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ABSTRACT
In this paper, we present a mechanism to fly a swarm of
UAVs with the aim of establishing a wireless backbone over
a pre-specified area. The backbone is aimed at connect-
ing intermittent wireless-signal-emitting mobile ground sta-
tions (GSs), comprising rescue teams and survivors. To
this end, we present a decentralized behavior-based coop-
erative control architecture to search for unknown GSs and
relay packets from one GS to another. A delay tolerant
network protocol implementation is assumed on the agents
but maintained transparent to the GSs. The conditions for
agent state transition are adapted to maximize a measured
performance score. A novel belief exchange mechanism for
cooperation is designed to utilize low bandwidth through
state estimation by a Dynamic Cell Structure. Extensive
simulations are performed to prove the effectiveness of the
proposed solution via measured performance metrics like av-
erage latency and visit frequency.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Distributed Artifi-
cial Intelligence—Coherence and coordination, Multiagent
systems

General Terms
Design, Experimentation, Performance

Keywords
cooperative control, disaster relief, DTN, swarm coordina-
tion, teamwork

1. INTRODUCTION
The response phase in a disaster management situation

plays a key role in mitigating possible adverse effects in-
cluding loss of lives. Part of the response phase involves
the dispatch of rescue teams (on ground) into the disaster
area to survey the damage and find survivors. These rescue
teams often need to send data back to the base station or
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to other rescue teams in the area. Data could include infor-
mation like images, videos, or even calls for additional sup-
port. Moreover, communication between the rescue teams
and with the base station can greatly enhance coordination
between the various teams. Unfortunately, in a disaster sit-
uation, normal communication infrastructure tends to be
damaged or destroyed. Traditionally, push-to-talk services
[6] have been used for voice communication between base
stations and rescue teams. However, such services are not
designed to handle data communications involving images,
videos, sensor readings, etc., that require higher bandwidths.
Attempts have been made to use satellite communications
for exchange of information between first responders [11].
However, satellite communications through services like Irid-
ium [9] provide very low bandwidths in the range of 10kbps.
This scarce bandwidth would have to be shared by multiple
rescue teams in the same area, thus making the available
bandwidth for each team, extremely small.

A feasible alternative is to deploy a set of unmanned aerial
vehicles (UAVs), each mounted with a wireless communica-
tion device like a WiFi antenna, so as to build a wireless
backbone over which various entities on the ground such
as rescue teams, relief agencies, survivors, first responders,
etc. can communicate. In fact, it has been proven through
real experiments that air-to-ground communication through
commercial off-the-shelf (COTS) 802.11 equipment is viable
[7]. In this solution, a system of aircrafts would provide a
mobile ad hoc network (MANET) connecting ground devices
like laptops, PDAs, cell phones, and devices capable of wire-
less communication. One plausible approach is to maintain
a fully connected network of UAVs at all times. For exam-
ple, in [8], a chain of UAVs is maintained at all times so
that a given UAV may communicate with any other UAV
using multi-hop ad hoc routing. Correspondingly, numer-
ous ad hoc routing protocols have been proposed for rapidly
changing network configurations [10]. However, often times
there aren’t enough UAVs to establish a continuous link be-
tween two points on the ground and this is a huge problem
for solutions that require a fully connected UAV mesh. The
notion of a continuous link between end-points is meaningful
when the relays are stationary. Mobile relays on the other
hand, can act as ferries to deliver packets, thus eliminating
the need for a continuous link. In order to support such
mobile relays, a new class of routing protocols have emerged
for what are known as Delay Tolerant Networks (DTNs).
The concept of delay tolerance is directly applicable when
using UAVs as communication relays. Research on DTNs
has been extensive over the last few years. However, lit-
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tle work has been done on cooperatively controlling UAVs
to physically establish such DTNs. A few fixed trajectory
solutions have been proposed that utilize DTNs for estab-
lishing communication between two mutually unreachable
ground stations [16, 5]. They use one of two configurations:
chain-relay or conveyor belt. However, neither is scalable
for scenarios with a number of ground stations scattered in
a given area. In fact, these fixed trajectory solutions would
cease to work with the introduction of mobile ground sta-
tions. Moreover, if communication is to be established for
survivors too, searching the area would be a necessity that
cannot be achieved with fixed trajectory solutions.

