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ABSTRACT
Commitment-modeled protocols enable flexible and robust inter-
actions among agents. However, existing work has focused on
features and capabilities of protocols without considering the active
role of agents in them. Therefore, in this paper we propose to
augment agents with the ability of reasoning about and manipu-
lating their commitments to maximize the system utility. We adopt
a bottom-up approach by first investigating the intra-dependency
between each commitment’s preconditions and result which leads
to a novel classification of commitments as well as a formalism
to express various types of complex commitment. Within this
framework, we provide a set of inference rules to benefit an agent
by means of commitment refactoring which enables composition
and/or decomposition of its commitments to optimize runtime
performance. We also discuss the pros and cons of an agent
scheduling and executing its commitments in parallel. We propose
a reasoning strategy and an algorithm to minimize possible loss
when the commitment is broken and maximize the overall system
robustness and performance. Experiments show that concurrent
schedules based on the features of commitments can boost the
system performance significantly.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control Meth-
ods, and Search—Scheduling; I.2.11 [Artificial Intelligence]:
Distributed Artificial Intelligence—multiagent systems, languages
and structures; D.2.4 [Software Engineering]: Software/Program
Verification—Reliability

General Terms
Design, Reliability, Performance

Keywords
commitment machines, commitment refactoring, agent interaction,
robustness, scheduling

1. INTRODUCTION
Agents are autonomous and social entities which cooperate

and compete with each other to achieve some goals beyond the
limitation of each individual’s ability. Accurate and flexible
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representation of interaction protocols among them is a crucial part
of multiagent system design and analysis to ensure coherent and
correct execution. [24] argued that the interactions among agents
should only constrain their actions to the extent necessary to carry
out the given protocol, and no more.

To overcome the inflexibility of traditional approaches which
focus on the permissible sequences of the messages in protocols, [4,
23] propose to design agent interactions with the high-level concept
of social commitments [2, 19, 8] which represent responsibility
from one agent to another. Specifically, different sequences of
actions can be derived from the initial state to one of the acceptable
termination states with all the constraints imposed by commitments
satisfied. If the multi-agent system follows any one of them, the
system is considered to be consistent and correct.

However, the issue of how an agent can reason and manipulate
its commitments to control and benefit from the provided flexibility
has not been addressed. In fact, commitments add an extra
dimension of obligation and predictability to agents’ behaviors.
Therefore, agents can perceive and reason with each other in a
more predictive way by generating an optimized but reliable and
robust execution plan that can be adjusted at the runtime. In certain
situations, agents can convert some sequential execution schedules
to be concurrent for better performance while retaining the same
correctness and consistency criteria.

To address the effects of commitments on agent’s deliberation
process, in this paper, we first analyze and classify their inter-
and intra-dependency relationships and introduce a formalism to
represent and manipulate these relationships. We then define a
concurrent scheduling model on the formalism to enable agents to
minimize their potential loss when they pursue parallel execution.
The main contributions of the paper are the following:

• A novel classification of commitments according to their
intra-dependency between the precondition and result.

• A formalism based on the classification for expressing com-
plex commitments.

• The concept and rules of commitment refactoring to help
agents compose and decompose their commitments for better
runtime performance.

• A concurrent commitment-based scheduling strategy for
agents for minimizing possible loss when commitments are
broken and thus maximizing the overall system performance.
The feature of commitment recoverability in case of breaches
is also incorporated into the reasoning and scheduling pro-
cesses of agents, thus helping to build concurrent and robust
multiagent systems.
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The remainder of the paper is organized as follows. Section 2
introduces a motivating example. Section 3 gives the formal
definition for complex commitments with various intra-dependency
types. Section 4 introduces commitment refactoring, reasoning and
manipulating strategies for agents to refine their runtime execution
schedules. The design of experiments and results are presented in
Section 5. Section 6 provides an overview of the state of the art.
Finally, in Section 7 we present our conclusions and perspective
for future work.

2. A MOTIVATING EXAMPLE
An interaction protocol defines the permissible sequence of

message exchanges. Commitments are applied to represent the
obligation between participants of the protocol.

Following [24], a conditional commitment CC(x, y,Φ,Ψ) de-
notes an obligation of a debtor x to a creditor y to bringing about
Ψ if Φ holds. Here Φ is the precondition and Ψ is the result of
the commitment. If Φ is true, it is considered as unconditional and
can be denoted as C(x, y,Ψ). After the result Ψ becomes true, the
commitment is said to be discharged.

The following Netbill protocol example, borrowed from [14],
shows a scenario represented in commitments.

Example 1. As shown in Figure 1, the interaction begins (s1)
with a customer requesting a quote for some desired goods (s2),
followed by the merchant sending the quote (s3). If the customer
accepts the quote (s4), then the merchant delivers the goods (s5)
and waits for an electronic payment order (EPO). The goods
delivered at this point are encrypted, that is, not usable. After
receiving the EPO (s6), the merchant sends the receipt to the
customer (s7), who can then successfully decrypt and use the goods.

