
Structure in Threes: Modelling Organization-Oriented
Software Architectures Built Upon Multi-Agent Systems

(Short Paper)

Matthias Wester-Ebbinghaus
University of Hamburg
Vogt-Kölln-Straße 30

22527 Hamburg
wester@informatik.uni-hamburg.de

Daniel Moldt
University of Hamburg
Vogt-Kölln-Straße 30

22527 Hamburg
moldt@informatik.uni-hamburg.de

ABSTRACT
Software systems are subject to increasing complexity and
in need of efficient structuring. Multi-agent system research
has come up with approaches for an organization-oriented
comprehension of software systems. However, when it comes
to the collective level of organizational analysis, multi-agent
system technology lacks clear development concepts. To
overcome this problem while preserving the earnings of the
agent-oriented approach, this paper propagates a shift in
perspective from the individual agent to the organization
as the core metaphor of software engineering targeting at
very large systems. According to different levels of analysis
drawn from organization theory, different types of organi-
zational units are incorporated into a reference architecture
for organization-oriented software systems.

Categories and Subject Descriptors
D.2 [Software Engineering]: Architectures; J.4 [Social

and Behavioral Sciences]: Sociology; K.6 [Management

of Computing and Information Systems]: Software
Management

General Terms
Software management, organization theory and design

Keywords
Multi-organization systems, multi-agent systems, organiza-
tional modelling, organization-oriented software architectures

1. INTRODUCTION
To counter the demands of modern software systems as

ever increasing in size and complexity, multi-agent system
research has come up with organization-oriented approaches
that seek to combine local agent autonomy with the assur-
ance of global system characteristics by imposing ”organiza-
tional facts” onto the system (cf. [12, 1] for an overview of
recent and current work in the field).

Cite as: Structure in Threes: Modelling Organization-Oriented Soft-
ware Architectures Built Upon MAS (Short Paper), Wester-Ebbinghaus and
Moldt, Proc. of 7th Int. Conf. on Autonomous Agents and
Multiagent Systems (AAMAS 2008), Padgham, Parkes, Müller and
Parsons (eds.), May, 12-16., 2008, Estoril, Portugal, pp.1307-1310..
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

However, when relating multi-agent system approaches to
organization theory it becomes obvious that the true poten-
tial of the organizational metaphor is not entirely exploited.
Multi-agent system research so far has mainly focussed on
the conception of organizations as contexts for individual
agents. The importance of organizations as corporate actors
themselves when turning to more global (ecological) levels
of analysis [10] has been largely neglected [12].

The aim of this paper is the provision of a software devel-
opment approach that builds upon and extends the multi-
agent system approach in order to account for the true po-
tential of the organizational metaphor. In [4] Ferber ad-
vances the distinction between ACMAS (agent-centred multi-
agent systems) and OCMAS (organization-centred multi-
agent systems). We consider our approach as one further
step in this shift of paradigm from agent- to organization-
orientation and term the systems introduced by our ap-
proach MOS (multi-organization systems).

In Section 2 we present our approach of modelling open
system units. The introduced universal scheme is utilized
to propose concrete organizational units that constitute a
reference architecture for multi-organization systems in Sec-
tion 3. We conclude our results in Section 4.

2. OPEN SYSTEM MODELLING
We address software systems that are composed of various

subsystems and adopt the modular view of each system as
a unit. Few system units are fully self-sufficient and thus
need to be open to their environments [9]. We comprehend
the environment of each system unit again as a system unit
(or multiple system units). Thus we trace the relationship
of systems to their environment back to the (not necessarily
unique or disjoint) nesting of system units. By recursively
applying this understanding, we arrive at a hierarchy of sys-
tem units, each of which is both an embedding environment
and environmentally embedded. This conception is in line
with Simon’s assertion that hierarchical clustering is a fun-
damental feature of all complex systems [11].

Figure 1 illustrates our understanding of an open system
unit as a structure in threes. 1In order to study the processes
of an open system unit exhaustively we have to consider
three orthogonal dimensions with three values respectively.

