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ABSTRACT
In many multiagent settings, situations arise in which agents
must collectively make decisions while not every agent is
supposed to have an equal amount of influence in the out-
come of such a decision. Weighted voting games are often
used to deal with these situations. The amount of influ-
ence that an agent has in a weighted voting game can be
measured by means of various power indices.

This paper studies the problem of finding a weighted vot-
ing game in which the distribution of the influence among
the agents is as close as possible to a given target value.
We propose a method to exactly solve this problem. This
method relies on a new efficient procedure for enumerating
weighted voting games of a fixed number of agents.

The enumeration algorithm we propose works by exploit-
ing the properties of a specific partial order over the class of
weighted voting games. The algorithm enumerates weighted
voting games of a fixed number of agents in time exponential
in the number of agents, and polynomial in the number of
games output. As a consequence we obtain an exact anytime
algorithm for designing weighted voting games.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

General Terms
Algorithms, Theory

Keywords
weighted voting games, simple games, power index

1. INTRODUCTION
In many real-world problems that involve multiple agents,

for instance elections, there is a need for fair decision making
protocols, in which different agents have different amounts
of influence in the outcome of a decision. Weighted voting
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games (WVGs) are often used in these decision making pro-
tocols. In a WVG, some quota is given, and each agent in
the game has a certain weight. If the total weight of a coali-
tion of agents exceeds the quota, then that coalition is said
to be winning. In order to measure an agent’s a priori power
in such WVGs, the notion of a power index arose. A lot of
research has been done in cooperative game theory on how
to compute various power indices efficiently.

In this paper, instead of analyzing the power of each agent
in a voting game, we investigate the so-called “inverse prob-
lem”. More specifically, given a target power index for each
of the agents, we study how to design a weighted voting game
for which the power of each agent is as close as possible to
the given power index. Only very little work is known which
tries to solve this inverse problem [6, 2]. These algorithms
are local search methods that do not guarantee an optimal
answer. No (optimal) algorithm is known for generating the
exact game. Such an algorithm to solve the inverse problem
exactly is the topic of the current paper.

The most straightforward approach to solve the inverse
problem would be to simply enumerate all possible WVGs
of n agents, and to compute for each of these weighted vot-
ing games its power index. We can then output the game of
which the power index is the closest to the given one. Unfor-
tunately, it turns out that enumerating all weighted voting
games is not trivial.

Our results.
We first demonstrate that there exists an infinite number

of weighted representations for each WVG (Proposition 1).
Hence, it seems not that surprising that no algorithm has
been developed to compute the exact WVG.

We then approach the inverse problem by devising an
enumeration method that generates every voting game rela-
tively efficiently. First, we devise a“naive”method that enu-
merates all WVGs in doubly exponential time (Section 4).
Subsequently, we improve on this runtime exponentially by
showing how to enumerate all WVGs within exponential
time (Section 5). Although the runtime of this enumeration
method is still exponential, we will see that the algorithm
for the inverse problem that results from this has the any-
time property: the longer we run it, the better the result
becomes. Also, we are guaranteed that the algorithm even-
tually finds the optimal answer. Our enumeration method is
based on exploiting a new specific partial order on the class
of WVGs. This partial order can be considered interesting
in its own right, from a game-theoretical point of view.

The problem that we attempt to solve is a specific case
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of the more general class of problems, where we are con-
cerned with finding a weighted voting game for which some
property or some set of properties is satisfied. We refer to
such problems as weighted voting game design problems. Our
method for solving the inverse problem is simply an enumer-
ation method, so as a consequence the same method can in
fact be used to also solve any other weighted voting game
design problem.

We start with some definitions and notations that we use
in this paper.

2. PRELIMINARIES
A coalitional game is a pair (A, v), where A = {a1, . . . , an}

is a set of agents, and v : 2A → R
+ ∪ {0} is a characteristic

(or gain) function that specifies how much collective payoff
each coalition of agents can gain. Subsets of A are referred
to as coalitions, and A is called the grand coalition. A sim-
ple coalitional game (or simple game) is a coalitional game
(A, v) where v is restricted to {0, 1}. A coalition S ⊆ A is
called a winning coalition if v(S) = 1, and if v(S) = 0, then
S is called a losing coalition. In this paper, we concentrate
on simple games.

An important subclass of simple games are monotone games.
A game (A, v) is monotone if and only if ∀(S, T ) ∈ (2A)2 :
S ⊂ T → v(S) ≤ v(T ). This means that a superset of a win-
ning coalition is always winning. Another important type of
simple game is the weighted voting game (WVG), which has

a weighted form (W, q), where W = (w1, . . . w|A|) ∈ R
+|A|

defines the weights of agents, and q ∈ R
+ is called the quota.

For any coalition S in A, if S wins, it implies the total weight
that occurs beforof the agents in S is not smaller than the
quota, and formally, ∀S ⊆ N : v(S) = 1 if and only if
w(S) =

P
i∈S wi ≥ q. Note that every WVG is monotone,

but not every monotone game is a WVG.
For simple games, we can define the following desirability

relation �D over the agents. We say that an agent i ∈ A
and another agent j ∈ A are equally desirable, denoted by
i ∼D j, if ∀S ⊆ A\{i, j} : v(S ∪ {i}) = v(S ∪ {j}). We say i
is more desirable than j (denoted i �D j) if ∀S ⊆ A\{i, j} :
v(S ∪ {i}) ≥ v(S ∪ {j}). If i �D j and not i ∼D j, we say
i is strictly more desirable than j (i �D j). Moreover, we
say that i and j are incomparable when neither i �D j or
j �D i. If in a simple game (A, v), no pair of agents in A is
incomparable with respect to �D, we call this game a linear
game.

