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ABSTRACT

This paper considers the problem of multi-robot patrolling
around a closed area, in the presence of an adversary try-
ing to penetrate the area. Previous work on planning in
similar adversarial environments addressed worst-case set-
tings, in which the adversary has full knowledge of the de-
fending robots. It was shown that non deterministic al-
gorithms may be effectively used to maximize the chances
of blocking such a full-knowledge opponent, and such algo-
rithms guarantee a “lower bound” to the performance of the
team. However, an open question remains as to the im-
pact of the knowledge of the opponent on the performance
of the robots. This paper explores this question in depth
and provides theoretical results, supported by extensive ex-
periments with 68 human subjects concerning the compat-
ibility of algorithms to the extent of information possessed
by the subjects. First, we analytically examine the case of
a zero-knowledge opponent—a different extreme—and show
that surprisingly, this seemingly best-case scenario (from the
point of view of defending robots) is optimally addressed by
a deterministic, non-randomizing patrol. Moreover, we show
empirically that an optimal algorithm for the full-knowledge
opponent fails miserably in this case. We then address the
case in which the adversary gained partial information, pro-
pose the Combine algorithm that maximizes the expected
probability of penetration detection along with minimizing
the deviation between the probabilities of penetration de-
tection along the perimeter, and support the performance
of this algorithm in the experiments.
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1. INTRODUCTION

This work considers the problem of multi-robot patrolling
around a perimeter in different adversarial environments.
The multi-robot patrol task requires a team of robots to
jointly repeatedly visit some target area in order to monitor
change in state [6, 2]. When working in adversarial envi-
ronments, the robots’ task is to detect changes in state that
are controlled by an adversary. In our case, we assume the
adversary is trying to penetrate through the perimeter into
(or out of) the area. This problem is applicable in many
security applications [1, 11, 10].

In this paper, we concentrate on the information obtained
by the adversary, and its impact on the choice of patrol
algorithm best suited to the task. Previous work usually
assumed that the adversary has full knowledge of the envi-
ronment, and uses this information in order to maximize its
utility (e.g. [10, 1]). This assumption is, from the patrolling
robots’ point of view, the worst case scenario they face.
These studies have shown that the use of non-deterministic
components in the patrol algorithm is advantageous in such
cases. These algorithms, that are designed to work in such
worst case environments, guarantee some lower bound cri-
teria on the performance of the robots, i.e., on their ability
to block the adversary. The question that remained unad-
dressed is whether the algorithms that are optimal in the
worst case scenario are also good in other adversarial set-
tings, and if not - which algorithms are. We address this
question in this paper.

We assume a general robotic movement model, in which
the robots have directionality associated with their move-
ment. Since the patrol path is cyclic, in each time cycle they
can either move forward (with probability p, 0 < p < 1), or
turn around (with probability (1 —p). The action of turning
around is costly in time, and takes 7 time units. We de-
fine the patrol scheme as the value p of the patrol, and the
current location of the robots.

If the adversary has full knowledge of the patrol scheme,
then it will use this information in order to choose a pene-
tration spot such that it will less likely be detected by the
patrolling robots. Agmon et. al. [1] studied this case and
suggested the algorithm MaxiMin for finding the probability
p according to which the robots should switch direction in
each time cycle. The probability p characterizing the move-
ment of the robots is optimal in the sense that it increases
as much as possible the probability of detecting penetrations
in their weakest spot.

On the other hand, if the adversary has no knowledge
of the patrol scheme, then the patrol scheme might be dif-



ferent. In this case, we assume the adversary chooses at
random with uniform probability its penetration spot. The
robots, on the other hand, wish to maximize the expected
probability of penetration detection throughout the perime-
ter. We show the surprising result that as opposed to the
sophisticated algorithms used when the adversary has full
knowledge of the patrol scheme, here the optimal algorithm
for the robots is the simple deterministic patrol in which the
robots simply follow their patrol path without ever turning
around. This results holds even if the cost of turning around
is extremely low: one time cycle (7 = 1).

If the adversary has even very short time to gather knowl-
edge of the patrol scheme, it might easily deduce the deter-
ministic patrol scheme and manage to penetrate successfully.
For such cases we propose a new algorithm, Combine, which
maximizes the expected probability of penetration detec-
tion throughout the perimeter along with minimizing the
standard deviation between the probabilities of penetration
detection throughout the perimeter.

In order to evaluate the behavior of people in this scenario
with different amount of information, we have created the
Penetration Detection Game (PenDet game). In this game,
simulated robots execute different patrol schemes while pa-
trolling around a perimeter, trying to detect penetrations.
The player plays the role of the adversary, hence she is re-
quired to choose a section through, to her understanding,
she will most likely penetrate without being detected . The
game has three stages, where from stage to another the
player gets more time to examine the patrolling robots, and
by that attain more information about the patrol scheme.
The robots execute the three different algorithms: MaxiMin,
Combine and the deterministic algorithm.