We propose the use of autonomous agents on-board each
UAV to cooperatively control them and form a multi-agent
system that achieves the goal of establishing communica-
tion between multiple ground stations. To this end, we give
a detailed description of the system that determines the be-
havior of each agent and the mechanism used to coordinate
their actions. The approach we take is a very practical one
with all simulations performed on a realistic flight simula-
tor (X-Plane) and wireless communication simulator (Qual-
net). In other words, the solution proposed works under the
constraints of UAV aerodynamics and wireless range limita-
tions. Since there is one agent associated with each UAV,
we shall be using the terms agent and UAV interchangeably.

2. PROBLEM DESCRIPTION
In this paper, we assume an M × N grid representing

the disaster struck area. A set of K agents (UAVs) are dis-
patched to start operations from random positions in the
grid. To account for the worst case scenario, agents are
assumed not to have a priori information about positions
of rescue teams and survivors. The agents however have
knowledge of the base station’s position, which is along one
of the edges of the grid, bordering the disaster struck area.
All ground stations are allowed to move, as long as they re-
main within the boundaries of the grid. Ground stations are
assumed to have a maximum speed of 10ms−1 and are not
expected to transmit signals all the time. In other words, a
given ground station could be an intermittent signal emitter.
The task of the agents then is to constantly keep searching
for ground stations, and establish communications between
those that have already been found. The challenge is to max-
imize both search frequency (of the entire area) as well as
bandwidth available to each ground station while minimiz-
ing the latency for packet delivery. The bandwidth avail-
able to a ground station can be considered to be directly
proportional to the amount of time it has an agent within
communication range, also known as service duration. Since
every GS has only one transmitting radio and since the data
rate is capped by the constant wireless link capacity, the
only variable that affects the amount of data transmitted
per unit time is service duration. As a result, the aim is to
maximize quality, Q, of the search and relay operation,

Q =
favgsavg

lavg

(1)

where favg = average visit frequency for all grid cells
measured over the last TW time units

= 1
MN

MX
i=1

NX
j=1

fi,j

savg = average service time over the last TW

time units for ground stations

= 1
G

GX
i=1

si

lavg = average latency for all packets delivered
in the last TW time units

= 1
P

PX
i=1

li

System-wise, every UAV is assumed to be equipped with
a GPS receiver for position information. Each UAV is also
mounted with an omni-directional WiFi antenna with a trans-
mitting power of 20dBm, which gives a theoretical commu-
nication range of 350m. We assume a practical communica-
tion range of 150m air-to-ground and 200m air-to-air. This
allows us to divide the test area of 2km×2km into a 20×20
grid so that even if the UAV were to fly through one of the
corners of a grid cell, the whole cell would be covered, owing
to a cell diagonal length of 140m.

3. COOPERATIVE CONTROL ARCHITEC-
TURE

The control architecture we propose is a distributed one,
wherein each agent makes control decisions independently,
using information from own sensors and from communicat-
ing with neighboring agents. Each agent’s belief of the world
is represented using two data structures:

1. A grid of integers called the Visit Map (VM): The
value assigned to each grid cell is the time elapsed since
any agent last visited that grid cell. This is different
from the belief map that many other papers on multi-
agent target search use. In many works, the belief map
is a probability distribution giving the probability of
finding a target in a given grid cell[14]. We however
use elapsed time in order to enable the hybrid state
where an agent performs the search operation as well
as relaying of packets between ground stations. The
behavior of an agent in this hybrid state is detailed
in section 3.3. The value for each cell is incremented
by 1 at every time step. When the agent flies over a
particular grid cell, the corresponding value for that
cell in the VM is reset to 0.

2. A set of currently known positions (in grid coordinates)
for ground stations, called the Position List (PL): This
PL is updated when the agent detects a wireless sig-
nal from a ground source when flying over a grid cell.
It is also updated when information is received from
neighboring agents.

Belief information is exchanged between agents when they
come within communication range of each other. Both, the
VM as well as PL are exchanged between neighboring agents.
The details of what entails an information exchange is pro-
vided in section 3.6.

