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ABSTRACT
Minimax-regret preference elicitation allows intelligent de-
cisions to be made on behalf of people facing risky choices.
Standard gamble queries, a vital tool in this type of pref-
erence elicitation, assume that people, from whom prefer-
ence information is being elicited, can be modeled using ex-
pected utility theory. However, there is strong evidence from
psychology that people may systematically deviate from ex-
pected utility theory. Cumulative prospect theory is an al-
ternative model to expected utility theory which has been
shown empirically, to better explain humans’ decision mak-
ing in risky settings. We show that the current minimax-
regret preference elicitation techniques can fail to properly
elicit appropriate information if the preferences of the user
follow cumulative prospect theory. As a result, we develop
a new querying method for preference elicitation that is ap-
plicable to cumulative prospect theory models. Simulations
show that our method can effectively elicit information for
decision making in both cumulative prospect theory and ex-
pected utility theory settings, resulting in a flexible and ef-
fective preference elicitation method.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
Systems

General Terms
Algorithms, Economics

Keywords
Preference Elicitation, Prospect Theory

1. INTRODUCTION
In many areas of artificial intelligence, we are interested

in making decisions on behalf of users [5]. We are often
specifically interested in cases where these decisions involve
a degree of risk. For example, we may want to create an
optimal policy for a Markov Decision Process [8], help peo-
ple make tough medical choices [4] or help people plan trips,
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taking into account the probabilities of delays [12]. Com-
puters can help people make better decisions while freeing
them to do other things. However, this help requires get-
ting information about the user’s utility values. Preference
elicitation considers questions such as how best to query the
user about their utility values and how much information is
needed.

A common method of querying a user is a standard gam-
ble query (SGQ) which asks the user to decide between two
outcomes. From the user’s response, we are able to infer
a constraint about their utility function. Such constraints
give the set of all possible utility functions. If we have ac-
cess to a probability distribution of utility functions for a
population, we should choose a decision that maximizes the
expected expected utility ; i.e. the expected utility of the de-
cision according to each possible utility function multiplied
by the probability of the user having that utility function [3,
4]. Without such a probability distribution, it is reasonable
to pick a decision which guarantees the best worst-case util-
ity for the user; i.e., minimize the minimax regret [12]. Due
to the lower information requirements, we favour the second
approach.

SGQs assume that users follow the predictions of expected
utility theory (EUT). There is strong empirical evidence,
however, that people systematically break such predictions [9].
Cumulative prospect theory (CPT) is a predominant the-
ory that is better able to explain preferences between risky
choices [10]. In this paper, we show that SGQs and CPT
are not always compatible.

While there has been work done on preference elicitation
with CPT, we discuss why these approaches are not compat-
ible with minimax regret. Then we develop a new querying
method which is able to combine CPT with minimax re-
gret. Since choosing an optimal query is difficult we develop
heuristics that help us in measuring the value of each possi-
ble query.

The paper is organized as follows. Section 2 reviews work
on preference elicitation and introduces cumulative prospect
theory. We introduce our model for preference elicitation in
Section 3. In Section 4 we develop our querying method
and in Section 5 we present our heuristics for choosing op-
timal queries. Experimental results are discussed in Section
6 before concluding with a discussion of future work.

2. BACKGROUND
Our goals for this section are twofold. We first describe a

standard setup for preference elicitation for domains where
agents must make a decision when the outcome is uncer-
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tain. In particular, we describe a regret-minimization tech-
nique that has proven to be effective in settings where users’
preferences follow the axioms of expected utility theory. We
then introduce cumulative prospect theory, an alternative
model of decision making when there are risky outcomes.
We conclude the section with a short overview of current
preference elicitation approaches which are applicable to a
cumulative prospect setting.

