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ABSTRACT

Recent scaling up of decentralized partially observable Markov de-
cision process (DEC-POMDP) solvers towards realistic applications
is mainly due to approximate methods. Of this family, MEMORY
BOUNDED DYNAMIC PROGRAMMING (MBDP), which combines in
a suitable manner top-down heuristics and bottom-up value func-
tion updates, can solve DEC-POMDPs with large horizons. The
performances of MBDP, can be, however, drastically improved by
avoiding the systematic generation and evaluation of all possible
policies which result from the exhaustive backup. To achieve that,
we suggest a heuristic search method, namely POINT BASED IN-
CREMENTAL PRUNING (PBIP), which is able to distinguish policies
with different heuristic estimates. Taking this insight into account,
PBIP searches only among the most promising policies, finds those
useful, and prunes dominated ones. Doing so permits us to re-
duce clearly the amount of computation required by the exhaustive
backup. The computation experiment shows that PBIP solves DEC-
POMDP benchmarks up to 800 times faster than the current best
approximate algorithms, while providing solutions with higher val-
ues.

Categories and Subject Descriptors

I.2.11 [Distributed Artificial Intelligence]: Multiagent systems

General Terms

Algorithms, Experimentation, Performance

Keywords

artificial intelligence, decentralized pomdps, branch-and-bound, point-
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1. INTRODUCTION
Many interesting complex problems that involve two or more

agents that cooperate to optimize a joint reward function, while
having different local observations, can be modeled as DEC-POMDPs.
These problems arise naturally in various quantitative disciplines
including Computer Science (e.g. control of multiple robots for
space exploration) , Economics (e.g. decentralized supply chains)
and Operations Research (e.g. network traffic routing). Unfortu-
nately, finding either optimal or even ε-approximate solutions of
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such problems has been shown to be particularly hard [2, 10]. To
date, most DEC-POMDP algorithms are assumed not to be able to
scale to real-world-size problems [6, 13, 14].

There are two distinct, but closely related, reasons for the lim-
ited scalability of DEC-POMDP solvers. The more widely known
reason is the so-called curse of dimensionality [1]: in a problem
with |S| physical states, n agents, and for agent i, the set of team-
mates’ strategies Q−i, DEC-POMDP planners must reason about an
|Sn × Q−i|-dimensional continuous belief space that grows expo-
nentially with the number of agents. This is because each agent
has to reason about the other agents’ policies evaluated over the
joint state space Sn. This explains why most DEC-POMDP algo-
rithms cannot solve problems with a number of agents larger than
two, and a few dozen states. The other well known reason for
the computational burden of DEC-POMDPs is the curse of history
where the number of joint histories grows double-exponentially
with the planning horizon and the number of agents [9]. In most
domains, the curse of history affects DEC-POMDP algorithms far
more strongly than the curse of dimensionality. This suggests that
if we can avoid the curse of history, there are many real-world DEC-
POMDPs where the curse of dimensionality is not a problem. Re-
cent attempts have been made to whittle down the set of histories
considered [3, 4, 11, 12, 13], but so far the state-of-the-art tech-
nique, MBDP [12], still remains constrained by the curse of history.

For the general finite-horizon DEC-POMDPs that we are inter-
ested in, MBDP [12] is currently the most successful approximate
algorithm. MBDP, in comparison to other DYNAMIC PROGRAM-
MING (DP) algorithms, has two benefits: first, it is bounded, that is,
it does not have to keep exponential many policies in memory but
only a fixed number denoted by parameter maxTrees. Moreover,
it chooses top-down heuristics to determine a set of beliefs that en-
ables the best policies to be selected. However, an undesirable ef-
fect of this strategy is that it requires the exhaustive enumeration of
all possible joint policies of the current iteration using joint policies
from the last iteration. This is achieved by means of the so called
exhaustive backup. Unfortunately, in the worst case the resulting
set of joint policy-trees requires an exponential space with respect
to the number of observations and the number of agents. This is-
sue motivated us to search for new heuristic methods in order to
avoid the exhaustive enumeration of all joint policy-trees at each
iteration.

The main contribution of this paper is to introduce a novel tech-
nique that is able to select the best policy-trees for a given iteration
with respect to an initial belief state and policy-trees from the last
iteration. This method aims at replacing the time and memory con-
suming operator of all dynamic programming methods, namely the
exhaustive backup. To do so, we suggest the POINT BASED INCRE-
MENTAL PRUNING heuristic (PBIP). PBIP circumvents the problem
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of searching in the entire space of joint policy-trees by expanding,
at each iteration, only the most promising joint policy-trees, and
pruning dominated ones. Since we often expand only a few joint
policy-trees, we may either converge much faster to an approxi-
mate solution or use larger parameter maxTrees to improve the
solution quality. This is achieved by means of a threefold method:
(1) identifying a bijection from a subspace of joint policy-trees of
the underlying multi-agent POMDP (MPOMDP) to the space of joint
policy-trees of the original DEC-POMDP; (2) using the beliefs se-
lected by top-down heuristics to compute exact and upper-bound
estimates of joint policy-trees from the last iteration; (3) using these
estimates to traverse the exponential space of joint policy-trees of
the underlying MPOMDP towards the small space of relevant ones.

2. BACKGROUND AND RELATED WORK
In this section, we present the DEC-POMDP model and some of

the state-of-the-art approaches.