Clearly, if a game is weighted, then the desirability rela-
tion over the agents in that game is complete. So we obtain
the simple consequence that the set of WVGs is a subset
of the set of linear games. This brings us the following two
special classes of games. We call a linear game G = (N, v)
a canonical linear game whenever N = {1, . . . , n} and the
desirability relation �D satisfies 1 �D · · · �D n. When G is
also weighted, then G is a canonical weighted voting game.
Note that a WVG is canonical if and only if its weight vector
is non-increasing.

We now introduce some notations used in this paper. We
will use the following symbols to denote specific classes of
games: Gmon denotes the class of monotone simple games;
Glin denotes the class of linear games; Gwvg and Gcwvg denote
the class of WVGs and canonical WVGs, respectively. In
addition, for a class of games G, we use G(n) to denote the
class of games restricted to the set of agents {1, . . . , n}, i.e.,

G(n) = {G | G ∈ G ∧ G = ({1, . . . , n}, v)}.
There are various ways to represent coalitional simple

games. The minimal winning coalition form is the pair
(A, Wmin), where Wmin is the set of minimal winning coali-
tions of (A, v), i.e., ∀S ⊆ A : v(S) = 1 → (∃T ∈ Wmin : S ⊇
T ). Similarly, (A, Lmax) is the maximal losing coalition form
if Lmax is the set of maximal losing coalitions of the game
(A, v), i.e., ∀S ⊆ A : v(S) = 0 → (∃T ∈ Lmax : S ⊆ T ).
Note that a simple game can be represented in maximal win-
ing (or losing) coalition form if and only if it is monotone.

We now define various representation languages for rep-
resenting simple games. We will use the following three:
Lweights consits of encodings of lists of numbers 〈w1, . . . , wn, q〉,
representing a WVG with weighted form ((w1, . . . , wn), q);
LW,min (LL,max) consists of encodings of lists of minimal
winning (maximal losing) coalitions, representing the mini-
mal winning form of a game. When � is a string from some
representation language, we will write G� to denote the game
that is described by �.

We now introduce an important measure in voting games,
i.e., power indices. Power indices measures the amount of
influence that an agent has in a simple game. Power indices
originally were introduced because it was observed that in
WVGs, the weight of an agent is not directly proportional to
the influence he has in the game. This can be easily observed
from the following simple example.

Example 1. Given a WVG
`
W, q =

P
w∈W w

´
with only

one winning coalition, i.e., the grand coalition where every
agent is in. So no matter what the weights of the agents are,
they all have the same power to decide whether the coalition
wins or not.

Various power indices have been proposed in order to de-
scribe (as a number between 0 and 1) the ‘true’ influence
that an agent has in a WVG, among which the Shapley-
Shubik index [14] and the Banzhaf index [3] are by far the
most popular two. Computing an agent’s Banzhaf or Shapley-
Shubik index is known to be #P-complete [5, 13].

In this paper, we study how to design a voting game such
that its power index is as close as possible to a given target
power index. We thus define a voting game design problem
as an optimization problem.

Definition 1. Let G be a class of simple games, let L be a
representation language for G, and let f be a function such
that f(i, G) returns a specific power index (e.g. the Banzhaf
index) for player i in game G. The (f, g,G,L)-power index
voting game design problem, or (f, g,G,L)-PVGD problem,
is the problem where we are given a vector (p1, . . . , pn) ∈
[0, 1]n and we need to find an � ∈ L such that G� ∈ G(n),
and the error measure g(G�, f) is minimized.

In words, in a (f, g,G,L)-PVGD problem we must find a
game in the class G that is as close as possible to a given
target power index (p1, . . . , pn) according to power index
function f and error measure g. In this paper, we will
be using the sum-of-squared-errors measure, i.e. g(G�, f) =Pn

i=1(f(i, G�)−pi)
2 We can analyze this problem for various

power index functions, classes of games, and representation
languages. A particularly interesting case that we will focus
on is the problem (f, g,Gwvg,Lweights)-PVGD, i.e., the prob-
lem of finding a WVG in weighted representation, that is as
close as possible to a certain target power index.
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3. RELATED WORK
Although some specific variants of (f, g,G,L)-PVGD prob-

lems are mentioned sporadically in the literature, not many
attempts to solve this problem are known to us. Often, the
problem is referred to as the inverse problem. To the best
of our knowledge, only a few papers propose algorithms for
((f, g,G,L)-PVGD). One of them is by Fatima et al. for
the case of the Shapley-Shubik index [6], i.e., the problem
of finding a weighted voting game in weighted representa-
tion for the Shapley-Shubik index. This algorithm works
by repeatedly updating a vector of weights using one of two
update rules, of which the authors prove that by applying
the rule, the Shapley-Shubik index of each agent cannot get
worse. Hence, it is an anytime algorithm.

Another attempt is by Aziz et al. for finding a WVG for
the Banzhaf index [2]. The approach resembles that in [6], in
that their algorithm repeatedly updates the weight vector in
order to get closer to the target power index. Contrary to Fa-
tima et al.’s method, the algorithm always outputs an inte-
ger weighted representation, because the generating function
method [4] the authors use only works on integer weights. It
is not known whether Aziz’s algorithm always converges, so
it is not certain whether this method is also anytime. Also,
no approximation guarantee is given.

