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ABSTRACT

We are interested in verifying game-theoretic properties such
as strategyproofness for auction protocols in open agent sys-
tems. Model checking provides an automatic way of carry-
ing out such proofs. However it may suffer from state space
explosion for large models. To improve the performance
of model checking, abstractions were used along with the
Spin model checker. We applied the technique to the Vick-
rey auction. Numerical results showed the limits of relying
solely on Spin. To reduce the state space required by Spin,
two property-preserving abstraction methods were applied:
firstly the classical program slicing technique, which removes
irrelevant variables with respect to the property; the second
replaces large data, possibly infinite values of variables, with
smaller abstract values. This enabled us to model check the
strategy-proofness property of the Vickrey auction for un-
bounded bid ranges and for any number of agents.

Categories and Subject Descriptors

I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Multi-agent systems, game theory ; F.3 [Semantics
of Programming Languages]: General—program analy-
sis and verification

General Terms

Algorithms, Economics, Verification

Keywords

Economic paradigms: electronic markets and institutions,
game theory (cooperative and non-cooperative). Agent so-
cieties and Societal issues: trust and reputation.

1. INTRODUCTION
Trust is a major concern in agent-mediated eCommerce

systems. To tackle this, much research has been carried out
to develop game theory mechanisms which guarantee desir-
able properties for the system, even in the face of agents who
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are willing to lie or cheat; for example, there are mechanisms
which can guarantee that a system is robust to agents bid-
ding falsely or colluding. These mechanisms work perfectly
well in a closed Multi-Agent System (MAS) when designers
can program agents in full knowledge of the favourable prop-
erties of the mechanism. However, it is not clear how such
mechanisms could be used in open systems where agents
might have to interoperate between different institutions. A
roaming agent arriving at an institution where a new, previ-
ously unseen, protocol is in use, will need to understand the
rules of engagement in much the same way human agents
can. This is a major stumbling block for agent-mediated
eCommerce, which does indeed envisage a future with open
systems of roaming agents; it has been recognised as a “ma-
jor challenge facing computer scientists” [2].

In this paper we assume that there is some standard lan-
guage in which the rules of the auction can be written and
published. A roaming agent who arrives at a foreign institu-
tion can download a protocol and analyse it in order to make
a decision about whether or not to participate, and what
strategy to use. The challenge now is for the roaming agent,
with bounded computing resources, to be able to automat-
ically check some of the game-theoretic properties of the
protocol. We focus on dominant strategy equilibrium, which
means the game has the property of strategy-proofness; this
gives agents an incentive to bid their true valuations. Game
theoretic properties such as strategy-proofness rely on very
strong assumptions; it is required that the property be com-
mon knowledge among the players. If the common knowl-
edge of the equilibrium is not achieved, then agents cannot
expect it to be played [3].

Model checking provides an automatic way of carrying
out the verification of game-theoretic properties of a given
auction mechanism. However it may suffer from state space
explosion for large models. We considered the case of the
Vickrey auction and checked its strategy-proofness using the
Spin model checker [4]. Numerical results showed the limits
of relying solely on Spin. To reduce the state space re-
quired by Spin, two property-preserving abstraction meth-
ods were applied: the first is the classical program slicing
technique [7], which removes irrelevant variables with re-
spect to the property; the second replaces large data, possi-
bly infinite values of variables with smaller abstract values.
This enabled us to model check the strategy-proofness prop-
erty of the Vickrey auction for unbounded bid ranges and
for any number of agents.
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2. VERIFYING BY MODEL CHECKING
We have considered a simple Vickrey auction where n

agents bid for a single item. Each agent has a private valua-
tion v of the item. The highest bidder wins the item but pays
the second highest bid p, getting the utility u = v−p. A los-
ing bidder pays nothing and has a zero utility. We formally
specified the auction using the Promela process modeling
language [4]. We then verified some game-theoretic proper-
ties using the Spin model checker [4]. These properties are
expressed as Promela assertions in a model parameterized
by the range of the bids (set A of actions) and the number of
agents n. For a given agent i, we evaluate its utility u∗i when
bidding its true valuation and its utility ui otherwise, and
check the assertion u∗i ≥ ui in all the possible game configu-
rations specified by the property. For the strategy-proofness
property the number of possible configurations represents all
possible strategy profiles, which is exponential in the num-
ber of agents, and hence computationally expensive.