Results from extensive experiments with 68 human sub-
jects proved that the Combine algorithm performs best in en-
vironments in which the subjects were exposed to the patrol
information for a short period of time. In case the subjects
were given no information about the environment, then the
deterministic algorithm performed substantially better than
the other algorithms, even though the choices of penetra-
tion spots were not uniform. The MaxiMin algorithm failed
miserably in this case. The MaxiMin algorithm, however,
substantially outperformed the other algorithms in case the
subject were given a long period of time in order to evaluate
and study the system.

2. RELATED WORK

Systems of multiple robots patrolling in adversarial envi-
ronments has been studied in various approaches and con-
texts, from theoretical to empirical solutions. A theme run-
ning through studies of patrol in adversarial environments
is emphasis on a full-knowledge adversary, as a worst case
scenario ([11, 10, 1].

Agmon et. al. [1] studied the problem of perimeter pa-
trol with the existence of an adversary. They assume a
strong adversarial model, in which the adversary has full
knowledge of the patrol scheme. In this case, the adver-
sary can choose to penetrate through the segment in which
it has minimal probability of being detected. They prove
that a non-deterministic algorithm is advantageous and de-
scribe the algorithm MaxiMin for finding the probability p
that characterizes the movement of the robots such that the
minimal probability of penetration detection throughout the
perimeter is maximized. In our work we consider other ad-
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versarial models, and show empirically that this algorithm
is not suitable in those models.

Recent work by Paruchuri et. al. [11, 10] is closely related
to our work. Similar to our assumptions, they assume that
their agents work in an adversarial environment in which
the adversary can exploit any predictable behavior of the
agents. They use policy randomization for the agents be-
havior in order to maximize their rewards. They assume
the adversary has full knowledge of the patrolling agents.
Paruchuri et. al. further study ([10]) this problem in case
the adversarial model is unknown to the agents, although
still the adversary has full knowledge of the patrol scheme.
They again provide heuristic algorithms for optimal strat-
egy selection by the agents. In our work, we discuss different
adversarial models determined by the extent of information
revealed to the adversary. Also, we assume the robots have
partial information about the adversary (specifically, they
know the time it takes him to penetrate).

Most of the work in the area of multi-robot patrol did not
assume the existence of an adversary, and concentrated on
frequency criteria satisfied by the patrolling robots (e.g. [6,
5, 12, 3]). In addition, these studies concentrate on area
patrol rather than perimeter patrol.

Carmel and Markovitch [4] consider games in which the
opponent does not necessarily choose the worst option from
the player’s point of view. They develop the M* algorithm,
which is a generalization of the minimax algorithm that can
use an opponent model. They evaluated their algorithm in
the domain of checkers, and have shown that their algorithm
is advantageous compared to the minimax algorithm. In our
work, we concentrate on adversarial models that differ in the
information available to the adversary on the patrol scheme.

Theoretical work that is based on stochastic processes is
the predator-prey [7] or pursuit evasion [13] problems. Here,
the predator is trying to catch the prey in a graph envi-
ronment. The predator has no knowledge of the location of
the pray, and thus their movement is similar to a random
walk. In our work, on the other hand, we suggest realistic
robotic models in which the movement is correlated to the
movement of a robot, and realistic adversarial models.

3. DIFFERENT ADVERSARIAL MODELS

3.1 Preliminaries

Following, we describe the robotic and environmental model
used throughout our work.

We consider a team of k coordinated robots, patrolling
around a perimeter. The perimeter is divided into N sec-
tions, such that each robot passes through one section per
one time unit while monitoring it. Let ppd be the probabil-
ity of penetration detection. The robots have directionality
associated with their movement, therefore in each time unit
each robot can either go straight or turn around. In this pa-
per we consider the most realistic movement model in which
turning around costs the system 7 > 1 extra cycles, i.e., if
the robot decides to turn around, then it remains in the same
segment during those 7 cycles. An example for this kind of
robots are the differential drive robots commonly used in
research labs. This is a generalized movement model that
was suggested in [1], in which they assume that 7 = 1.

If given a non-deterministic patrol algorithm, the robots
continue their current course with probability p, and turn
around (while staying in the same section for 7 time units)



with probability 1 — p. In a deterministic patrol algorithm
p = 1, i.e., the robots never switch their direction and
continue their movement with no non-deterministic compo-
nents. Note that once the robots decided to switch their
direction, they will continue turning around for 7 time units.