Leech proposes in [10] an approach that is the same as Aziz
et al.’s, but uses a different updating rule. The focus in this
paper is on the results that are obtained after applying the
method to the 15-member EU council, and to the board of
governors of the International Monetary Fund. Because the
three approaches that we just discussed do not give an anal-
ysis of various aspects of the methods they use, we consider
these algorithms to be essentially heuristic methods.

Some applied work has also been done on the design of
voting games. Papers [9] and [16] analyze and design the
distribution of voting power in the European Union, using
iterative methods that resemble the algorithm of Aziz [2].

Lastly, Alon and Edelman argue in [1] that there is a need
for a priori estimates of what power indices are achievable in
simple games, in order to analyze the accuracy of these kinds
of iterative algorithms: there is a need for information about
the distribution of power indices in [0, 1]n. As a first step
into solving this problem, they prove in [1] a specific result
for the case of the Banzhaf indices of monotone games.

4. A NAIVE ALGORITHM FOR PVGD
The current methods that exist for solving PVGD prob-

lems are all hill climbing methods that are based on repeat-
edly adjusting the weight vector according to some specific
heuristic rules. As of yet, no attempt has been made at
creating an algorithm that exactly solves (f, g,Gwvg,Lweights)-
PVGD problems (for any power index f).

How such an algorithm would work is not immediately
obvious. To begin with, it is not even obvious whether the
following related decision problem is decidable: We are given
as input a vector u of n numbers between 0 and 1, and the
question is whether there exists a weighted voting game that
has u as its power index (for some choice of power index).

The most straightforward approach to solve a (f, g,Gwvg,
Lweights)-PVGD problem, on input u = (u1, . . . , un) would
be to simply enumerate all possible weighted voting games
of n agents, and to compute for each of these weighted vot-
ing games its power index. We then output the game of

which the power index is as close as possible to u. So in this
case, the problem becomes one of enumerating all games in
Gwvg(n). However, doing this is not as simple as one might
think, as we can not work in a direct manner with weighted
representations of games. As an example, consider an al-
gorithm that works directly with weighted representations
as follows: the algorithm outputs weighted voting games
by enumerating all integer (weight vector, quota)-pairs, and
outputs such a pair when it is a representation of a game
that it has not encountered before. We know that this al-
gorithm eventually outputs all weighted voting games of n
players, since if there exists a real-numbered weighted rep-
resentation for a game, then there exists a rational weighted
representation, and by a result that we will state below (i.e.
Propostion 1) we know that in that case there also exists
an integer representation for that game. The problem with
such an algorithm is that we do not know when to stop
enumerating. Another problem is that we can not show
anything about the runtime of this algorithm and the time
spent between two successive outputs. Part of the reason
that this approach does not work, is because there is an in-
finite number of weighted representations for each weighted
voting game, which the following observation tells us.

Proposition 1. Let G ∈ Gwvg(N) be a weighted voting
game with N = {1, . . . , n}, and let � = ((w1, . . . , wn), q) ∈
Lweights be a weighted representation for G. For any λ ∈
R

+, we have that �′ = ((λw1, . . . , λwn), λq) is a weighted
representation for G.

Proof. For any coalition C ⊆ N such that w�(C) < q
we have w�′(C) =

P
i∈C λwi = λ

P
i∈C wi = λw�(C) < λq,

and for any coalition C ⊆ N such that w�(C) ≥ q we have
w�′(C) =

P
i∈C λwi = λ

P
i∈C wi = λw�(C) ≥ λq.

Hence, due to the infinite number of weighted representa-
tions, it is difficult to find an enumeration algorithm that
is only based on inspecting weighted representations. We
therefore will look into using other representations.

One thing that is certain, is that the number of weighted
voting games on n agents is finite, contrary to the infi-
nite number of weighted representations of weighted voting
games. This is because of the simple fact that all weighted
voting games are monotone games, and each monotone game
can be described as a set of MWCs. There are only a finite
number of such sets of MWCs. In fact, it can be seen that
any set S of MWCs is an antichain1 under ⊆: No coalition
C ∈ S is a subset of another coalition C′ ∈ S, because oth-
erwise it would mean that either C is not winning or C′ is
not minimal winning.

For this reason, we at least have a method to enumerate
all monotone games, so at least we can solve the problem
(f, g,Gmon,LW,min)-PVGD exactly: consider Algorithm 1.

This algorithm is very simple and obviously correct, but
its runtime is very large. It generates all antichains of coali-
tions. This is a very large number, and is equal to the num-
ber Dn of antichains on a set of n elements (agents, in our
case). Finding an expression for Dn is a well known open
problem in combinatorics, known as Dedekind’s problem. Dn

is also referred to as the nth Dedekind number.
Because Dn quickly grows very large (in n), line 3 is what

gives the algorithm a very high time complexity. The fol-

1An antichain under a binary relation R is a set S such that
∀(x, y) ∈ S2 : x �= y → ¬R(x, y) ∧ ¬R(y, x).
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Algorithm 1 A straightforward algorithm for solving
(f, g,Gmon,LW,min)-PVGD. The input is a target power in-
dex �p = (p1, . . . , pn). The output is an � ∈ LW,min such that
f(G�) is as close as possible to �p.