2.1 An overview of DEC-POMDPs
The DEC-POMDP framework is a generalized model for a co-

operative group of agents that operates in domains involving hid-
den states and uncertain action effects. A n-agent DEC-POMDP is
a tuple (I, S, {Ai}i, P, R, {Ωi}i, O, T, b0). Let I be a finite set
of agents indexed by 1 · · ·n. Let S be a finite set of states. Let
Ai = {a1, a2, · · · } be a finite set of actions available for agent
i, and A = ⊗i∈I Ai is the finite set of joint actions a, where
a = (a1, · · · , an) and variable ai denotes the value of an action
executed by agent i ∈ I . Let P (s′|s, a) be a function of transition
probabilities. Let R(s, a) be a real-valued reward function. Let
Ωi = {o1, o2, · · · } define a finite set of observations available for
agent i, and Ω = ⊗i∈I Ωi is the finite set of joint observations
o ∈ Ω, where o = (o1, · · · , on) and variable oi denotes the value
of an observation received by agent i ∈ I . Let O(o|a, s) be a func-
tion of observation probabilities. Let T be the finite-horizon. Let
b0 be the initial belief state of the system.

Given a DEC-POMDP, we aim at finding a solution that yields
the highest long-term reward, E[

PT−1
t=0 R(st, at)| b0], for a given

initial belief b0. A policy for a single agent i, policy-tree, can be
represented as a decision tree denoted qi, where nodes are labeled
with actions ai ∈ Ai and arcs are tagged with observations oi ∈
Ωi. Let Qt

i be the set of horizon-t policy-trees available for agent
i. A solution to a horizon-t DEC-POMDP can then be seen as a
vector of horizon-t policy-trees. We denote a vector of policy-trees
by �qt = (qt

1, · · · , qt
n), one policy-tree for each agent. The set of

vectors of policy-trees is referred to as Qt = ⊗i∈IQt
i . We also

define V (s, �qt) as the expected value of executing the vector of
policy-trees �qt starting in state s. This value can be easily computed
using dynamic programming:

V (s, �qt) = R(s, α(�qt)) +
X
o,s′

P (s′|s, �qt, o)V (s′, η(�qt, o)) (1)

where η(�qt, o) is the vector of policy-trees executed by agents af-
ter receiving joint observation o. We use α(�qt) to denote the root
node of vector of policy-trees �qt; We denote by P (s′|s, �qt, o) the
probability P (s′|s, α(�qt))O(o|s′, α(�qt)) of being in state s′ after
executing joint policy �qt from state-observation pair (s, o). An op-
timal vector of policy-trees �q�T = (qT

1 , · · · , qT
n ) for a given initial

belief state b0 can then be determined as follows:

�q�T = arg max�qT∈QT

P
s b0(s)V (s, �qT ) (2)

A number of algorithms have been proposed to build either optimal
or approximate vector of policy-trees �qT using top-down [14] or
bottom-up [6, 13] techniques.

2.2 Top-down techniques
Many attempts have been made to use top-down techniques for

solving DEC-POMDPs [14, 15]. These heuristic search methods can
handle large domains effectively, by means of combining lower and
upper bounds and knowledge of the initial information (starting be-
lief point). Szer et al. [14] provided the first heuristic search algo-
rithm namely MAA� for finite-horizon DEC-POMDPs. This algo-
rithm is based on the combination of classical heuristic method A�

and decentralized control theory. It seeks to compute globally op-
timal solutions. Although MAA� is a great improvement on earlier
techniques, it suffers from a major drawback: its ability to con-
strain the search space depends on lower and upper bounds accu-
racy. Unfortunately tighter bounds often incur considerable com-
putation efforts. While this algorithm fails to scale to DEC-POMDPs
with large horizons, it shows promising results demonstrating the
potential of forward search methods. The key difference between
PBIP and MAA� is that while PBIP improves the joint policy-tree
one fringe at a time, MAA� proceeds by improving the joint policy-
tree one time step at a time (simultaneously for all agent involved).
By improving the joint policy-tree one fringe at a time we provide
a more accurate pruning mechanism than MAA�. This is a strong
argument that outlines the soundness of the proposed approach.
Varakantham et al. [15] suggested a forward heuristic technique,
SPIDER, that exploits the weak interaction between teammates to
leverage MAA� limitations. More precisely, SPIDER improves the
joint policy one agent at a time in the order of teammate interac-
tions. Doing so permits SPIDER to scale up to distributed POMDP
with larger number of agents. While interesting, SPIDER usefulness
depends on the assumption that teammate interactions are largely
loosely coupled. For the finite-horizon DEC-POMDPs that we are
interested in, i.e., where teammate interactions are either unknown
or strongly coupled, SPIDER offers no benefits.

2.3 Bottom-up techniques
In accordance with Szer, the major limitation of bottom-up ap-

proaches is the explosion in memory and time requirements, since
each step requires first generating and evaluating all joint policy-
trees for the next horizon, i.e., the exhaustive backup, before begin-
ning the step of pruning. While this is similar to POMDPs, it appears
to be far more limiting in DEC-POMDPs, because value functions
are now defined over a much larger policy space that includes all
policies of all agents.

2.3.1 Dynamic programming.
The DYNAMIC PROGRAMMING algorithm (DP) [6] consists of

two steps: the exhaustive backup and the pruning of dominated
policies. For each agent, the exhaustive backup takes as input an
initial set of horizon-(t − 1) policy-trees. Then, it builds all pos-
sible horizon-t policy-trees such that each tree of the new set has
only subtrees1 that appear in the initial set. The resulting sets of
policy-trees are exponential with respect to the number of obser-
vations. Finally, the pruning step eliminates the dominated policy-
trees in each new set. Finding dominated policy-trees, however, can
be expensive since checking whether a policy-tree is dominated re-
quires solving a linear program. Despite clever strategies including
heuristic search methods [14] and point-based techniques [13], ex-
act algorithms do not scale to larger problems. The intractability
of exact approaches has led to the development of a wide variety of
approximate methods. Of this family, MBDP [12] and its extensions
(IMBDP [11] and MBDP-OC [5]) are the only one that scale to much

1throughout the paper ‘vectors of policy-trees from the last itera-
tion’ will be referred as to ‘subtrees’ for the sake of simplicity.
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longer horizons.

