the utility that the rest of the system
can obtain if that variable adopts any particular state (colour). The
initial messages from variables to functions are all set to zeros.

6. EMPIRICAL EVALUATION
Having presented a simple example, we now present a full empiri-
cal evaluation of our formalism on three sets of graphs that repre-
sent a wide range of possible structures. These three sets are:

1. 50 instances of 3-colour random graphs with 10, 20, 30, 40
and 50 nodes, that have an average of 3 links per node, and
are known to be colourable.

2. 40 instances of 3-colour random graphs with 10, 14, 18 and
25 nodes taken from the ADOPT graph repository (avail-
able fromhttp://teamcore.usc.edu/dcop/). As
above, we use graphs with a link density of 3 which results
in over-constrained graphs that are not generally colourable
with 3 colours [8].

3. 5 instances of 4-colour colourable regular lattice graphs with
36, 49, 64, 81 and 100 nodes that are placed on a regular
grid and are connected with their eight immediate neighbours
(including diagonal neighbours).

5Note that this preference breaks the symmetry of the optimisation
problem, and has no affect on the optimal solution.

643



We benchmark our max-sum decentralised coordination algorithm
against two alternative approximate algorithms and a complete al-
gorithm:

1. BR - Best Response: At each time step, each agent chooses
the best state for its variable (i.e. the one that minimizes the
conflicts), according to the current states of its neighbours.
When a state change occurs, the agent sends the updated state
information to all of its neighbours. BR represents a lower
bound on the performance of any algorithm since it uses the
minimum computation and communication possible.

2. DSA - Distributed Stochastic Algorithm: As with best re-
sponse, except that an agent only actually performs the state
change according to a predefined probability (called theacti-
vation probability). Whenever an agent’s preferred state ac-
tually changes, it sends a message to its neighbours inform-
ing them of this fact. We set the activation probability to0.6
(additional experiments indicate little sensitivity to the exact
value of this parameter in our setting).

3. DPOP -Dynamic Programming Optimisation Protocol: A
complete algorithm that maintains optimality by preprocess-
ing the constraint graph to produce a pseudo-tree, and then
local performs message passing on this tree [11].

Using these three sets of graphs, we evaluate each of these algo-
rithms by performing repeated simulations (10 times per graph in-
stance) and measuring a number of different metrics.

6.1 Conflicts Over Time
We first evaluate the performance of our method against the alter-
native approximate solutions by considering both the quality of the
graph colouring solutions that it produces and the speed with which
they are derived. More specifically, we run all the approximate al-
gorithms for a fixed number of execution cycles (50 in this case),
and then sum the number of conflicts over this execution time. Fol-
lowing [4] we define a cycle to mean the period in which all agents
have had the opportunity to update their states and have delivered
their outgoing messages6.

Figure 4 shows the results of these experiments on the three dif-
ferent sets of graphs. We first consider the colourable random and
lattice graphs and note that our max-sum decentralised coordina-
tion algorithm (denoted byMS in the figure) outperforms the other
algorithms, showing up to1/5 of the number of conflicts over time
displayed by both alternative approximate approaches. Note that
the improvement is greatest for larger numbers of agents, since
while the alternative approaches are using only local information
regarding the preferred states of their neighbours, the max-sum al-
gorithm is able to effectively exploit information regarding the util-
ities of these neighbouring agents to obtain very good solutions.

In the case of graphs from the ADOPT repository, our method
performs less well for small numbers of agents. While in the previ-
ous two cases, the preferred state of the agents was seen to converge
to the optimum, or a state close to the optimum, this is not the case
here, and we observe cyclic behaviour in both the messages being
propagated and the preferred state of the agents. We address this
behaviour, and present a solution in the next section.

6.2 Convergence
In the preceding experiments, we did not use any termination cri-
teria for our algorithm, but simply let the algorithm run for a given

6We implement this within each cycle by selecting agents in a ran-
dom order, updating their messages and state based on the previous
messages that they had received, and then propagating their outgo-
ing messages to their neighbours.

10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

Agents

S
um

 o
f C

on
fli

ct
s 

ov
er

 T
im

e

Conflicts Over Time (Colourable Random Graphs)

 

 

BR
DSA
MS

10 15 20 25 30
4

6

8

10

12

Agents

S
um

 o
f C

on
fli

ct
s 

ov
er

 T
im

e

Conflicts Over Time (ADOPT Repository Graphs)

 

 

BR
DSA
MS
MS−Stable

30 40 50 60 70 80 90 100
0

5

10

15

20

25

Agents

S
um

 o
f C

on
fli

ct
s 

ov
er

 T
im

e

Conflicts Over Time (Colourable Lattice Graphs)

 

 

BR
DSA
MS

Figure 4: Results for the three graph colouring datasets show-
ing the number of conflicts summed over execution time. Simu-
lation results are averaged over 10 runs on each graph instance,
and error bars represent the standard error of the mean.

number of cycles and then stopped it (as per the discussion in sec-
tion 4). While this is suitable in cases where typical problem in-
stances can be empirically evaluated prior to deployment of the real
system, this is clearly not always the case. Thus, we may also re-
quire that both the messages and the state of the agents converge,
such that the agents may stop exchanging messages when an up-
dated message matches that which was last sent.