Figure 1: Scenario of purchase protocol

As an addition to the original example, we append an attribute of
processing time, represented as [number of hours], for completing
each message-related activity. In this way, we can evaluate and
compare the efficiency of different schedules. The execution time
of the example is computed in a similar way to the estimation
generally used in workflow graphs. It will take a total of 77 hours
to accomplish the schedule. Table 1 lists the commitments within
each state.

A wide range of interaction sequences can be generated and
supported from the above commitment protocol by combining
various messages in different order when it is allowed [23]. How-
ever, the effect of commitment preconditions on the commitment
result has not been considered in the model, therefore some
order of messages will bring high risk of loss to participating
agents, making them implausible. For example, if the merchant in
CC(m, c, accept, goods) commences to deliver the goods before the
customer agrees with the payment, the merchant risks not receiving
any money because the goods delivery completes and discharges
the commitment and the customer has no further obligation. Thus,
the merchant will tend to choose a defensive approach to wait until

Table 1: Commitments in each state of Interaction Protocol
State Commitment-related Beliefs
S 1 Null
S 2 request
S 3 CC(m, c, accept, goods) ∧CC(m, c, payment, receipt)

where accept = CC(c,m, goods, payment)
S 4 CC(c,m, goods, payment) ∧C(m, c, goods)

∧CC(m, c, payment, receipt)
S 5 goods∧C(c,m, payment)∧CC(m, c, payment, receipt)
S 6 goods ∧ payment ∧C(m, c, receipt)
S 7 goods ∧ payment ∧ receipt

they receive the acceptance. In this case, the flexibility provided
by the commitment concept is greatly reduced. The resulting
state machine may even be condensed into one rigid sequence of
messages similar to the traditional methods.

We study and classify the possible relations between com-
mitment preconditions and results. With this knowledge, we
incorporate the ability of commitment reasoning into the agent’s
deliberation process to enable rational selection of a beneficial but
robust and reliable execution path at run time. We will apply
our model to the same example to demonstrate that an agent
can actively reason and manipulate its commitments to improve
system’s robustness as well as performance.

3. INTRA-COMMITMENT DEPENDENCY
This paper’s main focus is reasoning about and manipulating the

dependency and temporal relationships between agents. We borrow
the formalism of the commitment protocol from [4] to represent the
commitment and dependency among agents. We also use many
temporal logic notions directly to specify the semantics of our
extensions to commitments. We note all notions in the paper can
be translated into temporal logic [15] and be applied to the general
issues on task dependencies. However, we believe the commitment
protocol is more natural and less prone to programming errors.

3.1 Commitment Classification
The precondition and result of a commitment have different types

of dependencies. Because the condition part is usually carried
out by some other agents, the agent can reason about its partners
and adjust its behaviors accordingly, and thus benefit from the
knowledge of dependency. We formally define the classification of
intra-dependency in commitments on top of the interaction protocol
which provides a semantic and execution framework for agents and
their commitments.

An interaction protocol defines a global state machine incorpo-
rating the allowed messages and their occurrence order. The indi-
vidual agent represents its view of such a protocol as a transition
system.

Definition 1. An agent interaction protocol is a tuple P =
(Π,Σ, s0, F,M,Γ) consisting of the following elements:

• Π = u1, . . . , un is a finite set of state variables which are used
to represent the interaction related information.

• Σ is a finite set of interaction states. Each state s ∈ Σ is an
interpretation of Π, assigning to each variable u in Π a value
over its domain.

• s0 ∈ Σ is the initial state.

• F ∈ Σ is a set of final states.
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• M is a finite set of messages.

• Γ is a finite set of transitions (Γ ⊆ Σ×M×Σ). Each transition
τ = (si,m, si+1) ∈ Γ identifies a source state si, a target state
si+1 and a message m that is either consumed or produced
during this transition.

A computation, or path, of the interaction protocol is defined to
be an infinite sequence of states, denoted as σ =< s0, s1, . . . >. The
commitment types are defined by the properties of σ.

Definition 2. (Commitment types) A commitment, denoted
as CC(x, y,Φ,Ψ), can be classified according to the temporal
constraints between its condition part Φ and result part Ψ. The
creditor and debtor of a commitment is omitted when they are clear.

• The commitment is ordered if Φ has to be achieved before
or at the same time as Ψ is satisfied, formally σ satisfies
∃i∃n(i ≤ n ∧ si � Φ ∧ sn � Ψ). The set of ordered com-
mitments, denoted as OC, which can be further categorized.

– strictly ordered, denoted as CC(Φ � Ψ), if Φ has to
be satisfied before or at the same time as Ψ and must
remain true until Ψ. Formally, σ satisfies ∃i∃n(i ≤ n ∧
∀ j(i ≤ j ≤ n ∧ s j � Φ) ∧ sn � Ψ). The strictly ordered
commitment set is denoted as SOC.