1: bestgame := 0 {bestgame keeps track of the best game
that we have found, represented as a string in LW,min.}

2: besterror := ∞ {besterror is the error of f(Gbestgame) from
�p, according to the sum-of-squared-errors measure.}

3: for all � ∈ LW,min do
4: Compute f(G�) = (f(G�, 1), . . . , f(G�, n)).
5: error :=

Pn
i=1(f(G�, i) − pi)

2.
6: if error < besterror then
7: bestgame := �
8: besterror := error
9: return bestgame

lowing bounds are known for Dn [8]:

2(1+c′ log n
n

)En ≥ Dn ≥ 2(1+c2−n/2)En , (1)

WVG where c′ and c are constants and En is the size of the
largest antichain on an n-set. Sperner’s theorem states [15]:
En =

`
n

� n
2 �
´
. From Sperner’s theorem and Stirling’s approx-

imation of the factorial function, we get

En ∈ Θ

„
2n

√
n

«
. (2)

A possible approach to enumerate antichains would be to
simply enumerate each set of coalitions, and check if that set
is an antichain. In total, there are 22n

families of coalitions.
Now let us suppose that Dn equals the upper bound of (1).
Substituting the tight bound of (2) into the upper bound of

(1), we get Dn ≤ 2
(1+c′ log n

n
)k 2n√

n for some constants k and
c′. We then see that

D

√
n

(1+c′ log n
n

)k

n ≤ 22n

.

This means that the number of all families of subsets on
an n-set is exponential in n relative to the Dedekind num-
ber. Hence, the Dedekind number is super-exponential but
sub-doubly-exponential in n. We will not explore this enu-
meration problem any further, for the reason that even an
efficient enumeration method for antichains would not result
in any practically applicable version of Algorithm 1, simply
because the Dedekind number is very large.

We conclude that Algorithm 1 achieves a running time

in O∗(22n(1+ε)
) for any ε > 0,2 under the condition that

the computation of the power index f does not take super-
exponential time.3

Now that we have an exact algorithm for (f, g,Gmon,LW,min)-
PVGD, it follows from the following result given in [12]
that there is also an exact algorithm for (f, g,Gwvg,Lweights)-
PVGD.

Theorem 2. There exists an O(nm2 + n3m) time algo-
rithm that decides whether a weighted representation exists

2We use the O∗ notation to disregard polynomial factors,
i.e., f(x) ∈ O∗(g(x)) → f(x) ∈ O(g(x)p(x)) for some poly-
nomial p.
3Fortunately, all power indices that we know of are known
to be computable within exponential time.

for a monotone game described by its list of MWCs, and
outputs a weighted representation if it exists. Here, m is the
amount of MWCs of the input game. (Moreover, the algo-
rithm can also be used to output the list of maximal losing
coalitions of a monotone game.)

Proof sketch. The polynomial time algorithm that does this,
roughly works as follows: on input S the algorithm first de-
cides whether the game GS described by S is a linear game.
If so, the algorithm enumerates all of the maximal losing
coalitions of GS in polynomial time. Finally the algorithm
finds a weighting by solving a linear program that ensures
that the total weight of each maximal losing coalition is
strictly lower than the total weight of each MWC.

By this result, we can adapt algorithm 1 such that it tries
to generate a weighted representation for each monotone
game that it finds. If it then turns out that a game is not
weighted, we skip that game. Now we arrive at the following
corollary.

Corollary 3. There exists an exact algorithm for

(f, g,Gwvg,Lweights)-PVGD that runs in time O∗(22n(1+ε)
).

So we finally have derived an algorithm for (f, g,Gwvg,Lweights)-
PVGD that terminates within a finite amount of time. The
problem is still that the runtime of this algorithm is large.

5. AN IMPROVED EXACT ALGORITHM
FOR PVGD

In this section, we will show that we can do much better
than the naive approach. For the case of WVGs, we can
improve the enumeration method exponentially, so that it
runs in only singly exponential time. We will also be able
to prove that this new enumeration method runs in output-
polynomial time, i.e., a polynomial in the size of the input
and the size of the output. Furthermore, the resulting exact
algorithm for solving (f, g,Gwvg,Lweights)-PVGD will be an
anytime algorithm.

5.1 A partial order on the class of WVGs
Let us now develop the necessary theory behind the algo-

rithm that we will propose. We will focus only on the class
of canonical WVGs, since for each non-canonical weighted
voting game there is a canonical one that can be obtained
by merely permuting the agents. We first need some defini-
tions.

Definition 2. A poset or partially ordered set is a set S
equiped with a partial order �, i.e., a pair (S,�). A poset
(S,�) is graded when there exists a rank function ρ : S → N

such that for any pair (x, y) ∈ S2 it is true that ρ(x) =
ρ(y) − 1 whenever x covers y in the poset (S,�). We say
that x covers y in (S,�) when x � y and there is no z ∈ S
such that x � z � y. A least element of a poset (S,�) is an
element x ∈ S such that x � y for all y ∈ S.

The algorithm we will propose is based on a new structural
property that allows us to enumerate the class of canonical
WVGs efficiently: We will define a new relation ⊇MWC and
we will prove that for any number of agents n the class
Gcwvg(n) forms a graded poset with a least element under
this relation.

Definition 3. Let G1 and G2 be any two monotone games.
Let Wmin,1 and Wmin,2 be their respective sets of MWCs.
Then, G1 ⊇MWC G2 if and only if Wmin,1 ⊇ Wmin,2.
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Theorem 4. For each n, (Gcwvg(n),⊇MWC) is a graded
poset with rank function

ρ : Gwvg(n) → Z

G �→ |Wmin(G)|,
where Wmin(G) is the set of MWCs of G. (Gcwvg(n),⊇MWC)
has a least element of rank 0.