The poor results for the ADOPT repository graphs shown in fig-
ure 4 are due to the fact that these over-constrained graphs exhibit
more complex structures than the other test sets. The colourable
random graphs generally contain large loops that span the entire
graph, while the lattice graphs contain many small regular loops.
In contrast, the graphs of the ADOPT repository represent a com-
bination with both large and small irregular loops, and hence, they
represent a more challenging and interesting test set. For this rea-
son, the rest of the analysis is performed on this set only.

We can address the poor convergence observed by modifying the
utility function of an agent to consider not only the constraints with
its direct neighbours, but also the constraints among these neigh-

644



Num. Agents %Not Conv. Sol. Quality Conv. Cycles
Best Response (BR)

10 0 0.39±[0.15] 2.31±[0.09]
14 0 0.87±[0.13] 2.56±[0.13]
18 0 1.23±[0.27] 2.67±[0.07]
25 0 2.36±[0.18] 3.04±[0.1]

Distributed Stochastic Algorithm (DSA)
10 0.37 0±[0.16] 42.01±[3.58]
14 0.3 0.26±[0.14] 37.21±[2.48]
18 0.36 0.28±[0.22] 39.43±[2.47]
25 0.43 0.98±[0.16] 43.22±[1.09]

Max-sum Algorithm (MS)
10 0.93 2.22±[0.53] 47.44±[0.99]
14 0.55 0.81±[0.44] 37.03±[3.89]
18 0.64 0.72±[0.42] 40.68±[2.79]
25 0.73 0.62±[0.38] 40.96±[2.51]

Max-sum Algorithm - Stabilised (MS-Stable)
10 0 0.02±[0.15] 9.76±[0.32]
14 0 0.1±[0.21] 10.82±[0.53]
18 0 0.42±[0.25] 11.66±[0.38]
25 0 0.44±[0.3] 12.98±[0.52]

Table 1: Comparison of convergence properties of our de-
centralised coordination algorithms using graphs from the
ADOPT repository graphs.

bours. This amounts to a change in the utility function to:

Um(xm) = γm(xm) −
∑

i∈N (m)

∑

j∈C(i,m)

xi ⊗ xj (20)

where:

C(i, m) = {k ∈ N (m)|k > i ∧ (i ∈ N (k) ∨ k ∈ N (i))} (21)

andγm(xm) andxi ⊗ xj are as before7. The results of this im-
provement are shown in figure 4 for the ADOPT repository graphs
(shown as MS-Stable). As can be seen, the modified utility func-
tion effectively prevents cycling, and causes both the messages and
the preferred states of the agents to converge, and our formalism
now significantly outperforms the earlier utility function.

Table 1 reports these results in more detail. In particular, it shows
the percentage of runs that converged, the mean and standard er-
ror of the mean for the solution quality at convergence (i.e. the
number of conflicts from optimal, where the optimal is calculated
using the DPOP algorithm), and the number of cycles that were re-
quired to reach convergence (i.e. when no further messages were
exchanged). Note that our max-sum coordination algorithm with
a modified utility function converges in all cases. By propagating
utility information among the agents, it is able to converges more
rapidly than DSA, and yet it also generates better quality solutions
that are extremely close to optimal.

6.3 Total Message Size Exchanged
While we have used DPOP to calculate the optimal colouring of the
ADOPT repository graphs we have not explicitly discussed its per-
formance yet. We now do so in order to compare the total size of
messages exchanged among the agents for each algorithm. Figure
5 shows a comparison the total size of messages (on a logarithmic
scale) that were exchanged8 in order to reach convergence to the

7Note that in order to implement this, agents must inform their
neighbours of their own neighbour list, but this represents a com-
paratively small communication overhead (e.g. in a static setting it
need be communicated only once).
8Here we count the number of real numbers exchanged. For exam-
ple, BR and DSA communicate their preferred state only and thus
use a single real number per message, our max-sum decentralised
coordination message requires six real numbers (three states for
both variable and function out-going messages), and DPOP re-

10 15 20 25
Agents

T
ot

al
 M

es
sa

ge
 S

iz
e

Total Message Size (ADOPT Repository Graphs)