2.1 Preference Elicitation for Risky Decisions
Traditional preference elicitation work for risky choices is

based on a decision scenario with a set of possible outcomes
X = (x0, . . . , xn) and a user with a private utility function
u : X → [0, 1] such that u(x0) = 0 and u(xn) = 1 [12].1

There exists a finite set of decisions D which we may make
on behalf of the user. Each decision is a prospect over X.2

Definition 1. The prospect [p0, x0; . . . ; pn, xn] is the prob-
ability distribution (p0, . . . , pn) over the set of possible out-
comes {x0, . . . , xn}.

Expected utility theory (EUT) states that the overall ex-
pected utility of a decision d is

EU(d, u) =
X
x∈X

Prd(x)u(x), (1)

and that the best decision, d∗, is the one that maximises the
expected utility of the user.

The goal in preference elicitation (PE) is to be able to
make a decision for the user that maximizes their expected
utility. This requires having adequate knowledge of the
user’s utility function. Information about the user’s utility
function is stored as a set of constraints {[umin(xi), umax(xi)]}
on the value of u(xi) for each outcome xi, i.e., umin(xi) ≤
u(xi) ≤ umax(xi). If nothing is known about a utility func-
tion, then the set of constraints is Cu(x0) = [0, 0], Cu(xn) =
[1, 1] and Cu(xi) = [0, 1] for all i, 0 < i < n. The set of
constraints for all possible outcomes is C and the set of all
utility functions satisfying C is U|C .

To update constraints, a standard gamble query is typi-
cally used.

Definition 2. The standard gamble query (SGQ), qi(p),
is a query which asks the user whether they prefer the prospect
[1 − p, x0; p, x1] over the certain outcome xi for some prob-
ability p. If the user says yes, then we can use algebraic
derivations to infer that u(xi) < p. Otherwise, we infer that
u(xi) > p.

If we knew the user’s specific utility function u, then the
optimal decision to make would be

d∗
u = arg max

di

EU(di, u).

The regret of using decision di instead of d∗
u is

R(di, u) = EU(d∗
u, u) − EU(di, u).

Given a set of utility constraints C, the maximum possible
regret for using decision di is

MR(di, C) = max
u∈U|C

R(di, u).

1Utility functions are unique up to positive affine transfor-
mations, and thus it is always possible to scale them so that
their range is the interval [0,1] [7].
2We assume there is some maximum outcome that can be
achieved by each decision.

The decision which minimizes the maximum possible regret
is

d∗
C = arg min

di

MR(di, C),

i.e., d∗
C guarantees the best worst-case regret, also known as

the minimax regret. The minimax regret with respect to C
is

MMR(C) = MR(d∗
C , C).

The minimax regret can also be found by calculating the
pairwise maximum regret (PMR) between every pair of de-
cisions,

PMR(di, dj , C) = max
u∈U|C

[EU(dj , u) − EU(di, u)]

In the absence of any other information about a user’s
utility function (such as the probability distribution over
the set of all possible utility functions for a given popula-
tion), Wang and Boutilier argue that choosing a decision
that achieves minimax regret is a reasonable approach [12].
Wang and Boutilier’s approach is to continue asking SGQs
until a desired minimax regret is achieved. Since choos-
ing an optimal SGQ is a “hard” problem, in part because
a sequence of SGQs may be more useful than each SGQ
in isolation, Wang and Boutilier propose heuristics, known
as myopic elicitation strategies, for picking which SGQ to
ask next. Their most successful strategy was the maximum
expected improvement (MEI) strategy. MEI estimates the
expected improvement of a query as

EI(qi(p), C) = MMR(C)−
[Pr(yes|qi(p), C) · MMRyes(C, i, p)

+ Pr(no|qi(p), C) · MMRno(C, i, p)] ,

where MMRyes(C, i, p) is the resulting minimax regret if the
user responds yes to qi(p), and MMRno(C, i, p) is similarly
defined.