Note that the theorem above basically says: “Consider an
arbitrary weighted voting game of n agents, and look at its
list of MWCs. There is a MWC in this list, such that if
we remove that coalition, we obtain a list of winning coali-
tions that represents yet another weighted voting game of n
agents.”

Proof (Theorem 4). By definition, (Gcwvg(n),⊇MWC) is
a valid poset. In order to prove that the poset is graded
under the rank function ρ that is specified in the theorem,
we will show by construction that

Lemma 5. For any game G ∈ Gcwvg(n) with a non-empty
set Wmin, there is a coalition C ∈ Wmin and a game G′ ∈
Gcwvg(n) so that it holds that Wmin\{C} is the set of MWCs
of G′.

From Lemma 5, the remaining part of the theorem automat-
ically follows: the game with no MWCs is the only WVG
with rank 0, and clearly is the least element of the poset.

To prove Lemma 5, we first prove the following two pre-
liminary lemmas (6 and 7).

Lemma 6. Let G = (N = {1, . . . , n}, v) be a WVG, and
let � = ((w1, . . . , wn), q) be a weighted representation for
G. For each agent i there exists an ε > 0 such that �′ =
((w1, . . . , wi + ε′, . . . wn), q) is a weighted representation for
G for all ε′ < ε.

Informally, this lemma says that it is always possible to
increase the weight of an agent by some amount without
changing the game.

Proof. For each C such that v(C) = 1 we have that
w�(C) ≥ q, and for each C such that v(C) = 0 we have
that w�(C) < q. Define Li as the set of losing coalitions
containing agent i. Now consider a coalition C ∈ Li for
which it holds that for all C′ ∈ Li : w�(C

′) ≤ w�(C).
Because w�(C) < q, it follows that q − w�(C) > 0. If

we increase wi in � by a number strictly between 0 and
q−w�(C) to obtain �′, then clearly no losing coalition in G� is
a winning coalition in G�′ . Moreover, all winning coalitions
in G� are also winning coalitions in G�′ .

The following lemma states that for a WVG there exists
a weighted representation such that all winning coalitions
have a different weight.

Lemma 7. Let G = (N = {1, . . . , n}, v) be a WVG. There
exists a weighted representation � ∈ Lweights such that for all
(C, C′) ∈ N2, C �= C′ for which v(C) = v(C′) = 1, it is true
that w�(C) �= w�(C

′).

Proof. Let � = ((w1, . . . , wn), q) be a weighted represen-
tation for G for which there exists a (C, C′) ∈ (2N )2 with
w�(C) = w�(C

′), C �= C′ and v(C) = v(C′) = 1. We will
show how to obtain an �′ from � such that G� = G�′ and
w�′(C) �= w�′(C

′′) for any other coalition C′′ ∈ N with

v(C′′) = 1. This process can then be repeated to obtain a
weighted representation for G under which the weights of all
winning coalitions differ.

The procedure works as follows: it can be assumed w.l.o.g.
that there is an agent i in C but not in C′. By Lemma 6,
there is an ε > 0 such that �′ = ((w1, . . . , wi + ε′, wn), q)
is a weighted representation for G for any 0 < ε′ < ε. � is
then a weighted representation with w�′(C) �= w�′(C

′), so
this almost proves the lemma; we must only make sure the
we adjust i’s weight in such a way that C’s weight does not
become equal to any other coalition. This can clearly be
done: Consider the set of winning coalitions Wi containing
agent i, and let D ∈ Wi be a coalition such that C �= D
and for all D′ ∈ Wi\{C}, we have w�(D) < w�(D

′). If D
exists, we make sure that 0 < ε′ < min{w�(D) − w�(C), ε},
and then w�′(C) is clearly different from w�′(C

′′) for any
C′′ ⊆ N . w�(D)−w�(C) > 0, so this is possible. Otherwise,
if D does not exist, then it suffices to take ε′ simply strictly
between 0 and ε.

Using Lemma 7, we can prove Lemma 5, which establishes
Theorem 4.

Proof (Lemma 5). Let G = ({1, . . . , n}, v) be a canoni-
cal WVG, Wmin its set of MWCs and � = ((w1, . . . , wn), q) a
weighted representation for which it holds that all winning
coalitions have a different weight. By Lemma 7, such a rep-
resentation exists. We will construct an �′′ from � for which
it holds that it is a weighted representation of a canonical
WVG with Wmin\C as its list of MWCs, for some C ∈ Wmin.

Let i be the highest-numbered agent that is in a coalition
in Wmin. Note that all players j with j > i are dummy play-
ers, so for these j we assume that wj = 0. Let C ∈ Wmin

be the MWC containing i for which it holds that ∀C′ ∈
Wmin : (C′ �= C ∧ i ∈ C) → w�(C

′) > w�(C). Now ob-
tain �′ = ((w1, . . . , wi − (w�(C) − q), . . . , wn), q). Clearly,
G�′ = G� = G and w�′(C) = q. Moreover, all coalitions
in Wmin that contain agent i have a different weight under
�′. subseteq We now decrease i’s weight by an amount that
is so small, that the only MWC that turns into a losing
coalition is C. Note that under �′, coalition C is still the
lightest MWC containing i. Let C′ ∈ Wmin then be be the
second-lightest MWC containing i. Clearly, by decreasing i’s
weight (according to �′) by a positive amount smaller than
w�′(C

′)−w�′(C), coalition C will become a losing coalition
and all other MWCs will stay winning. No new MWC is
introduced in this process: suppose there would be such a
new MWC S, then S contains only players that are at least
as desirable as i (the other players have weight 0). But then
S would also be a MWC in the original game G�′ , which is
a contradiction.