2.3.2 Approximate dynamic programming solvers.
Recent bottom-up techniques, MBDP, IMBDP and MBDP-OC some-

what mitigate DP limitations by means of: (1) selecting only a
small number (maxTrees) of policies for each agent at each hori-
zon; (2) reducing the exponential role of observations by sampling
them. However, choosing the right maxTrees for a given DEC-
POMDP is not obvious and dynamically adjusting maxTrees may
raise non-negligible computation costs. Moreover, the usefulness
of the second enhancement is domain-dependant. Even more im-
portantly, in the worst case the solution sets at a given horizon are
still built in exponential time with respect to the number of rele-
vant observations denoted maxObs and the number of agents |I|,
i.e., |S2||A||Ω|maxTreesmaxObs|I|+1. The problem with MBDP
and its extensions is that they traverse the entire exponential space
of vectors of policy-trees to determine the best vectors of policy-
trees for a given set of belief states. To better understand the com-
plexity of MBDP, let maxTrees be the number of policy-trees
in the previous solution set of each agent. The first step creates
|Ai|maxTrees|Ωi| policy-trees for agent i; and the second step
evaluates |A|maxTrees

P
i |Ωi| vectors of policy-trees for each be-

lief point. Therefore the new solution sets are built in exponential
time |S2||A||Ω|maxTrees

P
i |Ωi|+1, where |Ω|, |A| and |S| grow

exponentially with |I|. More importantly, it does so even though
only a few vectors of policy-trees are relevant to achieve optimal or
near-optimal behavior. Nevertheless, not enough efforts have been
made to exploit this insight. Currently all bottom-up approaches
trying to solve DEC-POMDPs make use of the exhaustive backup.
They apply essentially the same strategies as solving a DEC-POMDP
where all vectors of policy-trees have the same heuristic estimate.
So these approaches do not have a smart subroutine to distinguish
vectors of policy-trees with a low heuristic estimate from those
with a high heuristic estimate. Considering this intuition, we would
like to design a general algorithm that is able to identify such vec-
tors of policy-trees in order to avoid the exhaustive backup. Our
proposed approach provides the basis of incremental pruning tech-
niques in DEC-POMDPs suitable for either finite or infinite horizon
cases. In contrast to all MBDP, IMBDP and MBDP-OC, PBIP allows
using larger parameter maxTrees (improving the solution quality
by the way) and automatically prunes some of the work.

3. INCREMENTAL PRUNING HEURISTIC
In this section, we describe a general overview of the proposed

solution approach, optimizations and main properties are discussed
in depth in the next sections. Before going into further detail, we
need to introduce some additional definitions.

3.1 The Space of Joint Policy-Trees

Figure 1: MPOMDP and DEC-POMDP joint policy-trees.

Since our goal is to determine a vector of policy-trees for a DEC-
POMDP, it seems clear that the search space should be the space
of vectors of policy-trees. However, for the sake of simplicity,

we consider a slightly different representation of these policies. In
fact, unlike the classical representation (vector of policy-trees), we
use a single decision tree for the entire group of agents, namely
joint policy-tree and denoted δ. In the remainder of this paper, a
joint policy-tree is a decision tree, where the root node α(δ) =
(α(q1), · · · , α(qn)) is labeled by a joint action; arcs are tagged by
joint observations; and subtrees are vectors of policy-trees η(δ, o) =
(η(q1, o

1), · · · , η(qn, on)) from the last iteration. The right hand
side of Figure 1 illustrates such a representation. The reader will
note that this representation corresponds exactly to the policy-tree
of the underlying MPOMDP.

3.2 Problem Reformulation
A desirable effect follows from the above observation: the prob-

lem of finding the optimal joint policy-tree δt, for a given belief
b and subtrees Qt−1, is equivalent to the problem of determin-
ing joint action α(δt) and subtrees η(δt, o) such that the resulting
joint policy-tree δt is both valid and optimal. A joint policy-tree is
said to be valid if there exists a vector of policy-trees (q1, · · · , qn)
which satisfies the following constraints (c1) and (c2):

• (c1) α(δ) = (α(q1), · · · , α(qn)),
• (c2) η(δ, o) = (η(q1, o

1), · · · , η(qn, on)).

more precisely, δt is a valid joint policy-tree if it corresponds to
a unique vector of policy-trees. Otherwise, the joint policy-tree
is said to be non-valid, when it is a policy-tree of the underlying
MPOMDP that does not match to a vector of policy-trees.

3.3 The Heuristic Approach
At this point, we are left with two problems: first, how subtrees

help us to compute the heuristic estimates of joint policies; more-
over, how can these estimates be used to traverse our search space
towards valid and useful joint policy-trees.

3.3.1 Computing the heuristic estimates
In order to compute the heuristic estimate of a joint policy-tree

δ, for a given belief b and subtrees, we proceed as follows: select
both joint action α(δ), and subtrees η(δ, o) that yield the highest
contributions [9], where:

• the contribution of subtree η(δ, o) is given by,

gδ
b,o =

P
s′ P (s′|b, δ, o)V (s′, η(δ, o)) (3)

where P (s′|b, δ, o) =
P

s b(s)P (s′|s, δ, o). The evaluation
of all contributions requires a polynomial time. To better un-
derstand this complexity, let’s maxTrees be the maximum
number of policy trees kept in memory for each agent at each
horizon. We create |A||Ω|maxTrees|I| projections (in time
O(|S|2|A||Ω|maxTrees|I|)) that correspond to the number
of all possible contributions of subtree η(δ, o). Given the fact
that

P
i |Ωi| >> |I|, the complexity of this step is negligible

in comparison to the complexity of the exhaustive backup.
• finally, the exact value of joint policy-tree δ is,

f(b, δ) =
P

s∈S b(s)R(s, α(δ)) +
P

o∈Ω gδ
b,o (4)