– weakly ordered, denoted as CC(Φ 
 Ψ), if ¬Φ is re-
quired between its first occurrence and the completion
of the commitment. Formally, σ satisfies ∃i∃n(i <
n ∧ si � Φ ∧ sn � Ψ ∧ ∃ j(i < j ≤ n ∧ s j � ¬Φ)).
The set of weakly ordered commitments is denoted as
WOC, where WOC = OC − SOC.

• The commitment is unordered if the occurrence order of
Φ and Ψ does not affect the execution or completion of the
commitment. The set of unordered commitments is denoted
as UC, which can be further categorized into

– strictly unordered, denoted as CC(Φ ‖ Ψ), if its
success requires both Φ and Ψ are satisfied but in any
order. Formally, σ satisfies ∃n(sn � Φ ∧ Ψ). The set of
strictly unordered commitments is denoted as SUC.

– weakly unordered, denoted as CC(Φ♦Ψ), if regardless
of no matter Φ occurs or not, Φ is not satisfied at the
time of completion. Formally, σ satisfies ∃i∃n(sn � Ψ∧

∀ j(i ≤ j ≤ n ∧ s j � ¬Φ)). The set of weakly unordered
commitments is denoted as WUC, where WUC = UC −
SUC.

For example, CC(m, c, payment, re f und) is strictly ordered be-
cause merchants have to receive money from their customers before
they can return it. As another example, for some companies,
CC(m, c, payment, receipt) is strictly unordered because they trust
customers and allow the payment and receipt issuance to be carried
out concurrently. However, others may have a policy of requiring it
to be strictly ordered to reduce their risk of money loss. Therefore,
the dependency relationship is application-dependent and needs to
be defined by users by adding an extra attribute of commitment type
to the commitment expression.

The containing relationships among different sets of commit-
ment types can be obtained directly from Definition 2:

SOC ⊆ SUC

OC ⊆ UC

As shown in Theorem 1, it can be inferred that WUC is a special
case of SOC. However, WUC is listed as a separate category for the
completeness of the definition.

Theorem 1. CC(¬Φ � Ψ) ≡ CC(Φ♦Ψ)

Proof. The proof is straightforward by expanding the definition of
SOC with ¬Φ.

CC(¬Φ � Ψ)

⇔ ∃i∃n(i ≤ n ∧ ∀ j(i ≤ j ≤ n ∧ s j � ¬Φ) ∧ sn � Ψ)

⇔ CC(Φ♦Ψ) ❚

3.2 Syntax of Commitments
Commitment can be simple in that it contains only atomic

proposition as precondition and result. But it is more general
to have complex commitments in practice where both condition
and result parts can be complex logical formulas with nested
commitments. We extend the existing commitment representation
to express the complexity caused by various combinations. The
operators include the standard connectives, such as ∧, ∨ and ¬
from propositional logic, and the commitment type operators from
Definition 2.

Definition 3. Let p be an atomic proposition defined by a state
variable, Φ and Ψ be state formulas. State-Formulas in a commit-
ment are defined as:

1. p is a state-formula.

2. ¬Φ, Φ ∧ Ψ or Φ ∨Ψ is a state-formula.

Definition 4. Let Φ and Ψ be state-formulas, Commitment-
Formulas are defined as:

1. CC(Φ � Ψ), CC(Φ 
 Ψ), CC(Φ ‖ Ψ) or CC(Φ♦Ψ) is a
commitment-formula.

2. if φ, φ1 and φ2 are commitment-formulas, φ1 ∧ φ2, φ1 ∨ φ2 or
¬φ is a commitment-formula.

If we consider a commitment formula φ = CC(x, y, c, r) as a
proposition indicating whether the commitment is held, then φ
becomes a state formula and nested commitments are supported.

3.3 Semantics of Commitments
The semantics of a commitment are defined by two satisfaction

relations (both denoted by �): one for state-formulas and one
for commitment-formulas. For the state-formulas, � is a relation
between a protocol P, one of its states s, and a state-formula
Φ, denoted as P, s � Φ. For the commitment-formulas, � is a
relation between a protocolP, one of its pathsσ, and a commitment
formula φ, denoted as P, σ � Φ. For convenience, we omit P if it
is clear from the context.