2.2 Cumulative Prospect Theory
There has been considerable empirical evidence found that

people may systematically violate the axioms of EUT [9].
One of the axioms of EUT is the axiom of independence
which states that if a user prefers the outcome xi over xj ,
then that preference will hold regardless of alternative choices
or scaling of probabilities [7]. However, while most people
prefer the guaranteed outcome of $3,000 over the prospect
[0.2, $0; 0.8, $4, 000], people tend to prefer the prospect [0.8, $0, 0.2, $4, 000]
over the prospect [0.75, $0; 0.25, $3, 000] [6]. Since the ratio
of the probabilities for the non-zero outcomes are the same
in both prospects, this violates the axiom of independence.
It can be shown that there exists no possible utility function
for Equation 1 that explains such behaviour. The premise
of this example has been repeated in numerous experiments,
including those with nonmonetary outcomes [6].

Numerous alternative models to EUT have been proposed,
including those which focus on relaxing the axioms behind
EUT. While no model so far has managed to explain all ex-
perimental evidence, several of these models have proven to
be better at explaining and predicting human decisions than
EUT. Perhaps the most successful and most famous of these
alternative models is cumulative prospect theory (CPT) pro-
posed by Kahneman and Tversky [10].

Two key features of human behaviour that CPT captures
are loss aversion and probability weighting. People are loss
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Figure 1: A probability weighting function w(p).

averse when they are more sensitive to losses than to gains.
Probability weighting distorts the probabilities people con-
sider when judging the utility of a risky prospect. It is this
second behaviour that we focus on in this paper; our ap-
proach, however, can be easily extended to deal with losses
as well as gains.

CPT models probability weighting using a weighting func-
tion, w(p), an example of which is shown in Figure 1. While
different functions have been proposed for w(p), they all
capture specific human behaviours including overestimating
the likelihood of a low probability outcome while underes-
timating the likelihood of a high probability outcome [10,
13].

As is typical, we set w(0) = 0 and w(1) = 1. In CPT, the
weight of a probability is also dependent on the rank of the
respective outcome. For the prospect X = [p0, x0; . . . ; pn, xn]
where u(xi) < u(xi+1), the overall weight, π, for probability
p(xi) is

π(xn) = w(pn)

π(xi) = w(pi + . . . + pn)

− w(pi+1 + . . . + pn),

and the overall utility for the prospect is,

U([p0, x0; . . . ; pn, xn]) =
X
xi

π(xi)u(xi). (2)

Therefore, the utility of a prospect [1 − p, x0; p, xn] is

U([1 − p, x0; p, xn]) = (1 − w(p))u(x0) + w(p)u(xn)

= w(p).

This immediately shows a challenge of eliciting CPT utilities
using SGQ. In particular, a SGQ can only compare u(xi)
against w(p) instead of p. If w is private, we may not be
able to elicit preferences using SGQs.

Alternative preference elicitation approaches to SGQs have
been used with CPT. One approach is parametric in nature,
where specific forms of the utility and probability weight-
ing functions are assumed. Using methods like least-squares
fitting, it is possible to approximate the actual functions
of the queried user. However, to date, this approach has
had more success explaining aggregate results for a group

than individual results [13]. Furthermore, to date, no pro-
posed weighting function has been able to correctly model
all experimental evidence, so choosing a specific weighting
function creates error in the approach [13].

A newer, non-parametric approach called the two-step method,
by Wakker and Deneffe, provides queries that are able to de-
tach probability weighting from utility queries [11]. Given
some initial outcome x0, two reference outcomes r and R
such that r < R, and some probability p, the user is asked
to find an outcome x1 such that they are indifferent between
the prospects [1−p, x0; p, R] and [1−p, x1; p, r]. The user is
then asked to find an outcome x2 such that they are indiffer-
ent between the prospects [1−p, x1; p, R] and [1−p, x2; p, r].
As long as r > x1, these two indifferences imply that

u(x2) − u(x1) = u(x1) − u(x0).

This process can be repeated to create a standard sequence
of outcomes, {x0, x1, . . . , xj} such that u(xi+1) − u(xi) =
u(xi) − u(xi−1). By the uniqueness of u, we can then let
u(x0) = 0, u(xj) = 1 and u(xi) = i/j. The two-step method
has been used successfully in a number of human trials [11].