It is fairly easy, however, to demonstrate that the solution that con-
sists in selecting, for each joint observation the subtree with the
highest contribution, will lead in general to a non-valid joint policy-
tree. Nevertheless, the good news is that the exact value of non-
valid joint policy-trees can be seen as a heuristic estimate of the
exact value of valid joint policy-trees. More generally, joint policy-
trees of the underlying MPOMDP can be used to define an upper-
bound estimate of either partial or complete valid joint policy-trees.
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Indeed, the heuristic estimate of a joint policy-tree is based on the
decomposition of the evaluation function (Equation 1) into two es-
timates. The first estimate, g(b, δ), is the exact value coming from
subtrees selected in accordance with (c2), i.e. valid subtrees. A
non-valid subtree is therefore a subtree that does not satisfy (c2).
The second estimate, h(b, δ), is the upper-bound value of the re-
maining subtrees selected in the order of their contribution, i.e.
non-valid subtrees. We introduce Ω1 as the set of joint observa-
tions that leads to a valid subtree and Ω2 the remaining joint obser-
vations which means Ω = Ω1 ∪ Ω2. This allows us to decompose
the heuristic estimate of any joint policy-tree δ for a given belief b
into the exact contribution coming from joint observations Ω1, and
the upper-bound of the completion Ω2:

f̄(b, δ) = b · rα(δ) +
X

o∈Ω1
gδ

b,o

| {z }
g(b,δ)

+
X

o∈Ω2
ḡb

α(δ),o

| {z }
h(b,δ)

(5)

where ḡb
α(δ),o = maxδ gδ

b,o and rα(δ) is a vector of R(s, α(δ))
for all s i.e., rα(δ)(s) = R(s, α(δ)). Of course, the heuristic
estimate f̄ is an admissible heuristic function. Indeed, for any
joint policy-tree δ and belief b the following holds by construction:
f̄(b, δ) ≥ f(b, δ).

3.3.2 A Branch & Bound Method
In the following, we describe a straightforward heuristic solu-

tion to the problem of determining the best joint policy-tree given
a belief state and subtrees. Our complete algorithm, that includes
important enhancements to its straightforward counterpart, is dis-
cussed later. As suggested by [8], since A� can be viewed as a
special case of Branch and Bound algorithm (B&B), one can resort
our proposed approach to Branch and Bound instead.

Similarly to POMDP incremental pruning techniques, the heuris-
tic splits up the selection of the best joint policy-tree into the selec-
tion of several subtrees one for each joint observation o ∈ Ω. Un-
fortunately, as already mentioned a DEC-POMDP is a MPOMDP with
additional constraints. Thus, in order to satisfy these constraint re-
quirements, we combine the incremental pruning mechanisms to a
heuristic search subroutine. The resulting heuristic method is able
to efficiently walks through the search tree that represents the space
of joint policy trees. As illustrated in the section of the search tree
Figure 1, each node in the search tree is either a root node δ0, an
internal node δ1, or a leaf node δ2. A root node of a search tree is
initialized with a joint policy-tree δ, where α(δ) can be any of the
joint actions a ∈ A and η(o, δ) be the subtree with the highest con-
tribution no matter if it is a valid subtree or not. Each internal node
at depth h (h ≥ 1) of the search tree represents a joint policy-tree
δ where only (h − 1) valid subtrees have been attached at δ’s leaf
nodes (not to be confused with the leaf nodes of the search tree).
Each joint policy-tree at leaf node of the search tree, where valid
subtrees have been attached, is a valid joint policy-tree. Notice that
during the course of the search, leaf nodes of the the search tree
that do not represent a valid joint policy-tree turn out to be either
the root node or future internal nodes of the search tree.

What PBIP does, is evaluate leaf nodes of the search tree, select
the node with the highest heuristic estimate, and expand this node,
thus descending one step further in the search tree. The search
then proceeds by expanding joint policy-trees δ at leaf nodes of the
search tree in descending order of f̄ -values, until the best solution
is identified. Expanding a leaf node consists in expanding the at-
tached joint policy-tree δ, which means: building all possible joint
policy-trees that extend δ by replacing one non-valid subtree by one
valid subtree; then making the resulting joint policy-trees as child
nodes of δ. When a search tree has been completely explored, the

heuristic starts a new search tree with another joint action α(δ),
until all joint actions have been selected. The resulting best joint
policy-tree is then kept in memory. One can prioritize search trees
in decreasing order of the heuristic estimate of their root nodes and
prune all partially expanded joint policy-trees with heuristic esti-
mates less or equal to the lower bound. The exact value of the
joint policy-tree, that is both completely expanded (all subtrees are
valid) and the current best joint policy-tree (that yields the highest
exact value), can be set as the lower bound and denoted f(b).

Figure 2: A section of PBIP search tree.

4. PBIP ALGORITHM
The heuristic method discussed above suffers from three major

drawbacks: computation overhead, memory overhead, and ineffi-
ciency of the pruning strategy. To overcome these drawbacks, we
suggest additional optimizations.

4.1 Reducing computation overhead
First of all, the above heuristic requires checking whether or not

(c2) and (c1) are satisfied for each joint policy-tree δ. However,
checking (c2) incurs significant computation overhead since it re-
quires in the worst case a time complexity O(n · |Ω1| · |Qt−1|),
where a single subtree requires O(n · |Ω1|) operations. To handle
this issue we rely on the fact that only a few non-valid subtrees of
a joint policy-tree δ have to be replaced by valid subtrees to build a
valid joint policy-tree as illustrated in the example below.

EXAMPLE 1. Back to the example of Figure 1, given two valid
subtrees of δ, η(δ, (o0, o0)) = (q2

i , q2
j ) and η(δ, (o1, o1)) = (q1

i , q1
j ).

Then, using (c2) it turns out that η(qi, o0) = q2
i and η(qi, o1) =

q1
i for agent i; η(qj , o0) = q2

j and η(qj , o1) = q1
j for agent

j. Therefore, the complete joint policy-tree δ is built as follows:
η(δ, (o0, o1)) = (η(qi, o0), η(qj , o1)) = (q2

i , q1
j ).