Definition 5. (Semantics of commitments) Let p be an atomic
proposition, P = (Π,Σ, s0, F,M,Γ) be an interaction protocol, and
s ∈ Π, Φ,Ψ be state-formulas. The satisfaction relation � for state-
formulas is defined as:

• s � p if and only if p is true in s

• s � ¬Φ if and only if s � Φ

• s � Φ ∧ Ψ if and only if s � Φ and s � Ψ

• s � Φ ∨ Ψ if and only if s � Φ or s � Ψ
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Let φ, φ1 and φ2 be commitment-formulas. For path σ the
satisfaction relation � for commitment formulas is defined by:

• σ � (φ ≡ CC(Φ �Ψ)) if and only if φ ∈ SOC

• σ � (φ ≡ CC(Φ 
Ψ)) if and only if φ ∈ WOC

• σ � (φ ≡ CC(Φ ‖ Ψ)) if and only if φ ∈ SUC

• σ � (φ ≡ CC(Φ♦Ψ)) if and only if φ ∈ WUC

• σ � φ1 ∧ φ2 if and only if σ � φ1 and σ � φ2

• σ � φ1 ∨ φ2 if and only if σ � φ1 or σ � φ2

• σ � ¬φ if and only if σ � φ

s0 � ¬Φ ∧ s0 � ¬Ψ is assumed to simplify the discussion.

The same state-formulas combined by different commitment
types may exhibit different properties. In certain conditions,
complex formulas can be decomposed into smaller and simpler
ones, thus helping to reduce system complexity and improve
system concurrency. The following theorem shows the applicable
inference rules for commitments.

Theorem 2. Let Φ,Ψ be state-formulas. Inference Rules for
commitments are defined as follow:

• Distribution over strictly ordered:

1. CC(Φ � (Ψ1 ∧ Ψ2))⇒ CC(Φ � Ψ1) ∧CC(Φ � Ψ2)

2. CC(Φ � (Ψ1 ∨ Ψ2)) ≡ CC(Φ � Ψ1) ∨CC(Φ � Ψ2)

3. CC((Φ1 ∧ Φ2) � Ψ)⇒ CC(Φ1 � Ψ) ∧CC(Φ2 � Ψ)

4. CC((Φ1 ∨ Φ2) � Ψ)⇐ CC(Φ1 � Ψ) ∨CC(Φ2 � Ψ)

• Distribution over weakly ordered:

5. CC(Φ 
 (Ψ1 ∧ Ψ2))⇒ CC(Φ 
 Ψ1) ∧CC(Φ 
 Ψ2)

6. CC(Φ 
 (Ψ1 ∨ Ψ2)) ≡ CC(Φ 
 Ψ1) ∨CC(Φ 
 Ψ2)

7. CC((Φ1 ∧ Φ2) 
 Ψ)⇒ CC(Φ1 
 Ψ) ∨CC(Φ2 
 Ψ)

8. CC((Φ1 ∨ Φ2) 
 Ψ)⇒ CC(Φ1 
 Ψ) ∧CC(Φ2 
 Ψ)

• Distribution over strictly unordered:

9. CC(Φ ‖ (Ψ1 ∧ Ψ2))⇒ CC(Φ ‖ Ψ1) ∧CC(Φ ‖ Ψ2)

10. CC(Φ ‖ (Ψ1 ∨ Ψ2)) ≡ CC(Φ ‖ Ψ1) ∨CC(Φ ‖ Ψ2)

11. CC((Φ1 ∧ Φ2) ‖ Ψ)⇒ CC(Φ1 ‖ Ψ) ∧CC(Φ2 ‖ Ψ)

12. CC((Φ1 ∨ Φ2) ‖ Ψ) ≡ CC(Φ1 ‖ Ψ) ∨CC(Φ2 ‖ Ψ)

• Distribution over weakly unordered:

13. CC(Φ♦(Ψ1 ∧ Ψ2))⇒ CC(Φ♦Ψ1) ∧CC(Φ♦Ψ2)

14. CC(Φ♦(Ψ1 ∨ Ψ2)) ≡ CC(Φ♦Ψ1) ∨CC(Φ♦Ψ2)

15. CC((Φ1 ∧ Φ2)♦Ψ)⇐ CC(Φ1♦Ψ) ∨CC(Φ2♦Ψ)

16. CC((Φ1 ∨ Φ2)♦Ψ)⇒ CC(Φ1♦Ψ) ∧CC(Φ2♦Ψ)

Proof. Due to space limitations, we only present the proof of Rule
2. Other rules can be proved following the same style.

For Rule 2, Definition 5 states the state-formulas sn � (Ψ1∨Ψ2) ≡
sn � Ψ1 ∨ sn � Ψ2. Therefore, the commitment-formulas

CC(Φ � (Ψ1 ∨ Ψ2))

⇔ ∃i∃n(i ≤ n ∧ ∀ j(i ≤ j ≤ n ∧ s j � Φ) ∧

(sn � Ψ1 ∨ sn � Ψ2))

⇔ ∃i∃n(i ≤ n ∧ ∀ j(i ≤ j ≤ n ∧ s j � Φ) ∧ sn � Ψ1) ∨

∃i∃n(i ≤ n ∧ ∀ j(i ≤ j ≤ n ∧ s j � Φ) ∧ sn � Ψ2)

⇔ CC(Φ � Ψ1) ∨CC(Φ � Ψ2) ❚

4. REASONING AND MANIPULATION OF
COMMITMENTS

The knowledge of the compositional structure of a commitment,
as well as its dependency type, helps agents to reason about its
run-time properties. Therefore, agents can decide to compose,
decompose or run in parallel their commitments to find an optimal
execution schedule.