Table 1 shows runtime statistics for the checking of the
strategy-proofness property. We fixed the bid range and
varied the number of agents. We observe that beyond a cer-
tain number of agents, the amount of the memory required
by Spin explodes, provoking a ‘ran out of memory’ error.
However, this mechanism is simple enough to carry out a
full space checking for up to 600 agents on the machine we
have used. These results were obtained by compiling and
running the models produced by Spin on a PC Pentium
Dual Processor 2.99 GHz with 2GB RAM, running Win-
dows XP, using options -DBITSTATE -DVETORSZ=m where m
is the size of the state vector chosen according to the size of
the model at hand. For efficiency the states are stored in a
hashtable; this turns an exponential search into a linear one
and enhances the performance of the checking procedure.

Number of players
100 300 500 600 700

Memory(Mb) 146.72 795.92 904.20 1083.30 –
CPU Time(s) 1.20 6.44 7.20 8.29 –

Table 1: Statistics for the strategy-proofness prop-
erty in a Vickrey Auction ( bids are from 0 to 1000).

3. ABSTRACT MODEL CHECKING
We used two property-preserving abstraction methods to

reduce the costs involved in checking: firstly program slicing,
used to remove portions of code in program analysis which
are not relevant to a given criterion [7], and secondly abstract
interpretation [1].

(1) Removal of Irrelevant Constructs: This is the
program slicing technique used to remove portions of code
in program analysis which are not relevant to a given crite-
rion [7]. A typical criterion is a line of the program – the
slice contains those commands which affect the variables in
that line. Another criterion is a set of variables – the slice
contains those commands affecting these variables. We iden-
tify dependency relationships among variables: v1 ≺ v2, for
variables v1, v2, holds if the computation of v1 depends on
the value of v2. To illustrate this abstraction, let us con-
sider the Vickrey auction example for two agents shown on
the left-hand side of Figure 1. Let us suppose we want to
check the assertion u1t ≥ u1 where u1t and u1 are, respec-
tively, the utilities of agent 1 when it bids its valuation and

if

:: (x1 >= x2) ->

u1 = v1 - x2;

u2 = 0;

:: else ->

u2 = v2 - x1;

u1 = 0;

fi;

if

:: (x1 >= x2) ->

u1 = v1 - x2;

:: else ->

u1 = 0;

fi;

Figure 1: Vickrey Auction (left) and its Slice (right)

any other number. The variable dependencies of the auction
are x1 ≺ x2, x2 ≺ x1, u1 ≺ v1, u1 ≺ x2, u2 ≺ v2, u2 ≺ x1;
they describe the flow of data among the variables and (in
the case of the if test) how variables depend on one another
to define the flow of execution. We show on the right-hand
side of Figure 1 a slice of the Vickrey auction, in which all
commands referring to u2 have been removed.

(2) Redefining Strategy Space via Abstract Values:
An abstraction provides a mapping of the original (concrete)
domain (and associated search space) onto a less complex
(abstract) domain, enabling us to eliminate irrelevant de-
tails. We perform the checking using the abstract model,
and later decide if the property still holds in the concrete
model. Since we represent games as computer programs,
our search space is the state domain, that is, the execution
state of the program containing the values of all its variables
and the current point of the execution flow.

Definition 3.1. A finite game is a transition system Σ =
〈N, A, S, θ, ρ, η〉 where N, A, S are non-empty sets of agents,
strategies and states respectively;

• θ : S → Boolean is true for at least one element of S
(called initial state);

• ρ : S × S → Boolean is a transition relation, and

• η : S → Boolean is true for at least one element of S
(called final state)

For each final state we associate a utility to each agent. A
reachable state of Σ is a state that can be reached follow-
ing a finite sequence of transitions from an initial state. A
reachable transition is a transition from a reachable state.