The disadvantage of the two-step method is that u(xi) −
u(xi+1) is constant for a given standard sequence. This
means that there is no way to ask queries about outcomes
between those in a standard sequence, which limits our abil-
ity to ask queries that are best able to reduce the minimax
regret. Our goal is to create a querying technique, inspired
by the two-step method, that can be efficiently used in a
CPT setting to minimize the minimax regret.

3. PREFERENCE ELICITATION MODEL
We begin by defining our model: our assumptions about

the user’s utility and probability weighting functions, as well
as what data we have about the user’s utility function at any
given time.

Let the set of possible outcomes, Y , be isomorphic to Rn
≥0

and the user’s utility function be u : Y → R≥0. We as-
sume that u is both continuous and monotonically increas-
ing. The user has a probability weighting function w, which
we also assume is continuous and monotonically increasing;
this characterization of w is supported by experimental ev-
idence [13]. The user’s overall utility of a prospect is given
by Equation 2.

We have a set of decisions D which can be viewed as prob-
ability distributions over X = [x0, . . . , xn], a finite subset of
outcomes of Y .

Example: A roll of a dice determines how much money a
user wins. In this case, X = [$1, . . . , $6]. Then Y = {$y|y ∈
R≥0}.

We scale u such that u(x0) = 0 and u(xn) = 1. For
xi ∈ X, we have a set of constraints for u(xi),

Cu(xi) = [umin(xi), umax(xi)]

where umin(xi) is the minimum possible value for u(xi) and
umax(xi) is similarly defined. Initially Cu(x0) = (0, 0), Cu(xn) =
(1, 1) and Cu(xi) = (0, 1) for all 0 < i < n. The set of all
constraints is C which includes all constraints necessary to
ensure the monotonicity of u. The set uknown is the set of
outcomes in Y for which we know the exact utilities. Ini-
tially, uknown = {x0, xn}. For umin(xi), it is convenient for
us to define u−1

min(xi) as the outcome with the utility umin(xi)
and u−1

max(xi) in an analogous manner.
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Our goal is to select a decision which guarantees a mini-
max regret below some desired threshold [12].

4. QUERIES
In this section we describe the queries we ask the user in

order to determine their preferences. We use two types of
queries: configuration queries and outcome queries. Config-
uration queries provide information about the user’s proba-
bility weighting function. Outcome queries obtain informa-
tion about the user’s utility function. The preference elic-
itation process works by initially asking only configuration
queries. After enough information has been gathered about
the user’s probability weighting function, we proceed to ask
only outcome queries. Only outcome queries can reduce the
regret.

4.1 Configuration Queries
Configuration queries are used to solve

w(p)

w(1 − p)
=

1

2
, (3)

which, due to the specific structure of our outcome queries,
as shown in Equations 8 and 9 of Section 4.2, is all we need to
know about w to be able to remove the effects of probability
weighting from the user’s response to an outcome query.

We start by picking two outcomes r and R in Y and asking
the user to pick a probability p such that

[1 − p, x0; p, R] ∼ [1 − p, xn; p, r], (4)

i.e., the user is indifferent between the two prospects. Since
w is dependent on the ordering of the outcomes, we fix R �
r � xn. Since X is a finite subset of the continuous set Y , we
can always find values for r and R satisfying this constraint.
Any such r and R will work. We then ask the user to pick
some outcome z ∈ Y such that

[1 − p, xn; p, R] ∼ [1 − p, z; p, r]. (5)

If z � r, we need to increase r and R and repeat these two
queries.

According to CPT, Equation 4 implies

w(p)[u(R) − u(r)] = (1 − w(p))[u(xn) − u(x0)], (6)

and Equation 5 implies

w(p)[u(R) − u(r)] = (1 − w(p))[u(z) − u(xn)]. (7)

Together, Equations 6 and 7 imply that

u(z) − u(xn) = u(xn) − u(x0),

which means that u(z) = 2.
Since

w(p)

w(1 − p)

equals 0 when p equals 0 and approaches infinity as p ap-
proaches 1, by the Intermediate Value Theorem, there exists
some probability p∗ which satisfies Equation 3. Since w(p)
is monotonically increasing, the LHS of Equation 3 is also
monotonically increasing with respect to p. As a result, we
can do a binary search for p∗. The range of possible values
for p∗ is [p∗

min, p∗
max], where initially [p∗

min, p∗
max] = [0, 1]. Let

p∗
BS =

p∗
min + p∗

max

2
.