We follow [1] in assuming that the robots are coordi-
nated, i.e., if they switch directions they do it simultane-
ously. Moreover, the robots are placed uniformly with d =
N/k — 1 unoccupied segments between every two adjacent
robots. The motivation for these assumptions as given in [1]
refer to the full knowledge adversarial model, and we ver-
ify the justification of maintaining these assumptions also
in the zero-knowledge adversarial model in Subsection 3.3.
Note that these assumptions were proven to be optimal also
for maintaining frequency constraints in a patrol[6, 3].

We assume the existence of an adversary that has to de-
cide through which segment to penetrate. The time it takes
it to penetrate is not instantaneous, and lasts ¢ time cycles.
This value is known to the patrolling robots. We consider ¢
values between the boundaries | 437 | <t < d — 1. In case
t < |47 ], even a non-deterministic algorithm cannot guar-
antee that the ppd in all segments will be greater than 0. On
the other hand, if ¢ > d, then the deterministic algorithm
will detect all penetrations.

3.2 Compatibility of algorithms with adver-
sarial models

When a team of robots patrols in an adversarial environ-
ment, the team must choose the patrol algorithm that will
maximize their probability of penetration detection (ppd).
The quality of the patrol algorithm, i.e., its guaranteed pen-
etration detection, depends heavily on the actions of the
adversary.

If the adversary chooses the weakest spot of the patrol,
i.e., the segment in which it will less likely be detected, then
the algorithm should strengthen the ppd in that point as
much as possible. On the other hand, if the adversary has
no knowledge of the patrol scheme, it cannot choose such
a weak spot, hence the patrol algorithm should maximize
the expected ppd throughout the perimeter. Therefore the
knowledge obtained by the adversary on the patrol scheme is
critical for the choice of the patrol algorithm.

In [1], the authors prove that a non-deterministic algo-
rithm is advantageous in case the adversary has full knowl-
edge of the patrol scheme. The probability p that char-
acterizes the movement of the robots increases as much as
possible the ppd in the weakest segment, i.e., maximizes the
minimal ppd. However, when using this probability p, the
ppd in other segments might decrease compared to other p
values, specifically p = 1 (deterministic algorithm).

This demonstrates the tradeoff between deterministic and
non-deterministic algorithms for patrol. Generally, when the
robots never turn around, then more segments are visited by
the robots since no time is wasted on turning. However, in
this case the algorithm is fully predictable, therefore more
vulnerable to exploitation by a knowledgeable adversary.
Robots executing a random algorithm, on the other hand,
visit less segments compared to a deterministic algorithm
but visit them more times, which creates unpredictability,
hence more difficult to exploit.

Figure 1 brings an example of the tradeoff between rais-
ing the minimal ppd and lowering the other ppd values of
the segments. In this example, there are 12 unoccupied seg-
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Figure 1: The ppd values in 12 segments, in case t = 11
and 7 = 1, illustrating the tradeoff between increasing
the minimal ppd value and decreasing the ppd values in
other segments.

ments, and t = 11. The ppd is 1 in the first 11 segments if
the algorithm is deterministic, and 0 in the last. If using the
maximin patrol algorithm, then the minimal ppd increases
from 0 to 0.4287 in the last segment. On the other hand, the
average ppd if using the MaxiMin algorithm is 0.575, while
the average ppd using the deterministic algorithm is 0.9166.

Therefore the MaxiMin algorithm is not necessarily suit-
able when the adversary does not have full knowledge. If the
adversary does have full knowledge, then the deterministic
algorithm is necessarily not suitable, as the adversary will
choose to penetrate through the last segment.

We prove in Subsection 3.3 the surprising result that the
optimal patrol scheme in case the adversary has no knowl-
edge of the patrol scheme, and chooses its penetration spot
at random with uniform probability, is the simple, non-
sophisticated deterministic algorithm, i.e., p = 1.

However, assuming the adversary has no information what-
soever on the patrolling robots is again, in many cases, not
realistic. It might draw information even from the position
of the robot, and change its course of action accordingly.
Therefore we present the Combine algorithm, that addresses
the case in which the adversary have partial knowledge of
the system, i.e., it attained some information about the sys-
tem, yet not a complete picture of the scheme.

3.3 Zero knowledge

Consider the extreme case in which the adversary has
no prior knowledge of the patrol scheme and thus it will
choose its penetration spot at random with uniform distri-
bution. Therefore an optimal algorithm for this case will
maximize the ezrpected ppd throughout the perimeter. We
discuss herein this case. We first establish some facts con-
cerning the optimality of placement of the robots along the
perimeter and their synchronization. Then we show that,
surprisingly, the best algorithm for this case is the deter-
ministic algorithm, i.e., p = 1. The logical explanation be-
hind this result is that if using a deterministic algorithm,
the ppd in ¢ segments is 1 and 0 otherwise. If the robots
switch their direction, then they might increase the ppd in
some segments from 0, but they pay first in the time it takes
them to turn around, and second it decreases the ppd from
1 in the other cells, so the overall benefit is inferior.