We introduce the abstract version of the previous concept:

Definition 3.2. An abstract finite game Σ̂ = 〈N̂ , Â, Ŝ,

θ̂, ρ̂, η̂〉 is an abstraction of Σ=〈N, A, S, θ, ρ, η〉 if there exists

a mapping α : S → Ŝ such that

• ∀s ∈ S, θ(s)→ θ̂(α(s))

• ∀s, s′, ρ(s, s′)→ ρ̂(α(s), α(s′))

The mapping α is called an abstraction map. Its inverse γ,

associating an abstract state ŝ ∈ Ŝ and transition ρ̂ to its
corresponding concrete state s ∈ S and transition ρ is called
a concretization map.

Abstraction maps usually rely on over-approximations to
produce, for every point of the program, an abstract state
ŝ such that γ(ŝ) contains all the concrete reachable states
at that location. Traditionally, these approximations are
defined over lattices, defined as:

Definition 3.3. A lattice (L,⊔,⊓,⊥,⊑) is a complete
partial order on set L by ⊑ in which any two elements x, y ∈
L have a greatest lower bound (x ⊓ y) ∈ L and a least upper
bound (x ⊔ y) ∈ L.



A lattice is complete if any two elements x, y ∈ L have a
greatest element (x ⊔ y) and a least element (x ⊓ y). An
example of complete lattice is the power set domain with
the usual set operators.

The game-theoretic properties we are interested in are
first-order logic formulae (denoted as ϕ) that can be ex-

pressed in Σ and their abstract counterparts ϕ̂ in Σ̂. It is
important to ensure that whenever a property ϕ is violated
in the concrete domain Σ, its abstraction ϕ̂ is also violated

in the abstract domain Σ̂.

Definition 3.4. An abstraction α : (Σ, ϕ) → (Σ̂, ϕ̂) is

sound if whenever ϕ̂ holds in Σ̂, then ϕ holds in Σ. An

abstraction α : (Σ, ϕ) → (Σ̂, ϕ̂) is complete if whenever ϕ

holds in Σ, then ϕ̂ holds in Σ̂.

3.1 Building Abstractions for Auctions
Finding an abstraction map is not an easy task and de-

pends on the property to be checked. In our work, abstrac-
tion is a way of minimising the explosion on the number of
states of the concrete model as illustrated in Section 2.

The principal cause of the explosion in the number of
states observed in Section 2 is the exponential input data re-
quired by the strategy-proofness property. This input data
describes all the strategy profiles for n players the auction.
We reduce the possible strategy profiles by not consider-
ing every possible bid of an agent, but instead considering
the significant ranges of bids. Given the valuation vi of an
agent i for a given single item, we can distinguish the follow-
ing three strategies its opponents may adopt: (i) bid higher
than vi; (ii) bid exactly vi; (iii) bid lower than vi.

We define the following types for agents competing with
agent i, corresponding to the strategies above:

Th = {x ∈ R | x > vi ≥ 0}

Te = {x ∈ R | x = vi}

Tl = {x ∈ R | 0 ≤ x < vi}

All the configurations of the game involving agent i with
respect to its opponents can be described by agent i’s bid
against the bids of the typed agents in the set T = {Th, Te, Tl}.
Consider the following three mappings with signature An−1 →
T and projecting each component of a vector x−i ∈ An−1 to
a type t ∈ T as follows:

projh(x−i) = {xj ∈ Th | j 6= i}

proje(x−i) = {xj ∈ Te | j 6= i}

projl(x−i) = {xj ∈ Tl | j 6= i}

The mapping projh projects all components of the vector
x−i that are greater than vi to the data type Th. Similarly
proje and projl are projections on Te and Tl respectively. Let
us consider f : An−1 → 2T mapping an element x−i ∈ An−1

to an element x̂−i = f(x−i) of the powerset 2T as follows:

x̂−i =





Th if proje(x−i) = projl(x−i) = ∅
Te if projh(x−i) = projl(x−i) = ∅
Tl if proje(x−i) = projh(x−i) = ∅
Th ∨ Te if projl(x−i) = ∅
Th ∨ Tl if proje(x−i) = ∅
Tl ∨ Te if projh(x−i) = ∅
Th ∨ Te ∨ Tl otherwise