Doing so permits us to reduce the computation overhead since
(c2) is checked only for a small number of subtrees. As discussed
in the following, even for those subtrees it is not always required to
check (c2). More formally, we introduce the basis joint policy-tree
as the smallest partial joint policy-tree, where some arcs have been
removed, that is sufficient to recover the complete joint policy-tree.
The set of joint observations, which tag the arcs of a basis joint
policy-tree is referred to as the set of basis joint observations and
denoted ΩB . The nodes labeled with subtrees executed after receiv-
ing basis joint observations are called basis nodes. In Figure 1, the
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joint policy-tree, where arcs {(o0, o1), (o1, o0)} are removed from
δ, is a basis joint policy-tree, its basis joint observations and basis
nodes are sets {(o0, o0), (o1, o1)} and {(q2

i , q2
j ), (q1

i , q1
j )}, respec-

tively. While it is fairly easy to find a joint policy-tree using a basis
joint policy-tree, one may ask how to determine a basis joint policy-
tree. One simple way to determine a basis joint policy-tree is first
to build the set of basis joint observations ΩB then select a subtree
for each basis leaf nodes. We build ΩB by progressively adding
a new joint observation o ∈ Ω, which is component-wise differ-
ent or simply different from joint observations already added into
ΩB , e.g. joint observations (o0, o0) and (o1, o1) are component-
wise different while (o1, o0) and (o1, o1) are simply different since
their first components are equal. We add joint observations that are
component-wise different first then complete with simply different
joint observations until ΩB is a basis. The nice property of the
idea of ‘working with basis joint policy-trees’ lies in the fact that it
reduces the number of times (c2) has to be checked. Indeed, (c2)

is satisfied for joint observations that are component-wise differ-
ent. In addition, we can prove that the number of basis nodes κ is
quite small, κ := maxi∈I |Ωi| (by construction of ΩB). To get a
better insight of the basis set, one can look at ΩB as the smallest
set of joint observations where each individual observation is in-
cluded in at least one joint observation of that set. In particular, if
all agents have the same number of individual observations, we can
forget about (c2), i.e. joint observations that are component-wise
different define the basis set ΩB .

4.2 Reducing space complexity.
One major drawback with either A�-style heuristics or B&B-like

techniques is that in the worst case they remember an exponential
number of nodes. Indeed, in both, branching rules to be applied
can be seen as subdivision of a part of the search space. Generat-
ing subspaces are then kept in memory. Unfortunately, this incurs
considerable memory requirement. To cope with this, we restrict
the set of possible nodes at a given depth of the search tree, as il-
lustrated in Figure 2.

To do so, our search tree is built such that joint policy-trees that
can be attached at leaf nodes are all possible assignments of sub-
trees to the same basis node. This idea is motivated by the obser-
vation that such joint policy-trees differ only from the last subtree
assigned to them, see for example δ1 and δ4. As a result, they are
processed in decreasing order of the contribution of the last subtree
assigned to them, e.g., (q2

i , q2
j ) and (q1

i , q2
j ) respectively. More-

over, contributions of subtrees are stored in a priority stack that
will maintain subtrees in descending order. Then, to expand leaf
node δ1, we only need to build the best child node δ2, i.e. ba-
sis joint policy-tree where the last assigned subtree (q2

i , q2
j ) yields

the highest contribution. Indeed, the remaining child nodes will
be progressively built in decreasing order of the contribution of
the subtree assigned to them if necessary. A straightforward im-
plementation of PBIP’s search tree will results in a linear memory
space O(κ). In particular, our PBIP implementation (see subsection
4.4) only needs to keep one node that is progressively updated.

Since the space complexity plays a major role in B&B perfor-
mances, we compare PBIP to B&B techniques with different search
strategies of selecting the next node: Best First (BeFS); Breadth
First (BFS) and Depth First (DFS). Indeed, the strategy for selecting
the next node to process usually reflects a trade-off between keep-
ing the number of processed nodes in the search tree low, and stay-
ing within the memory capacity of the computer used. Although
the DFS strategy is slightly better than BeFS and clearly better than
BFS, not surprisingly PBIP is superior to all of them in all tested
benchmarks. The reason turns out to be that, PBIP shares common

skills with BeFS and DFS.

4.3 Improving the pruning strategy
Using basis joint policy-trees, we are able to improve signifi-

cantly the pruning strategy by means of exploiting f̄ ’s properties.
Let us denote SUCC(δ) the set of successor joint policy-trees of a
joint policy-tree δ, i.e. child and brother nodes of δ built after δ.
For example in Figure 2, the successor joint policy-trees of δ1 are
{δ2, δ3, δ4}. The admissibility of the heuristic function f̄ and the
order in which PBIP processes joint policy-trees allow us to state
the following results.

LEMMA 1. Let δ be a joint policy-tree. Then, the following
holds: ∀δ′ ∈ SUCC(δ) : f̄(b, δ) ≥ f̄(b, δ′).

PROOF. We only need to prove this claim for child nodes, since
by hypothesis δ yields a better heuristic estimate than its brother
nodes include into SUCC(δ). We proceed by induction. First, the
basis case consists in proving that the next partial or complete joint
policy-tree δ1 that extends δ is such that: f̄(b, δ) ≥ f̄(b, δ1). To do
so, we need to look at what is new in δ1 according to δ. The main
difference lies in the fact that δ1 has one more subtree assigned to
a basis node leading from basis joint observation, e.g. o1:

f̄(b, δ1) = f̄(b, δ) − ḡb
α(δ),o1 + gδ1

b,o1

= f̄(b, δ) − ḡb
α(δ1),o1 + gδ1

b,o1 (α(δ) = α(δ1))

≤ f̄(b, δ)

The last inequality holds since ḡb
α(δ1),o1 ≥ gδ1

b,o1 by definition
of the upper-bound. By repeating this argument for any consecu-
tive pair (δk, δk+1) ∈ SUCC(δ) × SUCC(δ), the following holds:
f̄(b, δk) ≥ f̄(b, δk+1), ∀k = 1, · · · , |SUCC(δ)| . This proves

the above Lemma.