Following, we show that the requirement that the robots
will be coordinated and preserve uniform distance of d =
N/k between every two consecutive robots is required also
if we wish to maximize the expected ppd throughout the
perimeter, similar to the requirement with the existence of
a strong adversary.

The expected ppd in the system of N segments given k



robots and penetration is done at random with uniform dis-
tribution, is the average of ppd values in each segment. De-
note the probability that a penetrator will be detected in
segment s; by robot R; during ¢ time units by ppd]. This
is the probability of R;’s first visit to s; during this time.
Therefore the ppd in segment s; is the sum of probabili-
ties of the first visit by some robot R;,1 < j < k, ie,
ppd; = Z§:1 ppd¥. The expected ppd is, then, E(ppd) =
Zf.vzl Zle ppd®.  However, Zle ppd® might be greater
than 1, therefore the overall expected ppd is E(ppd) =

Zf.vzl min{l,Zf=1 ppd®}. If always 25:1 ppd® < 1, then
the location of the robots is irrelevant to the value of E(ppd).

However, this is not the case - consider for example the
case in which the robots are located in adjacent segments.
Agmon et. al. [1] have shown that as the distance between a
robot R; and a segment s; increases, the probability of arriv-
ing to it during ¢ time units decreases, i.e., ppd§ decreases. In
order to maximize the expected ppd, it is necessary to place
the robots such that Vs;, 1 <i < N, Zle ppd¥ < 1. Since
the patrol path is circular, decreasing the distance between
two robots R, and Rp, necessarily increases the distance be-
tween two robots R, and R,. Therefore the optimal place-
ment of the robots is with uniform distance between them,
i.e., d = N/k. Guaranteeing that this optimality measure
is maintained is by keeping the robots synchronized, i.e., if
they choose to switch directions they should do it simulta-
neously.

Next, we show that surprisingly, the optimal patrol scheme
for this case is the deterministic patrol algorithm (p = 1),
for all 7 > 1. Denote the ppd in segment s; by Ry after
switching its direction r times by ppd?(r).

LEMMA 1. Consider a sequence of 2d segments with one
robot Ry in the mid segment at time 0. If the robots switched
directions v > 1 times during t cycles of execution, then
2311 ppd?(T) <t for every T > 1.

Proor. We prove, by induction on r, that for every r > 1,
Z?il ppd?(r) < Z?il ppd?(r—l). Note that the sum of ppd
for p =1 (r = 0) is exactly ¢, hence by proving the induction
we prove the lemma.

As the base case, consider r = 1 and 7 = 1. Note that
since r > 1 then necessarily p < 1. During ¢ cycles, Ro can
visit and monitor at most ¢ segments. Therefore we should
consider t — 1 segments from both sides of Ry (one cycle is
“wasted” on turning around). We are interested only in the
probability of first visit at a segment in order to determine
the ppd in that segment. Without loss of generality, we
assume Ry is headed to the right.

In order to prove the lemma, it is enough to show that the
sum of expected ppd if p < 1 is less than the sum of ppd in
case p = 1, which is ¢. For that we check the addition of ppd
to the segments to the left of Ry in case p < 1, and compare
this addition to the reduction of ppd to the segments to the
right of Ry (from 1 in each segment if p = 1). Denote the
segment in which Ry initially resides on by so, the segments
to its right in ascending order (si,...,s:) and segments to
its left by descending order (s—1,8-2,...,8—¢+1). First of
all, the biggest decrease factor is to segment s;, from 1 to 0.
Next, the ppd in each segment s;, 1 <1i <t —1, to the right
of Ry decreased from 1 to pi. Therefore the sum of reduction
is1+(1—p)+(1—p)+...+1-p7") =t—ip"
On the other hand, the addition of ppd to the segments
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to the left of Ry is as follows. The ppd in segment s_; is
(1—p)p+p(1—p)pp+pp(1—p)pppp+ - - . +p"> " (1 —p)p'/>.
Similarly, the ppd in segment s_2 is (1 —p)pp+p(1—p)ppp+
ot pt/2_3(1 — p)pt/?*2. Generally, the sum of all ppd in
the segments to the left of Rg is (1 —p)p -+ (1 —p)p? +2(1 —
3 t t—1 _ 2 3 4 5
pp°+..+50-pp" = (A -p)lp+p +2p" +2p" +3p” +
3pS 4+ ... 4+t/2p" "% +t/2p" . Foreveryt>2,t— Ef;i p
is greater than the above expression (for t = 1, » = 1, this
is straightforward, as the ppd in all segments but s¢ is 0).
In order to prove the lemma for a general r, we divide the
sequence into two: the sequence to the right of Ry and to the
left of Ry. For every 1. <j<r, let E;:l_t_‘_jH ppd? = 6(5),
ppd”, ;= 0'(4), 2] ppdf = a(j) and ppd]_; = a’(j) (see
Figure 2).
We now assume correctness for v’ < r, i.e., if Ry switches

directions 7’ < r times during the execution then 21211 ppd;(Ro)

< t, and prove that this holds also for ' =r, 7 = 1.