4.1 Commitment Refactoring
An agent usually has more than one simultaneous commitment.

It can reorganize them for its own benefits as long as it retains the
same commitment to others.

Definition 6. Commitment refactoring modifies the commitments
of an agent to improve its performance and simplify its structure
without changing its external behavior.

There are two main approaches to accomplish commitment
refactoring: composing, which merges several similar commit-
ments into a complex one; and decomposing, which splits one
complex commitment into several smaller independent ones. Com-
posing refactoring helps agents to aggregate several related requests
together and process them in a batch. This approach benefits
agents in the batch processing, such as by the reduction of the
cost of resource allocation and expense of locking and unlocking
operations. In contrast, decomposing refactoring helps agents
to disassemble a batch processing of commitments into several
independent processes which can then be executed in parallel.

An agent carries out its commitment refactoring with the infer-
ence rules provided in Theorem 2. For equivalent rules φ1 ≡ φ2,
either side of the commitment-formula can be substituted by the
other one. However, for rules in the form of φ1 ⇒ φ2, φ1 is
used to substitute φ2 because φ1 has more restrictive constraints on
permissible executions. For example, the agent with a commitment
CC((Φ1 ∨ Φ2) � Ψ) can decide to execute either CC(Φ1 � Ψ) or
CC(Φ2 � Ψ) by inference from Rule 4.

4.2 Robust Schedule of Single Commitments
Commitment machines can support a wide range of interaction

sequences [23]. However, existing research on the commitment
protocol has only focused on finding all possible execution se-
quences without considering the effect of preconditions on the
result. In fact, ordered commitments require sequential satisfaction
of their conditional and result part to enact the business logic.
Although unordered commitments, especially strictly unordered
ones, put no constraints on allowed orders, an agent may still
choose to retain an order to minimize its possible loss.

If x in CC(x, y,Φ ‖ Ψ) commences to bring about the result of
Ψ before the success of Φ, x may encounter a loss later because
satisfaction of Ψ completes and discharges the commitment and y
has no further obligation to satisfy Φ. Thus, x will tend to choose a
defensive approach to wait untilΦ becomes true. Consequently, the
flexibility provided by the commitment concept is greatly reduced.

Not only the flexibility of the system, but also the possible
performance boost is reduced if agents cannot benefit from carrying
out the execution of the conditional and result parts of a commit-
ment concurrently. For example, during the execution of the Netbill
protocol, the customer will reach a state holding CC(c,m, goods ‖
payment) in which it faces two choices to continue its execution:

1. waiting until receiving the goods from the merchant before
payment, or

2. making the payment directly while waiting for the goods.
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The first choice will guarantee that the system always terminates
in a proper state in which both goods and payment are true, but
will result in a longer processing time (the summation of both the
goods delivery time and the payment time). Conversely, the second
choice can reduce the execution time greatly (to the maximum
value between the goods delivery time and payment time) but leave
the customer in risk of losing money because the merchant may
choose not to deliver the goods.

We propose to incorporate the ability of commitment reasoning
into the agent’s deliberation, leading to a new scheduling measure
which keeps a balance between the two extremes. As the first
step, knowledge of the debtor on a certain strictly-unordered
commitment is grouped to evaluate the risk of following the
concurrent schedule. The following definitions apply to all types
of commitments, but we will focus on discussing strictly unordered
ones as others can be inferred intuitively.

Definition 7. A commitment φ ≡ CC(x, y,Φ,Ψ) in state s
has the property of Guardianship if x perceives that there exists
an unconditional commitment from any agent A to fulfill the
precondition Φ. Formally, s � φ ∧ s � (C(A, x,Φ)).

Definition 8. A commitment φ ≡ CC(x, y,Φ,Ψ) in state si

has the property of Recoverability if x perceives that there exists
a compensating commitment ρ ≡ CC(y, x,¬Φ,Ψ′) in case of
commitment breach during the execution which terminates in a
state sn′ � Ψ

′. Formally, ∀ j(i < j < n ∧ s j � ρ).

Definition 9. The Commitment Safety Level controls the robust-
ness and reliability of a running commitment. According to the
properties of Guardianship and Recoverability, each commitment
φ ≡ CC(x, y,Φ,Ψ) contained in state s can be classified into four
different levels.

0 : Bare if neither properties are true.

1 : Guarded if only Guardianship is true.

2 : Recoverable if only Compensability is true.

3 : Guaranteed if both properties are true.