Intuitively, it is obvious that this property is a more strict require-
ment than monotonicity since SUCC(δ) also includes δ’s brother
nodes. Using this property and the order PBIP processes joint policy-
trees, we establish the following theorem. This theorem describes
an efficient property used to avoid joint policy-trees with low heuris-
tic estimate.

THEOREM 1. Let δ be a joint policy-tree with heuristic esti-
mate f̄(b, δ), and δ′ the current best joint policy-tree. If f̄(b, δ) ≤
f(b, δ′), then the following holds:

f(b, δ′) ≥ f(b, δk), ∀δk ∈ SUCC(δ).

PROOF. In accordance with Lemma 1 we have,

f̄(b, δ) ≥ f̄(b, δk), ∀δk ∈ SUCC(δ)

Then, the following holds:

f(b, δ′) ≥ f̄(b, δ) (by hypothesis)
≥ f̄(b, δk), ∀δk ∈ SUCC(δ) (Lemma 1)
≥ f(b, δk), ∀δk ∈ SUCC(δ) (upper-bound def.)

This theorem states only that if a joint policy-tree δ has a heuris-
tic estimate less or equal to the current lower-bound, PBIP does
not build subspace SUCC(δ). This strategy improves the pruning
strategy used in A�-style algorithms since it does not require all
successor nodes SUCC(δ) to be generated and evaluated. From a
practical point of view, if δ’s heuristic estimate is less or equal to
the current lower bound (backtracking condition), then there are
two possibilities: (a) if δ’s parent node is the root node, then the
search terminates; (b) otherwise, the search backtracks to δ’s par-
ent node and tests the backtracking condition.
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Algorithm 1 PBIP subroutines.
1: procedure SEARCH((b, a, δt, ΩB , Qt−1, Selectt))
2: open ← EmptyStack, k ← 0
3: α(δ) ← a
4: ∀(o, η(δ, o)) ∈ Ω × Qt−1: compute gδ

b,o, ḡb
a,o

5: EXPAND � initialize the search tree
6: while open �= EmptyStack do
7: (ok, η(δ, ok)) ← open.PEEK
8: if f(b) < f̄(b, δ) then

9: if ok = oκ then
10: if f(b, δ) > f(b) and δ �∈ Selectt then

11: δt ← δ
12: f(b) ← f(b, δt)

13: EXPLORE � select a new subtree η(δ, ok)
14: else EXPAND � assign a subtree η(δ, ok+1)

15: else BACKTRACK � backtrack if pos. to η(δ, ok−1)

1: procedure EXPAND
2: k ← k + 1 � go forward to η(δ, ok+1)
3: η(δ, ok) ← EXPLORE
4: open.PUSH(ok, η(δ, ok))

5: procedure BACKTRACK
6: if open.ISNOTEMPTY then
7: (ok,−) ← open.POP
8: η(δ, ok) ← −1 � reinitialize the pointer position
9: if ok �= o1 then

10: k ← k − 1 � go backward to η(δ, ok−1)
11: EXPLORE
12: procedure EXPLORE
13: INCREMENT(η(δ, ok))
14: if η(δ, ok) > |Qt−1| then
15: BACKTRACK � backtrack if pos. to η(δ, ok−1)

16: return η(δ, ok)

EXAMPLE 2. Figure 2 shows the progress of PBIP to find the
best joint policy-tree for the search tree associated with joint ac-
tion (a2, a2). The first node to be built starting from root node (δ0)
is δ1, because it yields the highest heuristic estimate −4. This node
in turn generates only one child node, i.e. δ2. Since the resulting
joint policy-tree has non-empty basis nodes, PBIP computes its ex-
act value −4, and uses it as a lower bound. Then, PBIP backtracks
to node δ1. Because δ1’s heuristic estimate −4 is equal to the cur-
rent lower bound, PBIP does not build its successor nodes δ3 and
δ4. Then, the search terminates since δ1’s parent node (δ0) is the
root node of the search tree. Finally, joint policy-tree δ2 is the best
one for this search tree.

4.4 Specific implementation
In the same vein as MBDP, PBIP combines the bottom-up and

top-down heuristic methods as described in Algorithm 2. However,
what sets PBIP apart from MBDP is its ability to avoid the exhaus-
tive generation of all possible joint policy-trees at each iteration.
Indeed, a single iteration of PBIP can be summarized in the follow-
ing steps: first, the algorithm sets the joint policy-tree from the last
iteration Qt−1. Next, it chooses top-down heuristics from the port-
folio H in order to generate maxTrees number of belief states.
Then, it uses subroutine SEARCH to determine the set of best joint
policy-trees Selectt for the set of generated belief states. Finally,
at iteration T , the best joint policy-tree with respect to the initial
belief state b0 is returned.