The sum of ppd? for r — 1 number of direction switches is
§(r—1)+68(r—1)+a(r—1)+a'(r—1). For r switches, since
the robots spend an extra time cycle for turning around, the
two extreme segments with ppd > 0 are now unreachable,
hence in this case §'(r — 1) and o'(r — 1) no longer exist.
Now, 6(r) + &’ (r) is similar to changing the initial direction
of the robot (by multiplying by 1—p), and obtaining exactly
a(r — 1), hence 6(r) + 6'(r) < (1 — p)a(r — 1). Similarly,
a(r) +d'(r) < (1 —p)é(r — 1). Altogether, 21221 ppd? () =
5(r)+6'(r)+a(r)+a/(r) <A =pla(r—1)+ (1 -p)d(r—1)
and since (1 — p) < 1 this is smaller than Zf‘il ppd? (r — 1).
By the induction assumption, this is smaller than t.

The proof follows directly for 7 > 1, as the number of
segments that become unreachable increases from 1 to 7 for
each direction switch, while the probability of penetration
detection in other segments in the same. Therefore neces-
sarily the sum of ppd after r > 1 direction switches with
cost T is now considerably smaller than the sum of ppd after
r that costs only one extra time cycle, which is less than ¢,
hence with cost 7 for each switch this also holds. [

9 o
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Figure 2: Illustration of proof of Lemma 1.

COROLLARY 2. If the team of robots switched their direc-
tion r > 0 times during the execution (each directions switch
lasts T > 0 time units), and the adversary chooses at ran-
dom with uniform distribution its penetration spot, then the
expected ppd throughout the perimeter is less than t/d.

This is since the expected ppd throughout the perimeter
is /N Y YN ppd,(Ry) < 1/N Y5t = kt/N = t/d.

THEOREM 3. The expected ppd throughout the perimeter
assuming uniform adversary is mazximal in case the value
p characterizing the patrol of the robots equals 1, i.e., the
patrol is deterministic for every T > 1.

PrOOF. If p = 1, then each robot R;, 1 < j < k, assures
ppd(R;) = 1 in exactly ¢ segments, hence the expected ppd
throughout the perimeter is 1/N 37, = 1%t = kt/N = t/d.
Following Corollary 2, every patrol scheme that causes the
robots to switch direction once or more, i.e., p < 1 has ex-
pected ppd less than ¢/d. Therefore the deterministic patrol
guarantees maximal expected ppd. [



3.4 Partial information

We have shown that the algorithm maximizing the ex-
pected ppd is the deterministic algorithm (Theorem 3). How-
ever, the deterministic algorithm creates high deviations be-
tween the ppd values in the segments: in ¢ segments the ppd
equals 1, and in the other d — ¢ 4+ 1 segments the value is
0. In addition, the deterministic algorithm is easy to de-
tect, therefore if the adversary has even little time to study
the system, it might deduce the type of the algorithm and
choose to penetrate through a segment with ppd = 0, hence
penetrate successfully. If we want to adapt a more “risk
averse” approach, we would want to minimize the deviation
between the ppd values throughout the perimeter. Therefore
we present the Combine(d, ¢, w) that maximizes the expected
ppd for the given d and ¢ while minimizing the deviation be-
tween the ppd along the segments. This combination is done
using the weight w,0 < w < 1 for maximization of expected
ppd and weight 1 — w for minimization of the deviation.
A full description of Algorithm Combine is given in Figure
3. Note that this algorithm uses a procedure of Algorithm
MaxiMin for finding the ppd in each segment. This procedure
is dynamic-programming inspired, separates each state into
two based on directionality (clockwise and counterclockwise)
and by assigning values in a matrix it determines the ppd in
a segment. An absorbing state is used in order to represent
the fact that the ppd is determined only by the first visit
to a segment. Denote the standard deviation between the
ppd values of a vector of functions F = {f1,..., fa—1} by
stdev(F'). Denote each segment 4,1 <i<d—1 by s;.

Algorithm Combine(d,t, w)

1. Calculate F' as follows:
(a) For each sinit = s; € {s1,-.

(b) Create the matrix M of size (2d+2) x (t+ 1), initial-
ized with 1 in Mo(sinit) and Os otherwise, using the
following rules.

.y Sdfl} do:

i. For each entry M;(s{"”) set value to p -
Mi—1(s§¥)) + g - Me—1(s§°).
ii. For each entry M;(s5¢)

7

My—1(s5¢1) +q- My—1(s§™).