 

 

BR
DSA
MS−Stable
DPOP

101

103

105

107

Figure 5: Total size of messages exchanged by algorithms on
the ADOPT repository graphs.

solutions shown in table 1. Note that while the approximate al-
gorithms show only very gradual dependence between the number
of agents and the total size of messages exchanged, the rising line
for DPOP clearly indicates an exponential relationship, and for just
25 agents, DPOP already requires over 100 times the total message
size. Furthermore, while the approximate algorithms iteratively ex-
change messages of small size, DPOP propagates ever larger mes-
sages up the pseudo-tree. For the graphs containing 10, 14, 18 and
25 agents, the largest single message observed in our experiments
consisted of 2187, 6561, 59049 and 1594323 different utility val-
ues. Using standard 32 bit floating point numbers to represent each
utility value would means that the memory of the Chipcon CC2431
SoC is exceeded when there are just 10 agents9.

6.4 Message Loss
Finally, we note that figure 5 shows that our algorithm exchanges
a total messages size that is at least one order of magnitude greater
than the two alternative approximate algorithms (BR and DSA).
The reasons for this are that our algorithm communicates utility in-
formation over each possible state every time it receives an updated
message itself, whereas the two alternative algorithms only com-
municate their preferred state, and only communicate this informa-
tion when it changes. However, if the communication channels be-
tween agents are lossy such that messages are lost (as is likely with
low-power wireless devices), the minimal communication strategy
of the alternative algorithms is disadvantageous. Specifically, fig-
ure 6 shows the total conflicts over time (as was shown in figure 4)
as the probability of successful transmission of agent-to-agent mes-
sages decreases (using the graphs from the ADOPT repository).
Note that the performance of our algorithm degrades extremely
slowly, since it effectively retransmits the same information at each
update. This result shows that our algorithm is extremely robust to
lossy communication, and also indicates that further improvements
in the cost of communication can be accrued.

7. HARDWARE IMPLEMENTATION
In order to prove the practical applicability of our max-sum decen-
tralised coordination algorithm, we have implemented it, and the
graph colouring benchmark problem, in hardware using the Chip-
con CC2431 System-on-Chip (SoC). This is a low-power device in-
corporating an IEEE 802.15.4 compliant RF transceiver, 128 kByte
flash memory, 8 kByte RAM, and a 32 MHz 8 bit 8051 micro-
controller in a single 7x7mm package, and is intended to form the
core of future low-power sensor nodes (see figure 7). The con-

quires a real number to represent each agent-state combination.
9Even if memory constraints are eliminated, the time to communi-
cate these large messages over the 250 kbps channels used by these
low power devices is still prohibitive in large networks.

645



020406080100
0

5

10

15

20

25

30

Transmission Probability (%)

S
um

 o
f C

on
fli

ct
s 

ov
er

 T
im

e

Conflicts Over Time (ADOPT Repository Graphs)

 

 

BR
DSA
MS−Stable

Figure 6: Results showing the number of conflicts over time,
as the transmission probability of messages is decreased (using
the ADOPT repository graphs).

strained computational power and memory resources mean that op-
timal algorithms, such as DPOP, cannot be used.

Our max-sum algorithm runs continuously on each sensor node
(with no termination rule), and whenever two nodes are within a
pre-specified distance (measured by received signal strength) they
consider themselves to be connected within the constraint graph.
Each node transmits out-going messages and updates their pre-
ferred state exactly as described in section 4, and as the agents
are moved relative to one another, they continuously select a pre-
ferred colours (shown using LEDs) to avoid clashes with connected
agents (whose number is shown by the 7-segment display). Videos
are available atwww.youtube.com/v/T6H1AwQ2gXw and www.
youtube.com/v/D6vWvs3Lsj0.

8. CONCLUSIONS
In this paper we addressed the need for resource efficient decen-
tralised coordination algorithms for low-power embedded devices.
We showed that a novel representation of this problem, as a cyclic
bipartite factor graph, allowed us to use an extension of the max-
sum algorithm to generate approximate solutions to a global opti-
misation problem through local decentralised message passing be-
tween agents. In an empirical evaluation, this algorithm was shown
to be robust to lossy communication, and to generate solutions
close to the optimum with a communication cost (in terms of to-
tal messages size) that scales very well with the number of agents
in the system (compared to the exponential increase of DPOP). Fi-
nally, we proved the practical application of our approach by im-
plementing it on a low-power embedded device.

Our future work in this area considers two main directions. First,
we would like to address more specifically the coordination of the
sense/sleep cycle of sensor nodes within the wide area surveil-
lance sensor network that motivates our work. Here, we intend
to benchmark our approach as the action space of the sensor nodes
increases, as the utility calculation becomes more complex, and as
the interactions of agents change over time.