Every agent, at its core is a behavior-based control sys-
tem. At the higher level though, every agent is capable of
operating in one of the following 4 states: search (SR), relay
(RL), search and relay hybrid (HB), and proxy (PR). We
now take a look at the behavior of an agent in each of the 4
states.
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3.1 Search State
In the search state, an agent flies around the entire grid

looking for wireless signals from a ground source. We do
not use predetermined search patterns like those mentioned
in [12] so that UAVs can be added or removed from the
multi-agent system at any time. This is essential because in
a realistic setting, UAVs may run out of power or fuel, or
may suffer failures in mid-air that require their withdrawal
and replacement. In other words, an agent’s control deci-
sion cannot depend on the knowledge of number of UAVs
on the field. Moreover, since ground stations can emit sig-
nals intermittently, the search operation can never come to
an end. In other words, the agents need to revisit each grid
cell repeatedly through time. Keeping these requirements
in mind, we aim to design a cooperative search mechanism
where behaviors of each agent combine to provide an emer-
gent behavior wherein the multiagent system spreads out to
search the entire area.

At every instance when an agent moves from one grid cell
to another, it recomputes its action. When an agent wants
to compute its action, it assigns a score to every cell in the
grid using the formula in Equation 2, and picks the cell with
the highest score as its next destination.

wkttkij
+ wkh

H(hkpref − hk→ij) + wkd
G(dkij

− dkopt) (2)

The above formula gives scorekij
, which is the score assigned

by agent k to grid cell (i, j). It is computed as a summation
of three components. The first is wkt tkij

where wkt is a
positive weight and tkij

is the elapsed time value for grid
cell (i, j) held in VMk. This term represents the desire of
each agent to visit the grid cell that has not been visited in
the longest while, i.e. the grid cell with the highest value on
VMk. This is essential because the validity of information
about a cell decays with time. As a result, the cell with
the highest elapsed time, is the one about which there is
least certain information. The second term in Equation 2
is wkh

H(hkpref − hk→ij) where wkh
is a positive weight and

hk→ij is the heading from agent k to the center of grid cell
(i, j). hkpref refers to the preferred heading of agent k and
is given by

hkpref =

j
hkcurr if N(k) = ∅

1
|N(k)|

P
i∈N(k) hi→k otherwise

(3)

where hi→k is heading from agent i to agent k

N(k) = {i| agent i is in range of agent k}
Equation 3 means that the preferred heading of an agent
is its current heading, unless there are neighboring agents
within communication range. Essentially, every agent de-
sires to move forward where forward is defined as any di-
rection falling within π

4
radians from the current heading as

can be visualized in Figure 1. In the presence of neighbors,
the preferred heading of an agent is the average of the set of
headings away from every neighboring agent. This mecha-
nism mainly achieves the spread of agents in opposite direc-
tions. As a side effect, it also achieves collision avoidance.
However, collision avoidance is not considered explicitly in
this paper and therefore cannot be guaranteed. There are
algorithms that have been proposed to guarantee collision
avoidance using multiple altitudes that can be applied here
if required. The difference between hkpref and hk→ij is fed
as input to function, H(x), which is a combination of two

Figure 1: Optimal distance, dkopt

Gaussian functions given by

H(x) =

(
e−

x2

2 if |x| ≤ π
4

5e−
x2

c if |x| > π
4
.

(4)

with c =
2π2

32 ln 5 + π2

As a result, the second term in Equation 2 has the highest
value when the difference between hkpref and hk→ij is 0 and
gradually decreases until the magnitude of this difference
hits π

4
. When the magnitude of the difference increases be-

yond π
4
, the value of the second term in Equation 2 drops

steeply towards 0. All in all, the second term represents
the desire of an agent to continue flying along the preferred
heading (preferably within π

4
radians of hkpref ) which would

be plain forward in the absence of neighboring agents and
away from all neighboring agents, if there were any.