1The model has an underlying coloured Petri net semantics,
cf. [5]. However, it contains simplifications (explained in the
main text) that would have to be resolved in order to obtain
a well-formed Petri net model.



use frame leaveenter

+

+

maintenance

operation

integration

peripheral processes

govern removecreate

governance processes

offer frame vanisharise

integration processes

*

Figure 1: System Unit as Stucture in Threes

• Directions System processes impact the system unit
from different conceptual directions. Integration pro-
cesses impact the system unit bottom-up (“from be-
low”). They include actions of and interactions be-
tween the embedded system units of the system unit
in focus. Peripheral processes impact the system unit
top-down (“from above”). They include actions and
interactions of the system unit in focus (which in turn
have to be mapped onto its internal system units) in
relation to its embedding system unit(s). Finally, gov-
ernance processes impact the system unit in focus “at
its own level”. They fulfil the purpose of manifesting,
preserving and enforcing the rules of the system and
supervising the evolution of these rules over time.

• Basic Operations The evolution of the system unit in
focus solely depends on its internal system units. The
basic operations that system processes relate to are
the adding of new internal units, the removal of for-
mer ones, and the modification/usage of existing ones.
These basic operations are enlisted for each process
class respectively with different names indicating their
different contextual function.

• Internal System Units The internal system units
of the system unit in focus are classified according to
the processes in which they are involved. Operation
units are those that undertake the primary activities
and can be considered as the intrinsic parts of the sys-
tem in focus. However, it is the connections and in-
terdependencies between its internal system units that
define the overall behaviour of a system unit. The
integration units see to it that the singular operation
units are integrated into a joint system in the first
place. They define the means by which the operation
units may participate in the system and so take care
of their technical embedding. The strategic embed-
ding is taken care of by governance units. They watch
over the system unit’s rules, laws and regulations con-
cerning structural and behavioural aspects and exploit
mechanisms for their enforcement.

Process participation of internal system units is mod-
elled by arcs. The arcs connecting to the outer circle
are shortforms that include all three cases for the inner
circles respectively. An arc indexed with a plus indi-
cates that one or more substitutes from the associated
class of system units are involved. Analogously, a star
indicates that zero or more substitutes are involved.

The nesting of system units is achieved by recursively
overlaying the system processes of an embedding system unit
with the peripheral processes of embedded system units. 2

3. REFERENCE ARCHITECTURE
We advance an architectural proposal for multi-organization

systems. It is based on the universal scheme of open system
units from the former section and introduces particular em-
bodiments according to architectural level.

3.1 Overview
The architecture consists of four levels of organizational

units (particular embodiments of the universal scheme of
open system units) and is illustrated in Figure 2.

organizational field

society

MAS department

organization

1

n m

n 1

n

Figure 2: MOS Reference Architecture: Overview

The organizations are the central units of the system with
respective sets of exclusively assigned departments as their
internals and multiple organizational fields as their environ-
ments. The society serves as the system closure and inte-
grates all organizational fields.

These four levels are in line with Scotts classification of
analysis levels in organization theory [10]. He identifies
the socio-psychological level, the organization structure level,
and the ecological level where the latter is further refined into
the organizational field level and the societal level.

3.2 Architectural Levels
No complete description of the architectural levels is pos-

sible in this paper. We omit the explicit distinction between
the basic operations (add, remove, modify). All arcs that
are not indexed with a star are implicitly to be considered
as being indexed with a plus. In order to enrich the models
with additional semantics, we introduce different arc types
for process participation according to Figure 3.

Department. Figure 4 displays a department. From a
software engineering perspective the departments are multi-
agent systems and close the connection to agent-oriented
technology.