For example, if the customer holds a commitment from the
merchant that C(m, c, goods), then CC(c,m, goods ‖ payment)
becomes guarded. And if the customer has a method to claim back
the payment from a merchant who fails to deliver the goods, the
commitment CC(c,m, goods ‖ payment) is considered as recover-
able. When it is both guarded and recoverable, the commitment is
called guaranteed.

The commitment safety level is especially useful in stating the
degree of system consistency in case of commitment breach if the
agent decides to execute both the conditional and the result part of a
strictly-unordered commitment concurrently. The higher the level
of the commitment, the less possible loss in case of exceptions for
the agent which schedules its execution in parallel. Based on the
safety level of the commitment CC(x, y,Φ ‖ Ψ), the debtor will
reason and plan its next step accordingly:

• If it is bare, it would better choose not to act, otherwise it
faces great possible losses

• If it is guarded, it may start to achieve Ψ even though the
conditional part has not been satisfied. This decision largely
depends on the trustworthy [17] of the agent A who promises
to realize Φ.

• If it is recoverable, it can start to achieve Ψ at the beginning
as long as the benefit of efficiency outperforms the cost of
recovery process.

• If it is guaranteed, it should decide to achieve Ψ in parallel
with the agent A for Φ unless efficiency is not an issue of the
system.

If the debtor decides to run the commitment which is guarded
or guaranteed in parallel mode, it needs to manipulate its beliefs
as shown in Algorithm 1. The functions create() and discharge()
represent creation and completion of a commitment respectively
and cancel() indicates a cancelation [14], while add() appends
a fact into the beliefbase of the agent. For interaction, “m?”
is receiving and “m!” is sending a message. The rules in the
algorithm are in the form head? | guard ← body which means
when receiving the message head, if guard is true, then body will
be executed.

require s0 � (φ ≡ CC(x, y,Φ,Ψ)), s0 � ¬Φ, s0 � ¬Ψ,
s0 � (ψ ≡ C(A, x,Φ)) /* A is any agent */

/* execute for achieving Ψ */
while ¬Ψ do
Φ? | true← discharge(ψ), add(Φ) ;

end

Ψ!

if Φ then
discharge(φ) ;

else
/* track progress of Φ with an additional commitment */
create(θ ≡ CC(x, y,¬Φ ∧ ¬ψ ∧ Ψ,¬Ψ)), θ! ;
while ¬Φ do
/* canceling ψ means no Φ available, start recovery */
cancel(ψ)? | ¬Φ←

cancel(φ)!, (¬Ψ)!, discharge(θ), exit ;
Φ? | true← add(Φ), discharge(ψ), discharge(θ);

end
end

Algorithm 1: Manipulate commitment for concurrent execution

If θ is triggered, the agent need to achieve a compensating
commitment for ¬Ψ. For guaranteed commitment, it is already
defined as ρ. In other cases, the agent needs to either negotiate with
others or seek help from human operators to find such a way.

In the Netbill example, state s4 contains a guarded commitment
CC(c,m, goods, payment). If the customer trusts the merchant’s
promise of delivering goods, the customer makes the payment
directly without waiting for the goods. As a result, the overall
interaction time can be reduced from 77 hours in Figure 1 to 53
hours in Figure 2.

Figure 2: Concurrent execution of guarded commitments

As shown in the example, our model provides a flexible ap-
proach to generate concurrent schedules reactively according to
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the runtime condition by reasoning about the trustworthiness of
and promises held by agents to each other. Therefore, even if the
program is specified sequentially as in Figure 1, it may be executed
in parallel as in Figure 2 by the participating agents. If only
recoverable commitments are allowed to be executed in parallel,
the concurrent execution can be mapped back into the sequential
one for exception recovery.

4.3 Robust Schedule of Combined Commit-
ments

We have discussed the safety level for single commitments
in Definition 9. However, the ability of inferring the level of
combined commitments is also important for agents to work and
operate in more complicated environment. The general way to
reason about the safety property of a complex commitment is to
decompose it into several child commitments and then aggregate
their safety properties together. The result of aggregation affects
scheduling and synchronization among its children. The safety
level of complex commitment φ1 ∧ φ2 ∧ . . . is the minimum safety
level of its children and that of φ1 ∨φ2 ∨ . . . is the maximum one of
its children.

For or-combined commitments, it is intuitive for the agent
to select the child with the highest safety level, while for and-
combined commitments, we define a new parameter to guide the
scheduling. Two functions are used in the following definition
where min(S ) means the minimum value of a set S and abs()
returns an absolute value. min(S ) = 0 if S is empty.

Definition 10. For complex commitment φ1 ∧ φ2 ∧ . . ., let S rec

be the set containing the safety level value of its recoverable
children (who are in level 2 or 3) and S nrec be the set containing
that of its non-recoverable children (who are in level 0 or 1).
The safety indicator of an and-combined commitment is equal to
abs(min(S rec) − min(S nrec)).