In the remainder of this text, we will make use of the no-
tion of a characteristic vector of a coalition. For a coalition
C, this is the n-dimensional vector for which the ith element
is 1 if agent i is in the coalition, and 0 otherwise. We will
abbreviate this by simply listing the elements of such a vec-
tor as a string of bits, e.g. when n = 4 and S = {1, 3}, then
the characteristic vector of S is 1010.

Example 2. Figure 1 depicts (Gcwvg(4),⊇MWC) graphically.
Note that, for more convenient representation, this is not
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Figure 1: Graphical depiction of (Gcwvg(4),⊇MWC).

precisely the Hasse diagram of the poset (Gcwvg(4),⊇MWC).
Each node in this graph represents a canonical WVG of four
agents. It should be read as follows: each node has the char-
acteristic vector of a MWC as a label. The set of MWCs of
a game that corresponds to a certain node w in the graph,
are those coalitions that are described by the set of vectors
that are obtained by traversing the path from the top node
to w. The top node corresponds to the canonical WVG with
zero MWCs (i.e. every coalition loses).

A finite poset is a tree whenever its Hasse diagram is a
tree. Next, we show that (Gcwvg(n),⊇MWC) is not a tree for
n ≥ 4. When we will state our algorithm in the next section,
it will turn out that this fact makes things significantly more
complex.

Theorem 8. For any n ≥ 4, (Gcwvg(n),⊇MWC) is not a
tree.

Proof. We will show an example of a game in
(Gcwvg(4),⊇MWC) for which there are multiple games that
cover it. The poset (Gcwvg(4),⊇MWC) is in that case not a
tree. For n > 4 a similar example is obtained by adding
dummy agents to the example that we give.4

Consider the following weighted representation of a canon-
ical WVG over agents {1, . . . , 4}: � = ((3, 2, 2, 1), 4). The
set of characteristic vectors Cmin,� of MWCs of G� is as fol-
lows: Cmin,� = {1100, 1010, 0110, 1001}. Next, consider the
WVGs �′ and �′′: �′ = ((3, 1, 1, 1), 4) and �′′ = ((1, 1, 1, 0), 2),
with the following sets of characteristic vectors of MWCs
Cmin,�′ = {1100, 1010, 1001} and Cmin,�′′ = {1100, 1010,
0110}, respectively. Now we see that Cmin,�′ = Cmin,�\{0110}
and Cmin,�′ = Cmin,�\{1001}.

5.2 A fast method for enumerating WVGs
We will use the results from the previous section to de-

velop an exponential-time exact algorithm for (f, g,Gcwvg,
Lweights)-PVGD. The way this algorithm works is very straight-
forward: Just as in algorithm 1, we enumerate the complete
class of games (WVGs in this case), and we compute for
each game the distance from the target power index.

Recall that the problem with Algorithm 1 was that the
enumeration procedure is not very efficient. For the restric-
tion to WVGs, we are able to make the enumeration proce-
dure more efficient. We will use Theorem 4 for this: The key
is that it is possible to generate the MWC listing of canoni-
cal weighted games of rank i fairly efficiently from the MWC
listing of canonical WVGs of rank i − 1.

4Agents are dummy when they are not in any MWC.

The following theorem shows us how to do this. To state
this theorem and its proof, we will first need the concept of a
right-truncation of a coalition and a left shift of a coalition.

Definition 4. Let S ⊆ N and S′ ⊆ N be two coalitions
on agents N = {1, . . . , n}. S′ is a left shift of S when S′ can
be obtained from S by a sequence of replacements of higher-
numbered agents by lower-numbered agents. Note that in a
canonical linear game, any left shift of a winning coalition
is winning.

Let pi be the ith highest-numbered agent among the agents
in S. The ith right-truncation of S, tr(S, i), is then defined
as

tr(S, i) =

8
><

>:

S\{pi, . . . n} if 0 < i ≤ |S|,
S if i = 0,

undefined otherwise.

Theorem 9. For any n, let (G, G′) ∈ Gcwvg(n)2 be a pair
of WVGs such that G covers G′ in (Gcwvg(n),⊇MWC). Let
Wmin,G and Wmin,G′ be the sets of MWCs of G and G′ re-
spectively, and let Lmax,G and Lmax,G′ be the sets of max-
imal losing coalitions of G and G′ respectively. There is
a C ∈ Lmax,G and an i ∈ N with 0 ≤ i ≤ n such that
Wmin,G′ = Wmin,G ∪ tr(C, i).

Proof. Because G covers G′, by definition there is a
coalition C′ �∈ Wmin,G such that Wmin,G′ = Wmin,G ∪ C′.
Clearly C′ can not be a superset of any coalition in Wmin,G,
so it must be a subset of a coalition in Lmax,G. Suppose for
contradiction that C′ is not a right-truncation of a maximal
losing coalition C ∈ Lmax,G. Then there is left shift C′′ of
C′ such that C′′ is a subset of a coalition in Lmax,G, which
means that C′′ is not a superset of any coalition in Wmin,G,
hence C′′ is also not a superset of any coalition in Wmin,G′ .
So C′′ is a losing coalition in G′. But G′ is a canonical
WVG, hence G′ is also a canonical linear game. By the
fact that canonical linear games have the total desirability
relation 1 �D · · · �D n, C′′ is a winning coalition in G′

because it is a left shift of the winning coalition C′. This is
a contradiction.