The third term in Equation 2 represents the fact that each
agent in general concerns itself with the cells closest to it and
gives them more importance as compared to cells that are
farther. It is given by wkd

G(dkij
− dkopt) where wkd

is a
positive weight and dkij

is the distance of agent k from the
center of grid cell (i, j). dkopt is given by

dkopt =
√

2rk (5)

where rk = minimum turn radius of agent k

In order to understand the reason behind Equation 5, let us
imagine a situation where agent k is at the center of grid
cell (5, 5) and heading towards (5, 6). The score for grid
cell (5, 7) would be high even though it might be impossible
to reach (5, 7) with a simple bank maneuver owing to the
minimum turn radius of a UAV. As a result the optimal
distance to look ahead for an agent should be the distance
of the intersection of the UAV’s trajectory with maximum
bank angle and the line emanating from the agent at an angle
of π

4
from the current heading as shown in Figure 1. The

angle of π
4

is chosen so as to fall in line with the definition
of forward. The difference between dkij

and dkopt is fed as
input to the function G(x), which is a Gaussian function
given by

G(x) = e
−

(x)2

2σ2 (6)

with σ =
dmaxp

2 ln (100)

where dmax is the maximum possible distance between two
points on the grid (the diagonal if it is a rectangle). As a
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result, the third term peaks when dkij
= dkopt and drops as

the difference between the two increases.
The three weights wkt , wkh

, and wkd
are chosen based on

the following rules:

1. Considering cells (i1, j1) and (i2, j2) at a fixed dis-
tance from the agent, if hkpref − hk→i1j1 = 0 and if
hkpref

−hk→i2j2 = π
4
, then a difference in elapsed time

of tki2j2
− tki1j1

= Ct should make the scores for both
equal.

2. Considering cells (i1, j1) and (i2, j2) with the same
elapsed time value on VMk, if hkpref − hk→i1j1 = 0
and hkpref − hk→i2j2 = π

4
and dki2j2

= dkopt , then a
difference in distance of dki1j1

− dki2j2
= Cd should

make the scores for both equal.

Using these 2 rules and setting ∀k(wkt = 1), we get

wkh
=

Ct

1 − e−
π2

32

and,wkd
=

Ct

1 − e
−

C2
d

2σ2

Ct and Cd are constants that have an explicit meaning as
defined in the rules above and can be given values based
on preference. For the experiments in this paper, we use
Ct =100s and Cd =500m.

3.2 Relay State
In the relay state, the agent does not concern itself with

the search operation and dedicates itself to relaying packets
between GSs. When it comes to deciding on the next ac-
tion, the agent only scores GS cells (those that are members
of PL), using the formula in Equation 2. As a result, the
agent picks the GS that obtains the highest score and heads
towards it. If an agent k were to meet any other agent m in
the RL or HB state (i.e. m ∈ NRL,HB(k)), it immediately
resets the tkij

values in VMk for the GS cells that are closer
to the neighboring agent and recomputes its action. As a
result, the following proposition holds true.

∀(i, j) ∈ PL
`∃m

`
m ∈ NRL,HB(k) ∧ dmij

< dkij

´→ tkij
= 0
´

(7)
The above rule is applied because the agent that is closer to
a given GS should be in charge of delivering packets to that
GS, and there is no point in sending more than one agent,
moving together, towards the same GS. As an effect of this
rule, the emergent behavior is the latency minimizing chain-
relay architecture in the case of 2 GSs, illustrated in Figure
2. The chain-relay architecture as a fixed trajectory solution

Figure 2: Chain-relay architecture

is studied in detail in [1]. In the case of multiple GSs, we
believe the emergent behavior would hold the same latency
minimizing quality. The effectiveness is studied empirically
in section 4.

3.3 Hybrid Search and Relay State
In the hybrid search and relay state, the agent performs

the search operation as well as relaying of packets between
GSs. Every time the agent needs to compute its next ac-
tion, it scores all cells in the entire grid using the formula in

Equation 2. In other words, it performs all the steps laid out
in section 3.1. However, when computing scores for GS cells,
the first term corresponding to elapsed time is given a lot
more importance. In particular, wkt tkij

becomes wkt(tkij
)2

so as to represent the higher visit frequency requirement of
GS cells. When a GS cell gets chosen based on highest score,
the agent implicitly works on relaying packets. In a similar
manner to the RL state, whenever the agent gets within
communication range of another agent in RL or HB state,
the rule in Equation 7 is applied.