For absorbing states, set entry Mi(sqps)

Mi—1(8abs) + D [Mi—1(5§") + Mi—1(s5)].
(¢) F <« row t of M.

2. Q1+ 1/dYi=1F;

3. Q2 «— 1 —stdev(F)

4. Q —wQ1 + (1 —w)Q2

5. return p = max{Q}

set value to p -

iii.

Figure 3: Description of Combine algorithm.

4. EVALUATION

In order to evaluate the behavior of the adversary and
the performance of the robots in adversarial environment
with different knowledge types, we created the Penetration
Detection game (PenDet-game). This game was played by
68 human subjects that played the role of the adversary,
and tried to penetrate through a perimeter defended by a
team of simulated patrolling robots. We describe the game
in Subsection 4.1, and the results in Subsection 4.2.
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4.1 ThePenDet-game

In the PenDet-game, a human player played the role of the
adversary, working against a team of simulated patrolling
robots. Therefore the player was required to pick a segment
through which he thought he could penetrate without being
detected. The game consisted of three stages, where in each
stage the player had more time to study the system, i.e.,
more information concerning the patrolling robots was re-
vealed gradually to the player. In the following, we describe
the game in detail.

Note that our choice of performing experiments in this
simulated environment, rather than actual robots is not triv-
ial. The reason for preferring to conduct such experimental
research, is that managing to evade patrolling robots us-
ing current lab-robots is simple — the adversary can sim-
ply jump over them. Moreover, in order to evaluate perfor-
mance of the patrol algorithms extensive experiments were
required. This is again impossible to create with real robots.
Note that there are empirical results from running experi-
ments with real robots in systems with adversarial teams,
e.g. the Robocup game [8], however it was conducted be-
tween two teams of robots, not humans vs. robots.

The game consists of four robots patrolling around a trea-
sure pot. In the game screen, the player can see the circle
representing the perimeter and the patrolling robots (Figure
4). The distance between the robots and the time it takes
to penetrate change from one subgame to the other. These
values are presented explicitly to the player throughout the
subgame. For simplicity reasons, we designed the game with
7 = 1, i.e., each time the robots switched directions they
stayed in the same segment during that time cycle.

&

Distance: 8

p “

Time to penetrate: G

s Choose peneiration spot
¥

Figure 4: The PenDet-game screen.

In order to simulate different knowledge states, the game
has three stages.

1. In the first stage, the player was shown a static picture
with the current location of the robots. The direction
of the robots (where they are facing) could be easily
deduced from the picture of the robots. The player
was requested to choose the segment through which
he believes he will penetrate without being detected.
This stage consists of three such sub-games. In each
sub-game the distance between the robots and/or the
penetration time ¢ was different.

2. In the second stage, the player was shown five seconds
of the patrol. After these five seconds passed the player
was requested to click on the segment through which
he thought he has best chances to penetrate without
being detected. No feedback is given to the player



regarding whether it succeeded or failed in his attempt
to penetrate. This stage consists of six sub-games. In
each sub-game the patrol scheme of the robots, the
distance between the robots and/or the penetration
time t is different.

3. The third stage of the game is a three minute game, in
which the player can try to penetrate as many times as
he wants (as long as time permits) simply by clicking
on the section through which it decides to penetrate.
The player can see whether it succeeded or failed in
his attempt. This stage also consists of six sub-games.
In each sub-game the patrol scheme of the robots, the
distance between the robots and/or the penetration
time ¢t is different.

Each game (and all its subgames) was played once by
each player, so that the primacy of the choices taken by the
players in the first stages is maintained.

The PenDet-game was played by 68 human subjects (29
Female/39 Male). All subjects were senior undergraduate
students in computer science. Each subject played the game
once. The game was set online, and the students were re-
quired to play it as part of course requirements.

The information regarding the d, ¢, p values tested, is given
in the Table 1.

Table 1: The d,t,p values tested in the experiment.

d t | p Det | p Combine | p MaxiMin
16 | 9 1 0.93 0.87
8 5 1 0.92 0.75
8 6 1 0.96 0.7
121 9 1 0.97 0.77
12 | 11 1 1 0.82
16 | 15 1 1 0.85

Three different patrol algorithms were executed in three
stages of the game. The patrol algorithm is determined by
the probability p characterizing the robots’ movement. The
first algorithm corresponds to the zero knowledge adversary,
therefore following Theorem 3 this is the deterministic pa-
trol algorithm (p = 1). We denote this algorithm by Det.
Note that the player does not have completely no knowledge
of the patrol scheme, as it knows the distance between the
robots and the direction it is facing. However, this informa-
tion is minimal and reveals nothing concerning the patrol
algorithm. The second algorithm is the Combine algorithm
described in Figure 3. The third algorithm corresponds to
the full knowledge adversary. Note that the player does not
have full knowledge, but it gets a long period of time to
study the system, which brings it close to a full knowledge
adversary. In this case, the p values represent the probabil-
ity yielding the maximal minimal ppd along the perimeter.
These value of p were calculated using the MaxiMin algo-
rithm described in [1].