By construction, f maps every vector of An−1 to its equiv-
alent type in the complete lattice L = (2T ,∨,∧, ∅,⊑). The

mapping f induces an equivalence relation whose equiva-
lence classes represent state variables; these state variables
correspond to elements of the powerset 2T .

Let xh, xe, xl be the equivalent classes associated to the
types Th, Te, Tl respectively. xh, xe, xl are abstract vari-
ables that will be used in the transformed (abstract) pro-
gram. Concrete arithmetic operations, e.g., +, -, *, <, and
>, must also be transformed so as to manipulate the ab-
stract variables xh, xe, xl. Moreover, the variables xh, xe, xl

cover real values that are greater than or equal to zero.
However, the arithmetic operation “-” forces us to consider
negative values as well, which we denote by xn. We can
therefore partition the set R into the subsets represented by
the equivalent classes xn, xl, xe, and xh. The abstract vari-
ables xn, xl, xe, and xh represent the real-valued intervals
(−∞, 0), [0, vi), [vi, vi], and (vi,∞) respectively.

− xn xl xe xh

xn xn, xl, xe, xh xn xn xn

xl xl, xe, xh xn, xl xn xn

xe xh xl xl xn

xh xh xl, xe, xh xl, xe, xh xn, xl, xe, xh

Table 2: Signature of Abstract Subtract −abs

Table 2 shows the signature of the abstract operation −abs

(the abstract counterpart of subtraction). The first column
of the table shows the values of the first parameter of the op-
eration −abs; the top row contains the values of the second
parameter; the various outcomes of the operation are the ta-
ble cells. If the result of the abstract operation belongs to a
set of equivalence classes (as opposed to a single equivalence
class) then this indicates a lack of knowledge about the ab-
stract variables since they over-approximate concrete values
in the original program. This inaccuracy is modelled by the
model checker Spin as a non-deterministic choice over the
set of values in the set.

It follows that the mapping f enables us to transform con-
crete data and operations from the original program into cor-
responding abstract data and operations in the transformed
program. The states and transitions in the abstract program
are defined to be those induced by the states and transitions
in the abstract program. Consequently, we have built up an

abstraction map α : Σ → Σ̂ from the concrete domain into
the abstract domain. An important issue is whether the ab-
straction α is sound for the game-theoretic property to be
checked. For that purpose, we need to express the property
in the obtained abstract domain.

3.2 Abstracting Properties
In the abstract model, the valuations vi, bids bi ∈ Ai

b−i ∈ A−i, payments pi and utilities ui of the agents be-

come abstract variables v̂i, b̂i ∈ Âi, b̂−i ∈ Â−i, p̂i and ûi

respectively. All original operations are also transformed
into abstract operations manipulating the defined abstract
types. The strategy-proofness property becomes ϕ̂ as fol-
lows:

∀i, ∀v̂i, ∀b̂i, ∀b̂−i, ûi(v̂i, v̂i, b̂−i) ≥abs ûi(v̂i, b̂i, b̂−i). (1)

Using our abstraction α, we have Âi = {xh, xe, xl}, which

is a partition of Ai and Â−i is isomorphic to 2T (which

we denote by Â−i ≡ 2T ). We now need to prove that our
abstraction α is sound. This is established by the following:



Lemma 3.5. The abstraction map α : (Σ, ϕ) → (Σ̂, ϕ̂) is
sound.