We now ask the user to compare the prospects

f1 = [1 − p∗
BS , x0; p

∗
BS , z]

and

f2 = [p∗
BS , x0; 1 − p∗

BS , xn].

If the user prefers f1 over f2, then

w(p∗
BS)u(z) + [1 − w(p∗

BS)]u(x0)

> w(1 − p∗
BS)u(xn) + [1 − w(1 − p∗

BS)]u(x0)

⇒ w(p∗
BS)u(z) > w(1 − p∗

BS)u(xn)

w(p∗
BS)

w(1 − p∗
BS)

>
u(xn)

u(z)
.

=
1

2

Therefore, our estimate of p∗ is too high and we update
[p∗

min, p∗
max] to be [p∗

min, p∗
BS ]. By analogous reasoning, if the

user prefers f2 over f1, our estimate of p∗ is too low and
we update [p∗

min, p∗
max] to be [p∗

BS , p∗
max]. By repeating this

binary search, we can eventually find the value of p∗. In our
experiments, we found repeating the search for 10 iterations
gave an accurate enough value for p∗ for our approach to
always work.

4.2 Outcome Queries
To update the utility constraints in C, we need to know

more about the user’s utility function. Outcome queries
indirectly pick a utility value and ask the user what outcome
has that utility value. The queries are designed so that the
user’s probability weighting can be factored out of the user’s
response.

For any two outcomes s and t in Rn
≥0 with known utilities,

i.e., {s, t} ⊆ uknown, such that u(s) < u(t), the outcome
query (s, t) asks the user to pick an outcome v in Rn

≥0 such
that

[1 − p∗, s; p∗, t] ∼ [p∗, s; 1 − p∗; v].

This indifference implies,3

w(1 − p∗)u(v) + [w(1) − w(1 − p∗)]u(s)

= w(p∗)u(t) + [w(1) − w(p∗)]u(s)

⇒ w(1 − p∗)u(v) − w(1 − p∗)u(s) = w(p∗)u(t) − w(p∗)u(s)

⇒ u(v) = u(s) +
w(p∗)

w(1 − p∗)
(u(t) − u(s)) (8)

= u(s) +
1

2
(u(t) − u(s)) (9)

=
u(s) + u(t)

2
.

Since we know u(s) and u(t), we can add v into uknown and
update the constraints in C as applicable, e.g., for the out-
come xi ∈ X, if u−1

min(xi) ≺ v � xi, then we update umin(xi)
to be u(v). Finally, we calculate the new minimax regret. If
the regret is below some desired threshold, we terminate the
process. Otherwise, we continue asking outcome queries.

In summary, our approach begins by asking configura-
tion queries to learn about the user’s probability weighting

3Due to the rank-dependent nature of w, the derivation as-
sumes v � s. To prove v � s, we use proof by contradiction
which follows from algebraic derivation.
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s u−1
min(xi) u−1

max(xi) txi

. . .. . .

Figure 2: A possible outcome query (s, t) that may
be able to update either umin(xi) or umax(xi).

function. Once we have enough information about w to
solve Equation 3, we begin asking outcome queries. Out-
come queries provide information about the user’s utility
values. These queries are designed so that a user’s proba-
bility weighting may be factored out of their responses. Af-
ter each outcome query, we update any possible constraints
which then reduces the minimax regret. If the minimax re-
gret is below a desired threshold, we terminate the process.
Otherwise, we continue asking outcome queries.