By withholding an implicit goal to maintain the safety indicator
of its and-combined commitments as high as possible, the agent
can schedule its execution more robustly while still providing high
parallelism. To keep the safety indicator high, the schedule of
the agent will prefer recoverable commitments to non-recoverable
ones, and then prefer commitments with lower safety levels within
each children group.

The preferences come from the fact that failure of any child leads
to overall failure and recovery. Thus, if recoverable children are
executed at first, non-recoverable ones have a better chance not to
get affected by them. And scheduling the commitment with the
lowest level in each group first helps to distribute the possible loss
among them because it forces the commitments to execute in a
similar progress. Therefore, it is less likely that some commitments
will have completed while others have not started yet.

5. EXPERIMENTS AND EVALUATIONS
We have discussed that strictly ordered commitment (SOC)

requires the debtor and creditor to execute strictly one after another,
while strictly unordered commitment (SUC) allows them to run
concurrently. The Netbill example shows that our method can
schedule SUCs from a sequence of tasks to run in parallel, thus
improving the efficiency of the system. In this section, experiments
are performed on applications which can be modelled as directed
acyclic graphs (DAGs). As DAG is a fundamental concept to model
and represent procedural knowledge [13], our method can also be
applied to a wide range of applications domains, such as business
process management systems and service-oriented computing [12].

To the best of our knowledge, applying commitment protocol to
produce a concurrent schedule for a DAG-modelled task network
has not been addressed in previous research. Therefore, we can
only provide the evaluation and comparison between the schedule
with and without executing strictly unordered commitments in the
system concurrently. To simplify the discussion, we only consider
the types of SOC and SUC.

The environment for the experiments was created by adopting
the DAG dataset of the Resource-Constrained Project Scheduling
Problem, provided in the Project Scheduling Problem Library [16].
Each DAG definition in the dataset specifies a set of task nodes, the
precedence relations among them and the duration of each task.

To transform the test sets into our experiments on commitment-
based scheduling, we converted each edge in the DAG to be a
commitment. For example, the edge from task a to b will be rep-
resented as CC(b, a, S uccess f ul(a), S uccess f ul(b)) which means
that b promises to complete if a has completed. S uccess f ul(x) is
a predicate to check if task x has been successfully executed. The
execution time of the commitment comes from that of b.

After the conversion, a commitment set which specifies the same
semantics as the DAG was obtained. Each element of the set was
then randomly assigned to be either an SOC or an SUC. The
parameter P(SUC) was introduced to indicate the probability that
a commitment is strictly unordered.

When the feature that SUC allows concurrent execution is not
considered, all commitments need to preserve the precedence order
defined in the DAG as if all of them are SOCs. In this case, the
total execution time of the commitment set, denoted as tordered , can
be computed by finding the critical path [10] of the DAG which is
the path with the longest overall duration. On the contrary, if SUC
is exploited to boost the performance, the concurrent execution
time of the commitment set is denoted as tunordered. Theoretically,
tunordered <= tordered since the worst case is that no commitment can
run concurrently.

To evaluate the effect of utilizing SUCs, we introduced the
parameter TimeUsageRatio = tunordered/tordered which represents
the ratio between the duration with and without executing SUCs
in parallel. The lower the value, the better the performance.

In fact, tordered should be a fixed value for a certain commitment
set while tunordered varies when either P(SUC) or the distribution
of SUCs in the set changes. Therefore, for each commitment set,
P(SUC) was increased from 0 to 1 by 0.1 to show its effect on
the performance. As well, for each P(SUC), the experiment was
repeated 200 times to find the impact of different distribution of
SUCs in the commitment set.

We have experimented on a large number of graph instances
from 30-, 60-, 90-, and 120-nodes dateset groups and got similar
results. Figure 3 is the box plot showing the randomly selected
instances from each group with the name listed in the caption of
each sub-graph for clarification.

The results indicate that the system performance has a steady
improvement when the percentage of SUC increases. The perfor-
mance improvement is not only reflected on the median value, but
also on the the best case and the worst case value. The shrinkage
of both the value range and the interquartile range shows that the
performance improvement is more stable and obvious at higher
P(SUC) value.

The results also shows that the value range and the interquartile
range are wider in 30-nodes cases. Since there are fewer nodes in
the graph, the length (in term of the number of edges) of the critical
path would also be shorter. Therefore, the distribution of SUCs,
especially when P(SUC) is low, has stronger impact on the result.
In other words, longer path has lower chance to get all its edges
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Figure 3: Time usage ratio with variant probability of a commitment being SUC

being SUCs.
Our approach is proved to be scalable. The increase of graph

size does not cause the performance improvement to drop. On the
contrary, the boost of performance becomes more accessible for
graph instances since the interquartile range keeps on decreasing.
Therefore, users can incrementally extend the graph definition
and tag eligible commitments to be SUCs, thus progressively
developing and tuning their systems.