Proof: We need to prove that if the strategy-proofness

property ϕ̂ holds in Σ̂, then its equivalent version ϕ holds in
Σ. We do so by proving that the behaviours in the abstract
program over-approximate the behaviours in the concrete
program. From the viewpoint of agent i, strategy-proofness
in the abstract domain means:

• If i has opponents of one type Th, Te, or Tl, then the

inequality (1) must be true for all b̂i ∈ Âi and b̂−i

taking the values representing the equivalence classes
xh, xe, or xl of the abstraction α respectively.

• If i has opponents of two types {Th, Te}, {Th, Tl}, or
{Te, Tl}, then the inequality (1) must be true for all

b̂i ∈ Âi and b̂−i taking the values xh and xe, xh and
xl, or xe and xl of the abstraction α respectively.

• If i has opponents of three types {Th, Te, Tl}, then the

inequality (1) must be true for all b̂i ∈ Âi and b̂−i

taking the values xh, xe, xl.

By construction, the inverse f−1 of the mapping f associates

each element of Â−i ≡ 2T to a subset of A−i and clearly

∪
a∈Â

−i
f
−1(a) = A−i.

Furthermore, Âi is a partition of Ai. It follows that the
abstraction map α is sound.

2

3.3 An Abstract Model-Checking Algorithm
To check the strategy-proofness property for a given player

amounts to checking bidding xe gives the maximum utility
in all the following settings: (i) its opponents of single type
can bid a single value xh, xe, or xl; (ii) its opponents of two
types can bid the tuples (xh, xe), (xh, xl), or (xe, xl); (iii)
its opponents of three types can bid the tuple (xh, xe, xl).

This reduces the strategy space from the size |A|nm ini-
tially to (3 × 7)m, three for agent i and seven for its oppo-
nents. If the number of items m = 1 as, for example, in
the Vickrey auction, this is easy to check. Notice that our
abstraction is only sound – this means that if the property
is true in the abstract domain, then, it is true is the con-
crete domain. If, however, the property does not hold in the
abstract model, then Spin will generate a counter-example.
The generated counter-example may be due to spurious be-
haviour caused by approximations in the abstract model or
it may be genuine. Techniques have been developed to cope
with such scenarios, see for example [5, 6].

We have implemented this algorithm for checking strategy-
proofness in the Vickrey auction. For this simple single item
auction, we have designed and implemented the abstract
variables and related operations, thus building up an ab-
stract program modelling the auction. Then, we checked
the abstracted strategy-proofness property using our algo-
rithm. In the results shown in Table 3, AMCA stands for
the abstract model checking algorithm hereby outlined and
Slicing stands for the application of the program slicing op-
timisation. These results show that for the Vickrey auction,
the number of players and the bid range cease to be a factor
of state space explosion and that strategy-proofness can be

checked using a small amount of computer resources. More-
over, the program slicing technique improved slightly the
checking as expected in this case.

AMCA AMCA & Slicing
Memory (Mb) 3.65 3.02
CPU Time (s) 0.31 0.25

Table 3: Statistics for the strategy-proofness prop-
erty in a Vickrey Auction with an unbounded num-
ber of players using the proposed two abstractions

4. CONCLUSION
We have considered auction mechanisms expressed in a

formal language, and automatically checked desirable prop-
erties such as strategy-proofness. We have presented numer-
ical results showing the computational limits of using a plain
(exhaustive) model checking approach. These limits are
due to the state space explosion problem. To enhance this
approach, we have combined model checking and abstract
interpretation. We have proposed two property-preserving
abstractions. The first is the classical program slicing tech-
nique; the second is novel and tailored to the problem of ver-
ifying game equilibria. This allowed us to verify the Vickrey
auction, regardless of the number of bidders and their bid
range (which was not feasible by exhaustive model checking).
Note that although the abstraction requires some creativity
from the human designer, once the appropriate abstraction
is found, it can be published along with the mechanism, to
facilitate automatic checking by agents. In summary, we
have shown that computationally verifiable mechanisms are
feasible in principle. Such mechanisms are useful for agent
scenarios wherein trust in the system must be guaranteed
and entry-deterrence must be tackled in order to attract
more participants.
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