5. HEURISTIC ELICITATION STRATEGIES
In this section, we consider the problem of how to choose

the next outcome query to ask. The binary search done
by configuration queries is completely deterministic, so the
next configuration query is always chosen for us. However,
we can ask an outcome query for any pair of outcomes in
uknown. A sequence of outcomes queries may also be more
useful than each individual outcome query [12]. Therefore,
we consider two heuristics for estimating the best query for
reducing the minimax regret.

The first, most likely minimax regret (MLMR), uses a
parametric approach where we choose some utility function
to approximate the user’s. By using a method such as least
squares fitting we are able to estimate the most likely re-
sponse to an outcome query, which then allows us to esti-
mate the most likely resulting minimax regret. The process
is repeated for every pair of values in uknown. We then choose
the query with the lowest MLMR value.

Unfortunately, as we mention in Section 6, the MLMR
heuristic sometimes fails. This happens when the MLMR
value for all queries is equal to the current minimax regret.
That is, the most-likely outcome for all queries gives no im-
provement. In this case, we rely on a backup heuristic, the
expected minimax regret (EMR).

EMR approximates the PMR between decisions di and dj

as

=
X
x∈X

(pdj (x) − pdi(x)) ·
(

umax(x) if pdj (x) ≥ pdi(x)

umin(x) otherwise.

Therefore, to estimate the minimax regret after a query, we
need to estimate the changes to umin(xi) and umax(xi) for
all xi. The outcome query (s, t), shown in Figure 2, will be
able to update umin(xi) if and only if u−1

min(xi) ≺ v � xi,
where v is the user’s response. To estimate the probability
of this occurring, we assume that the probability density of
v is uniform between s and t. As a result, the probability of
umin(xi) being updated is

|xi − u−1
min(xi)|

|t − s| . (10)

If umin(xi) is updated, we need to estimate by how much.
We assume that the user’s utility function is linear between
u−1

min(xi) and u−1
max(xi). Under this assumption, between

Error 0 (0,0.1] (0.1,0.15] > 0.15
Percentage 68.5 19 8.5 4

Table 1: Error rates for preference elicitation using
SGQs on users with CPT-modelled preferences.

u−1
min(xi) and u−1

max(xi), the slope of u is

umax(xi) − umin(xi)

|u−1
max(xi) − u−1

min(xi)|
.

With the assumption of an uniform distribution for v, the
expected value of v is„ |xi − u−1

min(xi)|
2

«
.

Therefore, if umin(xi) is updated, the expected change in
umin(xi) is„ |xi − u−1

min(xi)|
2

«„
umax(xi) − umin(xi)

|u−1
max(xi) − u−1

min(xi)|

«
. (11)

The overall expected change to umin(xi), Δ(umin(xi)), is
given by Equation 10 multiplied by Equation 11. We can
calculate Δ(umax(xi)), the expected change to umax(xi), in
an analogous manner. For any two decisions di and dj , the
expected change to the PMR between those two decisions is

ΔPMR(di, dj) =
X
x∈X

(pdj (x) − pdi(x))

·
(

Δ(umax(x)) if pdj (x) ≥ pdi(x)

Δ(umin(x)) otherwise.

For each possible query, we calculate the overall ΔPMR.
This allows us to estimate the expected PMR resulting from
any query. We then choose the query which gives the lowest
expected PMR.

In summary, we have two heuristics for choosing the op-
timal query. MLMR estimates the most-likely minimax re-
gret resulting from a query. EMR estimates the expected
minimax regret from a query. We choose whichever query
minimizes the metric we decide to use.

6. EXPERIMENTAL RESULTS
To verify the effectiveness of our preference elicitation ap-

proach we conducted a series of experiments. Our goals were
as follows. First, to understand if previous preference elic-
itation models could elicit appropriate preference informa-
tion from users whose preferences were described by CPT.
Second, to understand if our proposed approach could ef-
fectively elicit preference information from users with CPT
preferences. Finally, to determine if our approach was also
an effective model for EUT situations.