From Theorem 9 we see how we can use (Gcwvg(n),⊇MWC)
for enumerating the class of n-agent canonical WVGs: We
start by outputting the n-agent WVG with zero MWCs.
After that, we repeat the following process: generate the
LW,min-representation of all canonical WVGs with i MWCs,
using the set of canonical weighted voting games games with
i − 1 MWCs (also represented in LW,min). Once generated,
we have the choice to output the games in their LW,min-
representation or in their Lweights-representation, by using
the transformation algorithm from Theorem 2.

Generating the set of games of i MWCs works as follows:
For each game of i−1 MWCs, we obtain the set of maximal
losing coalitions by using the algorithm from Theorem 2.
Next, we check for each maximal losing coalition C whether
there is a right-truncation of C that we can add to the set
of MWCs, such that the resulting set is a weighted voting
game. Again, testing whether a game is a WVG is done by
using the algorithm from Theorem 2. If a game turns out to
be weighted, we can save it and output it.

There is one remaining problem with this approach: It
outputs duplicate games. If (Gcwvg(n),⊇MWC) were a tree,
then this would not be the case, but by Theorem 8 it is not.
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Therefore, we have to do a duplicates-check for each WVG
that we find. We have to check whether we did not already
generate it. We use the following algorithm for this check:
Suppose that we have found an n-agent canonical WVG G
of i MWCs by adding a coalition C to some MWC listing
of a canonical WVG. We first sort G’s list of MWCs. After
that, we check each coalition C′ that occurs before C in this
sorted list. For each C′, we check whether C′’s removal from
the list results in a list of MWCs of a canonical WVG. If this
is the case for at least one such C′, then we do not output
the game G. By using this method, it is certain that each
canonical WVG will be generated only once.

Algorithm 2 gives the pseudocode for the enumeration
procedure.

Algorithm 2 An enumeration algorithm for the class of
n-agent canonical WVGs.

1: {games[i] will contain the list of canonical WVGs that
have i MWCs. The games are represented in language
LW,min. games[0] is our starting point. First we output
the n-agent canonical WVG with zero MWCs.}

2: Output ((0, . . . , 0), 1).
3: games[0] := {∅}
4: for i := 1 to

`
n

� n
2 �
´

do

5: for all Wmin ∈ games[i − 1] do
6: {Obtain the maximal losing coalitions (see Th 2)}
7: Lmax := computeMLCs(Wmin)
8: for all C ∈ Lmax do
9: for j := 1 to n do

10: if isweighted(Wmin ∪ tr(C, i)) then
11: if Wmin∪tr(C, i) passes the duplicates-check

(see discussion above) then
12: Output the weighted representation of

the voting game with MWCs Wmin ∪
tr(C, i)).

13: Append Wmin ∪ tr(C, i)) to games[i].

Theorem 10. Algorithm 2 runs in O∗(2n2+2n) time.

Proof. Lines 6–13 are executed at most once for every
canonical weighted voting game. From Sperner’s theorem we
know that any list of MWCs has fewer than

`
n

� n
2 �
´

elements.

So line 7 runs in time O(n
`

n
� n

2 �
´2

+ n3
`

n
� n

2 �
´
) = O(n2√n2n).

Within one iteration of the outer loop (line 4), lines 10 to
13 are executed at most n

`
n

� n
2 �
´

= O(
√

n2n) times (because

Lmax is also an antichain, so Sperner’s theorem also applies
for maximal losing coalitions). The time-complexity of one
execution of lines 10 to 13 is:

• At line 10 we must solve a linear program. Using using
e.g. Karmarkar’s interior point algorithm [7] this takes
time O(n4.5

`
n

� n
2 �
´
) = O(n42n).

• At line 11, we must execute the duplicates-check. This
consists of checking for at most

`
n

� n
2 �
´

sets of MWCs

whether it is weighted. This involves running the
computeMLCs algorithm, followed by solving a linear
program. So in total this takes O(n3√n22n).

• Lines 12 and 13 clearly take linear time.

Bringing everything together, we see that a single itera-
tion through lines 6–13 costs O(n423n) time. As said, these
lines are executed at most |Gcwvg(n)| times. We know that

|Gwvg(n)| ∈ O(2n2−n) (see Appendix A), and of course that
|Gcwvg(n)| < |Gwvg(n)|, so lines 6 to 16 are executed at most

O(2n2−n) times, and therefore the runtime of the algorithm

is in O(2n2+2nn4) = O∗(2n2+2n).

Although the runtime analysis of this algorithm that we gave
is not very precise, the main point of interest that we want
to emphasize is that this method runs in exponential time,
instead of doubly exponential time. We can also show that
this algorithm runs within an amount of time that is only
polynomially greater than the amount of data output:

Theorem 11. Algorithm 2 runs in output-polynomial time.