3.4 Proxy State
In the proxy state, the agent moves in a circular motion

with minimum turn radius over the GS for which it acts
as proxy. Having a proxy for every GS is essential in or-
der to maintain the DTN protocol implementation on the
agents, transparent to the GS. Equipment held by survivors
and rescuers would in most likelihood use standard IP net-
working protocols. IP is not designed to be delay tolerant
and lacks the key features of a DTN protocol: buffering,
and opportunistic forwarding [3]. IP would simply drop all
packets if no route existed to the destination. The proxy
agent is used to stop IP from doing that by letting the GS
know that a route exists. On receiving packets from the GS,
the PR agent would only need to buffer all received packets
and forward them when an RL or HB agent comes by. As
a result of using proxy agents, the service time, sg in Equa-
tion 1, is maximised for each GS g that has a proxy. The
other task of the agent in PR state is to keep track of the
GS it is in charge of. While flying in circles, the agent tries
to maintain connectivity with the GS at all times. It main-
tains an estimate of the GS’s position and circles around
this point. Therefore, if it ever discovers that a part of the
circle is beyond the range of the GS, it updates the position
estimate by moving it a small distance directly away from
the arc that fell out of range. The proxy agent for a given
GS has complete authority over the position information for
that GS. It is the only agent allowed to make changes to
the position estimate for that particular GS, and when the
estimate changes, the proxy agent informs the change to all
agents that pass by.

Every proxy agent also maintains the average visit fre-
quency for the GS over the past TW time units. If this
average visit frequency drops below a threshold, ν +Δν, the
agent decides to recruit an RL agent. Once the decision to
recruit is made, the first agent that comes into contact with
the PR agent is recruited as an RL agent. If recruitment
is unsuccessful even after Trecruit time units, the PR agent
decides to personally forward the packets to the next closest
known proxy agent (or base station) and informs the other
agent to recruit an RL agent. The PR agent then returns to
its corresponding GS and waits. If at any point the average
visit frequency goes above ν + Δν, the PR agent decides to
dismiss an RL agent. The minimum time period between
two consecutive recruitments or dismissals is TW .

Since GS’s can be intermittent, proxy agents continue cir-
cling for a fixed period of time, TC , when the GS disappears.
If the agent does not receive any wireless signal from the GS
within TC , the agent considers the possibility that the GS
might have moved. It then begins spiraling outwards up
to a distance beyond which the GS could not have traveled
given a maximum speed of 10ms−1. If the GS is still not
found, the agent assumes the GS is lost and switches its op-
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Figure 3: State Diagram

erational state to HB. It then spreads the information about
the missing GS to other agents, thus causing them to delete
the corresponding entry in their PLs.

3.5 State transitions
The state transitions are based on the state diagram shown

in Figure 3. All agents start out in the HB state, which is
equivalent to the SR state when no GSs have been found.
An agent in the HB state decides to switch to the SR state, if
any of the cells in VMk has a tkij

value of more than τ +Δτ .
A high value on the VM means the search is slow and the
average visit frequency is low, thus requiring a more dedi-
cated search effort. Once the dedicated search manages to
increase the average visit frequency, the SR agent should be
able to switch back to HB. The switch from SR to HB takes
place when the highest value on the VM becomes lower than
τ + Δτ . The transition to the PR state can take place from
any other state. When an agent spots a GS that does not
already have a proxy agent, the agent immediately switches
to the PR state and becomes in charge of that GS. If an
agent mistakenly became the proxy agent of a GS with an
existing proxy agent, the newer one reverts to the HB state
and gives way to the original proxy for that GS. Otherwise,
an agent in the PR state switches to the HB state only if
the GS has been deemed lost as per section 3.4. The only
way any agent can enter the RL state, is being recruited by
a proxy agent. The recruitment process has been discussed
in section 3.4. The transition from the RL state to the HB
state happens only when the RL agent gets dismissed by a
PR agent.