Det was executed in the first and second stages of the
game, where MaxiMin and Combine were executed in all
three stages of the game. The reason for omitting Det from
the third stage is threefold. First, the combined algorithm
reaches 1 as ¢ gets close to d, and is exactly 1 (determin-
istic) in case t = d — 1. Therefore checking two cases of
deterministic algorithms would give a clear picture of this
behavior. Second, we assumed that in this case the learn-
ing curve of the players will be steep, i.e., they will under-
stand that this is a deterministic algorithm and succeed in
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nearly all attempts to penetrate. Last, we thought that this
algorithm might bore the players and unmotivate them to
play thoughtfully for long. This was verified by feedback we
received from subjects in early development stages of the
game.

In order to evaluate the performance of the three algo-
rithms, we executed the algorithms on the input retrieved
from the players. In the first stage, each player provided
3 input lines, each compatible to one pair of d and ¢. For
each such input line, we executed each algorithm 100 times
in order to evaluate the penetration detection ratio. In the
second stage, each input from each player corresponds to a
triplet, d,t,p. Therefore each input line was continued 100
times only with the algorithm it initially executed. In the
third stage, each player provides multiple input lines, each
such line corresponds to one choice of penetration spot, suit-
able for a triplet d, ¢, p of the subgame. All such input lines
were recorded as is, and the information regarding success-
ful/failure of penetration was extracted from the game itself.

4.2 Experimental results

In the following, we describe the results of the experiments
with the PenDet-game. First we describe the bottom line
summary of the results, then we discuss in detail the results
of each stage of the game.

Figure 5 describe the summary of the results obtained
from all three stages of the game. It presents the maximal,
minimal and average penetration detection ratio obtained by
each of the algorithms we tested in each stage of the game.
Comparing these values, it is clearly seen that in the first
stage the deterministic algorithm is the best: its average is
considerable higher than the average of the other algorithms,
and the minimal penetration detection is also considerable
higher. Note that the maximal value of penetration detec-
tion is equal to the maximal value of the Combine algorithm,
since this value is resulted from the Combine algorithm when
it offers deterministic behavior. In the second stage, the av-
erage value of penetration detection obtained by all three
algorithms is similar, yet the Combine algorithm is consider-
ably better than the deterministic algorithm in its minimal
value, and substantially better than the MaxiMin algorithm
in its maximal value. In stage 3, MaxiMin significantly out-
performs the Combine algorithm in both average and max-
imal penetration detection. The minimal penetration de-
tection is similar, as when ¢ is small relative to d, MaxiMin
cannot guarantee high ppd values, thus they are similar to
the ppd guaranteed by the Combine algorithm.

The game results are mainly evaluated in terms of ac-
tual percentage of penetration detection from all three al-
gorithms, which corresponds to the robots’ performance in
different scenarios. In some cases, we have found that the
choice of the player of the section through which he decided
to penetrate yielded interesting results. This corresponds to
the decisions taken by the adversary after attaining different
levels of information.

Stage 1:

In the first stage, nearly no information was given to the
player. Therefore the players could have chosen at random
the penetration spots. In Figure 6 we see that, however, in
most cases the players chose to penetrate through one of two
segments in the middle. This is not surprising, considering
that people are drawn to central positions when instructed
to choose between positions that have no apparent special
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Figure 5: A summary of results, divided into three
stages: no information (stage 1), short-term revelation
of information (stage 2), and long term revelation of in-
formation (stage 3) for the three patrol algorithms. Each
line represents the maximal, minimal and average pene-
tration detection. The best performing algorithm in each
stage is noted by a surrounding dotted rectangle.

characteristics [9]. In addition, the direction of the robot is
visible to the player, hence he might take that into consider-
ation. This is apparent in the case where d = 12 and ¢t = 11,
in which 28% of the players chose to penetrate through the
last segment.
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Figure 6: Choices of penetration positions in stage 1 for
different values of d: d = 8,12,16. The x axes represents
the segment, and the y axes the percentage of subjects
that chose to penetrate through that segment.