Second, we would like to more formally investigate how the con-
vergence properties of our max-sum algorithm depend on the struc-
ture of the problem to which it is applied. Our goal is to provide
conditions for convergence, and to bound the approximate solutions
that are obtained. In this respect, the extremely good convergence
properties of the modified utility function that we introduced in sec-
tion 6.2 suggest this may be possible within the graph colouring
domain that we have considered here.

9. ACKNOWLEDGMENTS
The work reported on here was undertaken as part of the ARGUS II DARP
(Defence and Aerospace Research Partnership), the Data Information Fu-

Figure 7: Hardware implementation of our max-sum decen-
tralised coordination algorithm on the Chipcon CC2431 SoC.

sion Defence Technology Centre (DIF DTC) Phase II ‘AdaptiveEnergy-
Aware Sensor Networks’ project, and the EPSRC funded Market-Based
Control project (GR/T10664/01). The ARGUS II DARP is a collaborative
project involving BAE SYSTEMS, QinetiQ, Rolls-Royce, the University of
Oxford and the University of Southampton, and is funded by theindustrial
partners together with the EPSRC, MoD and DIUS. The DIF DTC project
is joint funded by MoD and General Dynamics UK. We would like tothank
Luke Teacy and Dimosthenis Karatzas for development work deploying the
algorithms on the Chipcon CC2431 nodes.

10. REFERENCES
[1] S. Fitzpatrick and L. Meetrens.Distributed Sensor Networks A multiagent

perspective, chapter Distributed Coordination through Anarchic Optimization,
pages 257–293. Kluwer Academic, 2003.

[2] D. MacKay. Good error-correcting codes based on very sparse matrices.IEEE
Transactions on Information Theory, 45(2):399–431, 1999.

[3] D. J. C. MacKay.Information Theory, Inference, and Learning Algorithms.
Cambridge University Press, 2003.

[4] R. Mailler and V. Lesser. Solving distributed constraint optimizationproblems
using cooperative mediation. InProceedings of 3rd International Joint
Conference on Autonomous Agents and MultiAgent Systems (AAMAS’04),
pages 438–445, 2004.

[5] A. Makarenko and H. Durrant-Whyte. Decentralized data fusion and control
algorithms in active sensor networks. InProceedings of 7th International
Conference on Information Fusion (Fusion’04), pages 479–486, 2004.

[6] M. Mezard, G. Parisi, and R. Zecchina. Analytic and algorithmic solution of
random satisfiability problems.Science, 297(5582):812–815, 2002.

[7] P. Modi, S. Ali, W. Shen, and M. Tambe. Distributed constraint reasoning
under unreliable communication.Proceedings of Distributed Constraint
Reasoning Workshop at 2nd International Joint Conference on Autonomous
Agents and MultiAgent Systems, 2003.

[8] P. J. Modi, W. Shen, M. Tambe, and M. Yokoo. ADOPT: Asynchronous
distributed constraint optimization with quality guarantees.Artificial
Intelligence Journal, (161):149–180, 2005.

[9] K. P. Murphy, Y. Weiss, and M. I. Jordan. Loopy belief propagation for
approximate inference: An empirical study. InProceedings of the 15th
Conference on Uncertainty in Artificial Intelligence (UAI’99), pages 467–475,
1999.

[10] P. Padhy, R. K. Dash, K. Martinez, and N. R. Jennings. A utility-based sensing
and communication model for a glacial sensor network. InProceeding of 5th
International Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS’06), pages 1353–1360, 2006.

[11] A. Petcu and B. Faltings. DPOP: A scalable method for multiagent constraint
optimization. InProceedings of the 19th International Joint Conference on
Artificial Intelligence, (IJCAI’05), pages 266–271, 2005.

[12] P. Rybski, S. Stoeter, M. Gini, D. Hougen, and N. Papanikolopoulos. Effects of
limited bandwidth communications channels on the control of multiple robots.
In Proceedings of IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 369–374, 2001.

[13] Y. Weiss and W. Freeman. Correctness of belief propagation in gaussian
graphical models of arbitrary topology.Neural Computation,
13(10):2173–2200, 2001.

[14] W. Y. and F. W.T. On the optimality of solutions of the max-product belief
propagation algorithm in arbitrary graphs.IEEE Transactions on Information
Theory, 47(2):723–735, 2001.

[15] W. Zhang, Z. Xing, G. Wang, and L. Wittenburg. An analysis and application
of distributed constraint satisfaction and optimization algorithms in sensor
networks. InProceedings of the 2nd Int. Joint Conference on Autonomous
Agent and Multiagent Systems (AAMAS’03), pages 185–192, 2003.

646