2Following our specific modelling approach, this overlay can
be achieved by turning from conventional coloured Petri nets
to reference nets [7]. Reference nets implement the nets-
within-nets paradigm where a surrounding net (the system
net) can have nets as tokens (the object nets). Reference
semantics is applied, so these tokens are references to net
instances. Synchronous channels allow for synchronous com-
munication between net instances.



governing / enforcing

active

passive

immutable

Figure 3: Arc Types for Process Participation

management

intra-departmental
interaction

members

management

positions +
grouping

inter-departmental
interaction

organizational
conformance

arrangement

supervision

*

*

*

Figure 4: Architectural Level: Department

The requirement of departments being exclusively assigned
to organizations is a logical one. Departments of different
organizations need not be disjoint and might for example
acquire their members from the same physical multi-agent
system. Nonetheless, it is crucial to distinguish between
different departments and their affiliations to different or-
ganizations. This issue has been addressed by multi-agent
system technology and corresponding solutions follow the
common organization implementation architecture for open
MAS from [1]. The integration units as positions and group-

ing characteristics represent an organizational layer that en-
capsulates organizational specifications. This layer offers
proxies to which domain agents from an open multi-agent
system must connect to act as members in the organization.
In this sense, all organizational units of the reference ar-
chitecture can be regarded as logical units (nevertheless em-
bodied by explicit software constructs, e.g. being agentified)
that are built upon physical multi-agent systems.

Supervision and authoritarian decision making might be
woven into the position and grouping specifications or might
instead (or additionally) be taken care of by an explicit
management. However, it is only the position and group-
ing constellations that the management may fully govern.
The members are black boxes that may only be surveyed,
sanctioned or dismissed.

Organization. Figure 5 displays an organization. From
a software engineering perspective, the organizational level
is the core part of the reference architecture. The level of
abstraction of this architectural level determines the scope
of the overall system.

Different purposes, requirements and needs of the organi-
zation are mapped onto its functional departments. Mintzberg

departments

dominant
coalition

superstructure

intra-organizational
interaction

superstructural
conformance

dominant
coalition

inter-organizational
interaction

field-institutional
conformance

dominant
coalition

strategic
conformance

*

*

Figure 5: Architectural Level: Organization

for example identifies five fundamental types of organiza-
tional subdivisions (operating core, middle line, strategic
apex, technostructure, support staff ) that are integrated into
an organizational superstructure [8].

Each organization has an authority that is in charge of
power and setting the organizational goals and strategies.
Cyert and March come up with a quite general concept [2].
Organizations are viewed as being composed of various and
varying coalitions, each of which seeks to impose its prefer-
ences onto the larger system. If none of them succeeds, they
seek as allies other coalitions whose interests are related.
Finally, a conglomerate will arrive at a mutually acceptable
agreement and at the same time will be influential enough
to constitute the dominant coalition of the organization.

Superstructure as well as all functional departments are
white boxes from the perspective of the organization and
may be fully governed.

Organizational Field. Figure 6 displays an organiza-
tional field. From a software engineering perspective, each
field represents a distinct living space for organizations and
constitutes a consistent perspective on a part of the overall
software system.

An organizational field consists of organizations that to-
gether constitute a (legally) recognized area of institutional
life: suppliers of core as well as related services and products,
consumers, facilities for mediating the exchange of goods and
services, and agencies with regulatory oversight [3].

Concerning the characteristics of an organizational field,
two broad categories are distinguished according to Scott [10].
The Material-resource structure emphasizes the fact that or-
ganizations are production systems and as such require re-
source and energy inputs. The environment is viewed as a
stock of resources and a source of information. These pro-
vide the primary premise under which organizations come
together and give rise to technical controls.

However, a material-resource environment always rests on
an institution. Institutional conceptions of environments
emphasize the fact that organizations create and recreate
their social reality. Institutions are composed of regulative,
normative, and cultural-cognitive elements that together with
associated activities and resources provide meaning and sta-
bility to social life and give rise to institutional controls.



field-internal interaction

institutioninstitution

field-external interaction /
expansion

conformance
to societal laws

material/resource
structure

inhabitants

institution

institutional
amendment

institutional
conformance

institutional
imprinting

*

*

Figure 6: Architectural Level: Organizational Field

The institution governs the material-resource structure as
white boxes, channelling the circumstances under which in-

habitants may come together. The inhabitants themselves
are black boxes, whose habits and practices can only be
monitored and potentially rewarded or sanctioned.