As seen clearly in Figure 7, the algorithm that managed
to detect the highest percentage of the penetrations is the
deterministic algorithm (statistically significant, using t-test
with p-value < 0.01). Therefore the deterministic algorithm
is indeed more suitable for detecting penetrations in case
the adversary has nearly no knowledge of the patrol scheme.
Moreover, even if the adversary has some knowledge - in
our case the distance between the robots and the direc-
tion they are currently heading - this algorithm still nicely
performs. However, the expected values of ppd (“theoret-
ical expected ppd” in Figure 7) are higher than what was
obtained in the actual game. The reason is that the al-
gorithm is maximizing the expected ppd if the adversary
chooses at random its penetration spot. However, as we
have seen previously, this is not necessarily the case (in other
words: it expects a less sophisticated adversary). On the
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other hand, the MaxiMin algorithm expects to be teamed
up against a much more sophisticated adversary, therefore
the actual penetration detection percentage is higher than
the theoretical values. Note that the Combine algorithm co-
incides with the deterministic algorithm for some scenarios
(t/d = 11/12,15/16), therefore the penetration detection
percentages of both are identical in those cases.
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Figure 7: Performance of the three different algorithms
in stage 1 (adversary with nearly zero knowledge).

Stage 2:

When only a small amount of information was revealed to
the player concerning the patrol scheme (5 seconds), then
the Combine algorithm performed generally better compared
to the other algorithms. Moreover, We checked the min-
imal 25% values and the maximal 25% values of penetra-
tion detection obtained by the algorithms, and found that
the Combine algorithm is statistically significantly better
than MaxiMin and significantly better than Det algorithm
in cases where Combine is non deterministic (using t-test
with p—value < 0.01) - see Figure 8. Note that the theoret-
ical values of ppd in both Combine and Det are considerable
higher than the actual penetration detection ratio. This is
clear, as the robots expect an adversary with no knowledge
about the system, yet are faced against an adversary that
has gained some information. On the other hand, the theo-
retical values of the MaxiMin still pose as a lower bound to
the performance of the robots.
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Figure 8: Performance of the three different algorithms
in stage 2 (adversary with little knowledge)

Stage 3:

We present the results from stage 3 in two ways: the overall
performance and the performance after omitting the first 30
seconds of the game. We consider the first 30 seconds to be
a learning period, mainly for the Combine algorithm, when
it produces a deterministic schedule.



The following results are obtained when comparing the
performance of the robots when omitting the first 30 sec-
onds. When using the combine algorithm, then when the al-
gorithm is deterministic the penetration detection decreases
from 30% or more to 20%. Therefore even when the adver-
sary observed the patrol for only 30 seconds, it managed to
substantially increase its chances of successful penetration.
In fact, penetration detection ratio using the MaxiMin algo-
rithm is statistically significantly better compared to using
the Combine algorithm (t-test with p-value < 0.01).

This fact is even more interesting, as we expect that when
the penetration time ¢ is higher, the robots will more likely
detect the penetration (it can be clearly seen for the MaxiMin
for all d,t pairs and for Combine in all non-deterministic
cases without removing the learning phase). However, since
the deterministic patrol scheme is simple and easily detected,
when used even with high values of ¢, the adversary takes
advantage of it and manages to penetrate with a higher
probability. This fact again strengthens the motivation for
inventing an additional patrol scheme, the Combine algo-
rithm, which is described in Figure 3. Note that the the-
oretical MaxiMin ppd guarantees still a lower bound to all
non deterministic behaviors tested here.
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Figure 9: Performance of the two different algorithms
in stage 3 (adversary with full knowledge)

5. SUMMARY AND FUTURE WORK

This paper considers the problem of multi-robot patrol
around a closed area, in the presence of an adversary trying
to penetrate the area. Previous work mostly concentrated
on strengthening the abilities of the team of agents facing a
strong adversary [10, 1]. However, adapting this behavior by
a team of robots is not beneficiary in case they are not facing
an adversary with full knowledge of the patrol scheme.

In this work, we have shown that as opposed to the opti-
mality of non-deterministic algorithms when working against
a strong adversary, in case the adversary has no knowledge
of the patrol scheme, a simple deterministic algorithm is op-
timal. This is a surprising results, especially in the case in
which turning around is not a costly operation. We propose
an algorithm to deal with adversary having partial informa-
tion, Combine, that maximizes the expected probability of
penetration detection along with minimizing the deviation
between the probabilities.

We performed extensive experiments with human subjects
concerning the compatibility of algorithms to the extent of
information possessed by the subjects. We have shown that
the Combine algorithm performed best if some information
was revealed to the subjects. The optimality of the deter-
ministic algorithm for subjects with no knowledge and the
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optimality of the non-deterministic algorithm for adversary
with more information was verified by the experiments.

There are various points we wish to address as future
work. First, it could be shown that the MaxiMin algorithm
is in equilibrium, however this is not the case for the other
algorithms. Therefore we would like to further examine the
system in game theoretical tools. We are interested in deal-
ing with errors in the movement model of the robots and in
sensor problems. For example, what are the consequences
of a coordination failure between the robots, what happens
if some robots deviate from their expected path or velocity,
and so on. We are also currently in contact with commer-
cial companies in order to evaluate the performance of our
algorithm in a large scale simulation.
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