6.1 Analysis of SGQs with CPT-based prefer-
ences

We studied the performance of previous preference elici-
tation models in a CPT setting by implementing Wang and
Boutilier’s minimax regret model. The implementation in-
cluded their most successful elicitation strategy, MEI. The
experiment included 4 possible outcomes, {0, o2, o3, 3500},
where o2 and o3 varied between 0 and 3500 in increments of
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50. Since CPT and EUT are most different when probabil-
ities are close to either 0 or 1, we created a simple decision
choice between two decisions: [0.05, 0, 0.95, 0] and
[0.15, 0, 0, 0.85].

The user was simulated using the utility function

u(x) = x0.88 (12)

and weighting function

w(p) =
p0.61

(p0.61 + (1 − p)0.61)1/0.61
. (13)

Both of these functions and their parameters are from the
literature [10].

The elicitation process was run until the minimax regret
was at most 0.01. At this point, the minimax regret decision
was selected, and then evaluated using the user’s actual util-
ity and weighting functions. We then computed the optimal
decision according to the user’s utility function, and thus
determined the actual regret of the decision. Since minimax
regret is supposed to be a guarantee of the worst-case regret,
error was measured as

max{0, actual regret − minimax regret}.
An error value greater than zero indicates that the actual
regret was higher than the “guaranteed” minimax regret, in-
dicating that the utility function of the user was not being
properly modeled. The results, shown in Table 1, show that
while 70% of the time there was no error, 19% of the runs
resulted in an error between 0 and 0.1, in 8.5% the error was
between 0.1 and 0.15 and in 4% the error was greater than
0.15. This represents a potentially significant loss of utility
for the user.

6.2 Analysis of Outcome Queries
The decision scenario used for the rest of our experiments

used 8 outcomes, chosen uniformly at random between 0 and
500, and 27 decisions. To try to create difficult elicitation
problems, decisions were chosen that helped to maximize
the minimax regret. Decisions were added in an iterative
fashion. For each new decision, 50 candidate decisions were
chosen uniformly at random. The first candidate decision to
achieve a minimax regret of 0.5 with respect to all the deci-
sions already picked was chosen as the next decision. If no
such candidate existed, we picked whichever candidate de-
cision maximized the minimax regret. While this helped to
create more difficult problems, the monotonicity constraint
was a limitation: without the constraint, we were able to
create significantly more difficult problems.

Unless noted otherwise, Equations 12 and 13 were used
for the user’s utility and weighting functions respectively
throughout the experiments. The parameters for Equations
12 and 13 were fixed throughout the experiments. All ex-
periments were repeated 60 times and run for at most 20
queries. All of our results do not include configuration queries,
which averaged an additional 14 queries.

For clarity, our graphs show only the minimax regret and
not the actual regret. The actual regret was typically very
low, starting at between 0.05 and 0.1 for all of our exper-
iments. By the 5th query, the actual regret was typically
around 0.01. However, we believe that a low actual regret is
not a good measure of the difficulty of the elicitation prob-
lem.
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Figure 3: Performance of outcome queries with
MLMR and EMR heuristics on CPT-based prefer-
ences compared to a random elicitation strategy.

To investigate this possibility, we conducted some prelim-
inarily experiments using adversarial users and our querying
method from this paper. These users were not required to
choose utility values in advance. Instead, the users chose
query responses that attempted to keep the minimax regret
as high as possible. At the end of experiment, the adversarial
users had to choose utility values that were consistent with
all the query responses they had given while also maximiz-
ing the actual regret. The results, which are not presented
here, show that while the adversarial users were able to keep
the minimax regret relatively high, the actual regret wound
up being relatively low. This suggests that a high actual
regret is not needed to create situations where reducing the
minimax regret is difficult.

We began by experimenting with a user with CPT-based
preferences. To establish an baseline for evaluating our ap-
proach, we first implemented a random-elicitation strategy.
This strategy picks an outcome query by randomly choosing
{s, t} ⊆ uknown where we have not already queried about
the utility (u(s) + u(t))/2. The results are shown in Figure
3. The random approach performed reasonably well since
the monotonicity constraints meant that the results from
a random query could still be used to update many utility
constraints.