Proof. The loop of line 5 is executed at most |Gcwvg(n)|
times. From Appendix A, we have as a lower bound that

|Gcwvg(n)| ∈ Ω(2
n2(1− 10

log n
)
/n!2n). One execution of lines

6–13 costs O(n423n) time, and

O(n423n) ⊆ O(2
n2(1− 10

log n
)
/n!2n) ⊆ O(|Gcwvg(n)|).

Hence, the algorithm runs in O(|Gcwvg(n)|2) time.

We can not give a very sharp bound on the space com-
plexity of the algorithm, because we do not know about the
maximum cardinality of an antichain in (Gcwvg(n),⊇MWC).
However, it can be seen that it is also possible to generate
the games in this poset in a depth-first manner, instead of
a breadth-first manner like we do now. In that case, the
number of space that needs to be used is bounded by the
maximum length of a chain in (Gcwvg(n),⊇MWC), times the
maximum number of MWCs. This is a total amount of
O( 22n

n
) space.

Now that we have this enumeration algorithm for WVGs,
we can use the same approach as in algorithm 1 in order
to solve the (f, g,Gcwvg,Lweights)-PVGD problem: for each
game that is output, we simply compute the power index of
that game and check if it is closer to the optimum than the
best game we have found up till that point. We denote this
algorithm by ExactEnum.

Corollary 12. ExactEnum is an exact, anytime algorithm
that runs in exponential time for (f, g,Gcwvg,Lweights)-PVGD,
for any choice of power index function f that is computable
within exponential time.

6. CONCLUSIONS AND FUTURE WORK
We derived the first exact algorithm for solving weighted

voting game design problems. Although the time complex-
ity of this algorithm is high, it is an exponential improve-
ment over the “naive” method that was explained in Section
4. Moreover deriving this algorithm turned out not to be
straightforward. Also, the algorithm has the anytime prop-
erty, giving it potential for being used in practice.

Note that in most real-life examples, the number of play-
ers in a weighted voting game is rather small: usually 10 to
50 agents are involved. For our future work, our goal is to
get this algorithm to yield good results within a reasonable
amount of time, when the number of players is somewhere
in this range. There is still a lot of room for improving the
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proposed algorithm. For example, it turns out that signifi-
cant speedup can be attained by making use of some specific
properties of linear games, allowing us to only keep track of
a small subset of the MWCs of each game, instead of all
MWCs.

It will also be interesting to study in more depth the par-
tial order that we presented in this paper. With regard to
the design of WVGs, we think that it is possible to prune a
lot of “branches” in this partial order, i.e., it is safe to skip
the enumeration of a lot of games in the partial order. More-
over, we are also curious to see how an algorithm performs
that searches through the partial order in a greedy manner,
or what will happen if we use some other heuristic method
to search the partial order. Lastly, we can use this idea as
a postprocessing step to extend the existing algorithms by
Fatima et al. [6] and Aziz et al. [2], that we mentioned in
Section 3.
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APPENDIX
A. LOWER AND UPPER BOUNDS ON THE

NUMBER OF WVGS
To our knowledge, in game theory literature there has not

been any research in the amount of WVGs on n agents.
Fortunately there is a closely related field of research, called
threshold logic (see e.g. [11]), that has some relevant results.

Definition 5. Let f be a boolean function on n boolean
variables. f is a (boolean) threshold function when there
exists a weight vector of real numbers r = (r0, r1, . . . rn) ∈
R

n+1 such that r1x1 + · · ·+ rnxn ≥ r0 iff f(x1, . . . , xn) = 1.
We say that r realizes f . We denote the set of threshold
functions of n variables {x1, . . . , xn} by LT(n).5

Threshold functions resemble WVGs, except that we talk
about boolean variables instead of agents. Also, an impor-
tant difference is that r0, r1, . . . , rn are allowed to be neg-
ative for threshold functions, whereas q, w1, . . . , wn, must
be non-negative in WVGs. Žunić presents in [18] an upper
bound on the number of threshold functions of n variables
|LT(n)|: |LT(n)| ≤ 2n2−n+1. Also, the following asymptotic
lower bound is known, as shown in [17]: For large enough n,

we have |LT(n)| ≥ 2
n2(1− 10

log n
)
.

From these bounds, we can deduce some easy upper and
lower bounds for |Gwvg|. Let LT+(n) be the set of non-
negative threshold functions of variables {x1, . . . , xn}: thresh-
old functions f ∈ LT(n) for which there exists a non-negative
weight vector r that realizes f , i.e. r realizes f and only has
non-negative entries. There is a clear one-to-one correspon-
dence between non-negative threshold functions and WVGs,
so we can conclude that |Gwvg(n)| = |LT+(n)|. So now we
can upper bound the number of WVGs.

Corollary 13. |Gwvg(n)| ≤ 2n2−n+1.

Proof. This follows directly from |Gwvg(n)| = |LT+(n)|
and |LT+(n)| ⊆ |LT(n)|, and the upper bound on the num-
ber of threshold functions.

We will proceed by obtaining a lower bound on the num-
ber of WVGs. For any n, for every threshold function in
LT(n)\LT+(n) and each r ∈ R

n+1 that realizes f , there ex-
ists a r′ ∈ (R+)n+1 such that r is obtained by negating some
of the entries in r′, and r′ is a realization of some threshold

function in LT+(n). This implies that |Gwvg(n)| ≥ |LT(n)

2n+1 |.
So the following lower bound follows:

Corollary 14. For large enough n, it holds that |Gwvg(n)| ≤
2

n2(1− 10
log n

)−n−1
.

5“LT” stands for “Linear Threshold function”.
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