Society. Figure 7 displays the societal level as the over-
arching closure of the software system.

government

cross-field
interaction & migration

fields

government

field
infrastructure

legal imprinting

law amendment

Figure 7: Architectural Level: Society

Organizational fields were characterized as distinct living
spaces for organizations. The society contains various fields

that allow to represent different (and possibly opposing)
requirements and functions of the overall software system.
It further allows certain transitions between fields that are
both implemented and restricted by the field infrastructure.

A government is responsible for setting and implement-
ing the global, field-spanning laws of the system. Both the
field infrastructure and the fields themselves are governed as
white boxes.

4. CONCLUSION
We have presented an extended perspective on current

organization-oriented multi-agent system engineering and de-

rived a reference architecture for multi-organization systems.
The rationale for the selection of the particular organiza-
tional units of the architecture is deeply rooted in organiza-
tion theory. The result is a software engineering approach
that supports micro as well as macro perspectives and at the
same time is accompanied by concepts and constructs that
are familiar from real-world social scenarios.

Turning to future work, the practical usage of the archi-
tecture is the most pressing issue. As a starting point, a
Petri net-based model of organizational structures and ser-
vices is presented in [6]. At the same time it is demonstrated
how agent technology can be used as a middleware to deploy
the organizational specifications. The modelling approach is
general enough to be adapted for arbitrary levels of abstrac-
tion. In addition, the approach allows to define collective
entities and nest them inside each other and thus supports
the development of multi-level architectures based on open
system units as presented in this paper.

5. REFERENCES
[1] O. Boissier, J. Hübner, and J. S. Sichman.

Organization oriented programming: From closed to
open systems. In Proceedings of the Seventh
International Workshop on Engineering Societies in
the Agents World (EASW 2006), 2006.

[2] R. Cyert and J. March. A Behavioral Theory of the
Firm. River, NJ: Prentice Hall, 1963.

[3] P. DiMaggio and W. Powell. The iron cage revisited:
Institutional isomorphism and collective rationality in
organizational fields. American Sociological Review,
48:147–160, 1983.

[4] J. Ferber, O. Gutknecht, and F. Michel. From agents
to organizations: an organizational view of
multi-agent systems. In Agent-Oriented Software
Engineering IV, 4th International Workshop, AOSE
2003, volume 2935 of Lecture Notes in Computer
Science. Springer Verlag, 2003.

[5] C. Girault and R. Valk. Petri nets for systems
engineering: a guide to modelling, verification and
applications. Springer Verlag, 2003.

[6] M. Köhler and M. Wester-Ebbinghaus. Closing the gap
between organizational models and multi-agent system
deployment. In Multi-Agent Systems and Applications
V, volume 4696 of Lecture Notes in Artificial
Intelligence, pages 307–309. Springer-Verlag, 2007.

[7] O. Kummer. Referenznetze. Logos Verlag, Berlin,
2002.

[8] H. Mintzberg. Structure in Fives: Designing Effective
Organizations. Prentice-Hall, 1983.

[9] L. Pondy and I. Mitroff. Beyond open system models
of organization. In Research in Organizational
Behaviour, volume 1, pages 3–39. CT: JAI Press, 1979.

[10] W. R. Scott. Organizations: Rational, Natural and
Open Systems. Prentice Hall, 2003.

[11] H. Simon. The architecture of complexity. In
Proceedings of the American Philosophical Society,
volume 106, pages 467–482, 1962.

[12] M. Wester-Ebbinghaus, D. Moldt, C. Reese, and
K. Markwardt. Towards Organization–Oriented
Software Engineering. In Software Engineering
Konferenz 2007 in Hamburg: SE’07 Proceedings,
volume 105 of LNI, pages 205–217. GI, 2007.