For the first test of our approach, we relied on both eli-
ciation heuristics. For the MLMR heuristic, we used the
function

u(x) = xα (14)

to approximate the user’s utility function, where 0 < α ≤
1. The parameter α was estimated using a non-linear least
squares method done on the points in uknown. Figure 3 shows
the results from this experiment. The combination of the
MLMR and EMR heuristics is able to reduce the minimax
regret at a rate notably higher than the baseline measure. Of
the 351 queries performed in the experiment, MLMR failed
only 4 times.

We next experimented with EUT-based preferences. Our
goal was to compare the performance of standard gamble
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Figure 4: Performance of random SGQs and out-
come queries on EUT-based preferences.

queries against outcome queries. As a baseline, we first used
both of these queries in a random elicitation approach. The
random elicitaton using standard gamble queries would pick
an outcome x uniformly at random from X and then select
an utility value p uniformly at random from [umin(x), umax(x)]
to query the user about. We used the same random elicita-
tion method for outcome queries that we used for obtaining
the baseline results for the CPT-based preferences. The re-
sults, provided in Figure 4, show that outcome queries are,
on average, able to provide more information per query.

For EUT-based preferences, we next used standard gam-
ble queries with the MEI heuristic, Wang and Boutilier’s
most successful elicitation strategy. We compared this against
using outcome queries with both the MLMR and EMR heuris-
tic. The results for both types of queries are shown in Fig-
ure 5. Both results show significant improvement over the
random elicitation results from Figure 4. As well, outcome
queries continue to outperform standard gamble queries.

Finally, we were interested in how well the MLMR heuris-
tic worked when the user’s utility function was not of the
form in Equation 14. Figure 6 shows the minimax regret for
our approach (with both the MLMR and EMR heuristic)
with a user with the utility function,

u(x) = 0.5x0.88.

The results in Figure 6 can be compared against those results
in Figure 3. Although the minimax regret decreases at a
slightly slower rate for the alternative utility function, the
performance is comparable. We also tested our approach on
a user with the logarithmic utility function

u(x) = log(x + 1).

The results, which are not shown, are again comparable to
those in Figure 3. This suggests that the MLMR heuristic is
flexible when dealing with different types of utility functions.

7. CONCLUSION AND FUTURE WORK
In this paper, we introduced a querying method that al-

lows the combination of minimax regret preference elicita-
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Figure 5: Performance of SGQs with MEI heuris-
tic against outcome queries with MLMR and EMR
heuristic on a user with EUT-based preferences.
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Figure 6: Performance of MLMR and EMR heuris-
tics on a user with CPT-based preferences with an
alternative utility function.
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tion and cumulative prospect theory, a descriptive model of
human reasoning for risky choices. The main challenge was
to design queries that could remove the effects of probabil-
ity weighting from users’ answers. Since choosing optimal
queries is a challenging problem, we proposed two heuristics
for measuring the value of a query. Our elicitation approach
relied mainly on the MLMR heuristic which proved efficient
but sometimes failed to suggest any query. In cases where
the MLMR heuristic could not suggest a query, we relied
on the EMR heuristic. Even with preferences following ex-
pected utility theory, our approach was more efficient than
previously-proposed preference elicitation approaches.

Our goal is to be able to apply this approach to real-world
preference elicitation situations. It may not be possible for
people to answer queries comparing prospects such as f1

and f2 (from Section 4.1) with the desired level of accuracy.
In this case we may not be able to know the exact value
for p∗ and we may have to query using both our lower and
upper bound constraints on p∗. Additionally, people’s utility
functions may not always be strictly increasing, and this
would make choosing queries more complicated.

We are also interested in querying people about their prob-
ability weighting functions. While work has already been
done on such queries, it remains an open problem to imple-
ment these queries in a minimax regret setting [1, 2]. This
would mean generalizing the definition of minimax regret as
well as creating new heuristics to use on probability weight-
ing queries.
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