Algorithm 2 Point based incremental pruning
1: procedure PBIP((maxTrees, T , H))
2: Select1 ← initialize all depth-1 joint policy-trees
3: for all t = 2, · · · , T do
4: Qt−1 ← Selectt and Selectt ← ∅
5: for all k = 1, · · · , maxTrees do
6: chooses h ∈ H and generate belief b
7: δt ← null and f(b) ← −∞
8: for all a ∈ A do
9: SEARCH(b, a, δt, ΩB , Qt−1, Selectt)

10: add best joint policy-tree δt to Selectt

11: select the optimal joint policy-tree δ�T from SelectT

12: return δ�T

In the following, we draw attention to a single search tree of
PBIP with the following entries: a belief state b; a joint action a, the
current best joint policy-tree δt, the set of basis joint observations
ΩB , subtrees from the last iteration Qt−1, and finally current best
joint policy-trees Selectt (Algorithm 1). Exact and upper bound

contributions of subtrees in Qt−1 are computed and stored in a pri-
ority queue. We use η(δ, o) as either a subtree or its index position
in the priority queue interchangeably. Therefore, PBIP’s SEARCH
subroutine can be summarized in the following steps:

First of all, SEARCH initializes an open list ‘open’ that will con-
tain the expanded nodes. Second, it expands the current leaf node
of the search tree that yields the highest heuristic estimate (see
procedure EXPAND, lines 1-5). Then, SEARCH goes through the
main loop. Each loop consists in evaluating the heuristic estimate
of the current either partially or completely expanded joint policy-
tree (lines 6-19). If the heuristic estimate is less or equal to the
lower bound (line 8), then SEARCH backtracks (if possible) to the
last expanded joint policy-tree (see procedure BACKTRACK, lines
6-15). Otherwise, it updates the best joint policy-tree if it is com-
plete and its exact value is greater than the lower bound (lines 9-13)
and explores any remaining alternatives (see procedure EXPLORE,
lines 16-22). If not, SEARCH backtracks and expands the current
joint policy-tree δ (see procedure EXPAND, lines 1-5) by assigning
a subtree η(δ, ok+1). Note that, the new best joint policy-tree has to
be component-wise different from those already selected (line 10).
This enables us to avoid the problem of selecting identical policy-
trees for each agent. Finally, the search ends when the root node of
the search tree has been completely explored.

5. THEORETICAL PROPERTIES
In this section, we introduce some additional theoretical prop-

erties that guarantee PBIP performances, including completeness,
optimality, and complexity.

THEOREM 2. PBIP heuristic method is complete.

PROOF. PBIP will eventually terminate in the worst case after
enumerating all possible joint policy-trees from the current itera-
tion given the set of subtrees, which means after visiting the entire
exponential space of joint policy-trees at each iteration. The best
solution δ for a given belief b will be the one that yields the highest
exact value f(b, δ).

THEOREM 3. PBIP heuristic method is optimal with respect to
a given belief and the set of subtrees.

PROOF. One can look at PBIP as an A�-style algorithm. Indeed,
PBIP visits complete joint policies in best-first fashion following
an admissible heuristic function f̄ . Then, if PBIP terminates and
returns a joint policy-tree δ, the convergence property of A� and
the admissibility of the heuristic f̄ guarantee the optimality of the
solution with respect to a given belief b and subtrees.
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Algorithm MBDP IMBDP MBDP-OC PBIP

HORIZON (T ) AEV CPU (sec.) AEV CPU (sec.) AEV CPU (sec.) AEV CPU (sec.) %
MABC problem maxT rees = 3

100 90.29 0.190 N.A. N.A. 90.29 0.060 39
1000 900.29 2.270 N.A. N.A. 900.29 0.940 38

10000 9000.29 51.93 N.A. N.A. 9000.29 38.48 38
MA-TIGER problem maxT rees = 20

10 12.5±2.9 67.1±0.13 N.A. N.A. 13.6±1.11 5.55±0.88 7.83
20 25.8±2.1 159±0.16 N.A. N.A. 26.8±1.50 15.1±2.68 12.4
50 73.9±0.7 438±0.86 N.A. N.A. 74.2±2.76 45.3±6.49 15.3

100 149 901 N.A. N.A. 147±5.84 94.2±9.53 12.9
COOPERATIVE BOX-PUSHING problem maxT rees = 3 maxObs = 3

10 N.A. 99.59 7994.6 89.94 7994.4 102.5±6.46 11.8±3.61 10.9
20 N.A. 102.6 17031 135.0 17194 198.0±10.8 25.0±4.21 10.3
50 N.A. 82.99 44708 272.70 44210 422.2±20.8 61.6±10.6 9.07

100 N.A. 73.88 89471 440.08 90914 786.4±31.9 113±20.8 9.62
AEV = average expected value N.A. = not applicable % = pourcentage of expanded nodes

Table 1: Performances of all PBIP, MBDP, IMBDP and MBDP-OC.

Notice that in the worst case PBIP still has an exponential time
complexity with respect to the number of agents and κ: in the best
case, however, its time complexity is O(κ). The proof of these re-
sults relies on the following observations: first, since PBIP even-
tually enumerates all possible joint policies at a given iteration,
in the worst case its time complexity is also exponential; but in
the best case, PBIP requires only κ steps to build the first com-
plete joint policy-tree. Nevertheless, its overall time complexity
can be influenced by the pre-computing step that requires roughly
O(|S2||A||Ω|maxTrees|I|) operations. Although PBIP is based
on A� algorithm, it incurs negligible memory overhead. Indeed,
the subroutine SEARCH has a linear space complexity O(κ), i.e.
the length of the longest path from the root node to the best joint
policy-tree. This is possible since we compute all contributions of
subtrees for all joint action and joint observation pairs before the
search starts. As a result, the overall space complexity of PBIP is
O(|A||Ω|maxTrees).

6. EXPERIMENTS
As MBDP and its extensions are known to perform better than

other approximate algorithms such as point based dynamic pro-
gramming (PBDP), we compare PBIP only to MBDP, IMBDP and
MBDP-OC. Comparison is made according to DEC-POMDP bench-
marks from the literature: the multi-access broadcast channel (MABC)
problem [6], the multi-agent tiger problem [7] and the COOPERA-
TIVE BOX-PUSHING problem [11]. The COOPERATIVE BOX-PUSHING
problem provides an opportunity for testing the scalability of dif-
ferent algorithms. We executed the algorithms using the same pa-
rameter controls of the selection of heuristics from the portfolio,
maxTrees, recursion depth (set at 1) and maxObs. Except that
parameter maxObs is only used for IMBDP and MBDP-OC solvers.