6. RELATED WORK
Commitment theory is one of the core parts of multi-agent

research because it helps to specify and constrain the relationship
among agents [19, 8]. The formalization and application of
commitment protocols have been carried out extensively [22, 21,
14, 23]. Previous work focuses on using commitments to specify
the semantics of communication among agents and to reason about
all possible execution paths. However, it does not cover the issues
of how individual agents can deliberatively reason and manipulate
their commitments to make the best selection from the available
execution paths or concurrent schedules at run time, especially in
the case of possible commitment breaches, which often occur in
real applications.

[11] also discusses the over-committed problem in existing
research, where agents intend to achieve the condition before the
goal of the commitment. They do not provide a balanced reasoning
strategy for agents to choose a schedule with the requirements
of robustness and concurrency considered from various available
execution paths at run time.

[7] formalizes groundedness within an extended BDI (Belief,
Desire, Intention) logic, therefore enabling agent to reason about
their commitments. However, their focus is on bridging the
gap between commitments and the underlying agent framework
without considering the detailed features of commitments. Thus,

the issues of robustness and concurrency related to commitment
fulfilment are not addressed.

[1, 20] model agent execution as goal-plan trees and apply
summary information to avoid resource conflicts while pursuing
multiple goals in parallel. The work is similar to ours in the
sense that agents are active in choosing available execution paths.
However, it resides in the abstract level of plan definitions while
ours is in social commitments. Therefore, both the purpose and the
methods applied in the two research approaches are different.

Leveled-commitment contracting [18], which is similar to the
concept of recoverable commitment in our model, is proposed
as a backtracking instrument to deal with the uncontrollability of
committing and decommitting behaviour of agents, in order to build
robust interactions. In fact, it can be utilized in our model to help
the design of recovery procedures.

Concurrent scheduling has been heavily studied in high perfor-
mance computing [6]. However, it remains hard to decompose
tasks into parallel parts while preserving complex inter- and intra-
dependencies. Commitment-based modeling provides a natural
approach to master this complexity by splitting the system into finer
components at the semantic level and utilizing the autonomous
features of agents to manage concurrent execution. To our knowl-
edge, applying commitments to accompany runtime concurrent
scheduling has not been addressed in previous research.

7. DISCUSSION AND CONCLUSIONS
In this paper we have addressed the intra-dependency between

the precondition and the result part of a commitment and adopt
a bottom-up approach to discuss how agents can benefit from
dependency knowledge. An agent can at first benefit from refac-
toring which composes or decomposes its commitments to suit
the runtime situation. With the provided reasoning strategy and
corresponding commitment manipulation operations, the agent can
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evaluate the execution context to make optimized decisions at
runtime, thus pursuing a robust and reliable schedule. At the same
time, our reasoning and scheduling model enables the agent to
follow the concurrent commitment execution to boost the system
performance with the minimized possibility of loss, even in case of
commitment breaches.

Assume there are n commitments. The complexity of refactoring
a single commitment is O(n) because it requires iterating through
each commitment. The decision process of reasoning is relatively
simple with O(1) for single commitment scheduling and O(n) for
combined commitments. In fact, the complexity of reasoning lies
in evaluating trustworthiness and recovery cost of an agent. The
complexity highly depends on the model used for acquiring these
values. In the paper we presume a central reputation server like
eBay, and predefined recovery costs. Therefore the complexity
is reduced to O(1) as there is only a query process needed. We
are currently considering applying research results from trust and
process mining to calculate the information automatically.

The experiments performed on DAGs showed that the system
performance can be boosted by executing strictly unordered com-
mitments (SUC) in parallel. As well, the increase of the percentage
of SUCs in the commitment set will bring steady improvement.
Therefore, users can adopt an incremental approach to specify and
tune their task network by progressively tagging commitments as
SUCs.

To our knowledge this is the first proposal of this kind and
has significant practical importance. For example, after depen-
dencies between the preconditions and result of commitments
are identified, the possible concurrent executions can be inferred
automatically in the form of branching trees. At certain points
of the tree, the agent can use inference rules, along with the
notion of trust, compensability and recoverability, to select the most
beneficial branch. Since this formalism allows agents to make run
time decisions, it helps to build robust and recoverable agents.

Our future work concerns three areas. First, recovery is not
fully supported for the decomposing refactoring of and-combined
commitments. For some unidirectional formulas in Theorem 2,
reversing the refactoring is not directly available to recover from
failure that happened after the refactoring. Therefore, we hope to
record related constraints and information about refactoring into
agents’ beliefs and provide methods to utilize this knowledge to
help with the recovery. Second, we should know the safety level
of interaction to determine the robustness of agents’ behaviors. We
need to develop trust measurements [9] for agents to be able to
choose the appropriate level of safety. Finally, we plan to embed
the model into existing agent platforms, such as dMARS [5] and
3APL [3], to avoid the burden on programmers of considering the
difficult issue of concurrent scheduling management.
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