Table 1, Figure 3 and Figure 4 present our experimental results.
For each problem and method we report: The average expected
value (AEV.) – this is because both MBDP and PBIP are partly ran-
domized then selected belief states and thus the quality of the re-
sulting solution may differ from one trial to another. Execution time
– we report only the CPU time (in seconds) since all algorithms are
coded in JAVA, properly optimized and run on the same machine.
Expanded nodes (%) – where % = 100× NPBIP

NMBDP
, where Ni denotes

the number of expanded joint trees by algorithm i. This value helps
to estimate the benefits of our pruning heuristic.

6.1 Discussion
Table 1 presents performance results of all the algorithms on the

three benchmarks. As we already notice, both PBIP and MBDP
algorithms are likely to find the same solution, since they differ
only in the way they select the best joint policy-trees. Our results
clearly indicate that PBIP is faster than MBDP, IMBDP or MBDP-OC
and scales up better. For problem with small number of observa-
tion both PBIP and MBDP provide approximately the same solution

quality, but the time required by PBIP to reach the desired solu-
tion is always faster. For example, the MABC problem for horizon
1000 is solved (approximately) in 560 seconds with PBIP whereas
MBDP requires 1094 seconds to solve it. The most impressive re-
sults rely on the percentage of expanded joint policy-trees. For in-
stance, in the MA-TIGER problem at horizon 10, PBIP expands only
7.83% of what would be expanded by a brute force approach. How-
ever, when the horizon increases in general this percentage also in-
creases and then stabilizes depending on the problem and parameter
maxTrees. Table 1 via the COOPERATIVE BOX-PUSHING prob-
lem also presents a more focused comparison of the relative ability
of the PBIP and MBDP extensions to scale up. Overall, it appears
that IMBDP and MBDP-OC are slowed down considerably by the ex-
haustive backup computation and the management of the resulting
joint policy-trees. PBIP, however, benefits from its ability to iden-
tify subspaces of joint policy-trees with low heuristic estimate, this
enables it to focus only on a small space of relevant joint policy-
trees. Even though PBIP does not include an observation compres-
sion subroutine, it solves the COOPERATIVE BOX-PUSHING up to
800 times faster than IMBDP and MBDP-OC, while providing a bet-
ter solution quality, that is up to 1.78 times higher than the MBDP-
OC’s and up to 10 times higher than the IMBDP’s. Notice that given
the time requires to build policies using either IMBDP or MBDP-
OC their results are not averaged, so the solution quality may be
slightly different from one trial to another.

These differences become more pronounced as the parameter
maxTrees increases. As pointed out by [12], by increasing pa-
rameter maxTrees one generally increases both solution quality
and runtime. We illustrate the performance of MBDP and PBIP
when one increases parameter maxTrees for the MA-TIGER prob-
lem. On the right hand side, Figure 3 shows the runtimes of both
MBDP and PBIP when parameter maxTrees is increased. On the
left hand side, it shows the solution value for different values of pa-
rameter maxTrees. The purpose of Figure 3 is therefore to show
how both PBIP and MBDP perform for different values of param-
eter maxTrees. As illustrated, MBDP exceeds the time limit (1
hour) for maxTrees = 35 while PBIP is able to solve the MA-
TIGER problem using maxTrees = 100 and more. Doing so
enables PBIP to improve the solution quality of MA-TIGER prob-
lem. Nevertheless, even though PBIP avoids a large number of
joint policy-trees, the benefits do not fully manifest in total exe-
cution time. For instance in Table 1, for MABC problem at horizon
10000, PBIP explores only 38% of the joint policy-trees, however, it
took 38.48 seconds to find the best solution, while MBDP required
51.93 seconds. This is mainly because computing exact and upper-
bound estimates of each subtree incurs considerable computation
overhead. Of course, managing those estimates requires a number
of costly operations including: subtrees re-ordering, checking the
validity of a given joint policy-tree. We believe that those issues
would be overcome by an appropriate data structure and/or imple-
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Figure 3: Performances for MA-TIGER problem with T = 10.
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Figure 4: PBIP’s performances for COOPERATIVE BOX-PUSHING problem with T = 10.

mentation. To confirm the scalability of PBIP, we increase parame-
ter maxTrees up to 7, in the COOPERATIVE BOX-PUSHING prob-
lem (see Figure 4). We only report the PBIP’s performances since
IMBDP and MBDP-OC quickly run out of time (10 hours). Overall,
it appears that although PBIP scales up better than other approxi-
mate DEC-POMDP solvers, the impact of increasing maxTrees
parameter is not negligible. For example, if maxTrees = 7 PBIP
requires approximately 8 hours while requiring only one hour and
half when using maxTrees = 6. Roughly, the running time grows
exponentially with parameter maxTrees while the average solu-
tion quality grows only about 5% for each additional trees.

7. CONCLUSION AND FUTURE WORK
We have presented PBIP, the first heuristic method that circum-

vents the problem of generating and evaluating all possible joint
policy-trees at each iteration of DEC-POMDP solvers. This algo-
rithm is based on two observations: (1) most joint policy-trees re-
sulting from the exhaustive backup yield low heuristic estimate; (2)
the DEC-POMDP policy space is a subspace of the MPOMDP policy
space. This insight, allows PBIP to conduct a search towards the
most promising joint policies, and avoids the irrelevant ones. Ex-
periment results show orders of magnitude improvement in the per-
formance of all leading algorithms including MBDP and its exten-
sions. Although the proposed approach has been illustrated within
the MBDP framework, PBIP can easily be used to scale up others
DEC-POMDP solvers for either finite or infinite cases. Currently, we
are tracking others similarities between DEC-POMDP and POMDP
models so as to reduce the algorithmic gap that separates these two
closely related problems and hopefully to enable us to scale up to
real-life applications.
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