3.5.1 Adaptive state transition
The thresholds for state transitions are represented as τ +

Δτ and ν + Δν so that τ and ν can be kept constant while
updating Δτ and Δν to manipulate the thresholds. These
thresholds indirectly determine the ratio of number of agents
in the RL, HB and SR states. The ratios in turn affect the
value of Q that we try to maximize in Equation 1. We
know that savg is maximized as a side-effect of having proxy
agents. As a result the two factors that are variable are lavg,
and favg. lavg can be reduced by increasing the number of
RL agents. However, that would adversely affect the search
operation and reduce favg. The key is to balance them out
so as to maximize Q. However, latency is highly dependent
on the relative positions of the GSs (possibly mobile), and
average visit frequency is dependent on the number of agents

on field, both of which are not known for certain and are
dynamic. In other words, the values of τ + Δτ and ν + Δν

also need to be dynamic so as to update the ratios of agents
in different states, appropriately.

The correct way would be to evaluate Q from time to
time and adapt the threshold values. However, in order to
obtain values for lavg and favg, global knowledge would be
necessary. To overcome this problem, we propose the use of
estimates for Q derived at each agent. The estimates can
then be passed on to the base station if and when the agent
comes in contact with the base. Using multiple estimates,
the base station can make an informed decision as to how
to update the threshold values. The updated values can be
disseminated through agents that pass by. To be able to
produce an estimate for Q, the agents need to perform 2
additional tasks:

1. Maintain a set TSij for each cell in the VM that holds
timestamps of all the times when the value in the cell
drops. Any element in the set that has a timestamp
earlier than TW time units prior to current time is

discarded.
|TSij |

TW
then gives the the visit frequency

for cell (i,j) over the last TW units.

2. Update the timing information on the DTN protocol
header (this field is assumed on the header, but even
otherwise it is a single integer that is added to the
header) by adding the duration for which the agent
held the packet.

As a result, every agent would have its own version of favg.
The agent that delivers a packet to the destination would
have latency information for that packet. Using the latency
information for all packets delivered in the last TW time
units, the agent can generate an estimate for lavg. If and

when an agent k passes by the base station, it delivers f̂avgk

and l̂avgk
, which are estimates by agent k for favg and lavg

in Equation 1. An agent never modifies its trajectory with
the aim of delivering these values to the base, because it is of
lower importance than other operations and there is bound
to be some agent that delivers packets to the base station
that can provide its estimate. Finally, the two values can be
used by the base to generate Q̂k, an estimate for Q. The base
uses a reference value for the product of latency and average
visit frequency. The reference value, λ, is calculated by the
base station using its current knowledge of GS positions. λ

is given by

λ =

P
g1,g2∈G,g1�=g2 dg1→g2

MN
(8)

The idea is that lavg should in general be proportional to the
sum of distances between any pair of ground stations, and
inversely proportional to UAV speed and number of UAVs if
all agents were involved in relaying packets. Similarly, favg

should be inversely proportional to area of the grid and di-
rectly proportional to UAV speed and number of UAVs if all
agents were involved in the search operation. The product of
the two should cancel out UAV speed and number of UAVs
to give Equation 8. This is a combination of 2 individually
optimal cases for latency and visit frequency. So the product
is a reference value for the situation where equal number of
agents are involved in each of search and relay operations.
The base can then compute f̂avg l̂avg to get an idea of rela-
tive distribution of SR and RL agents. This information as
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well as the trend in Q can be used to obtain the update rule
for Δτ and Δν as follows:

Δτ(t) =
τ

λ

“
f̂avg l̂avg − λ

”
+ Δτ(t − 1)slope(Q̂) (9)

Δν(t) =
ν

λ

“
f̂avg l̂avg − λ

”
+ Δν(t − 1)slope(Q̂) (10)

Updates for both τ and ν are derived similarly. In Equation
9, the new Δτ depends on the previous Δτ , as well as the
deviation in the fl product from the reference value (scaled
to the same order as τ), and finally the slope of the regression
line through the last 20 estimates of Q. slope(Q) determines
whether to switch the sign of Δτ .

3.6 Belief Information Exchange
Belief information, i.e the VM and PL are exchanged when

any two agents come within communication range of each
other. It is important for every agent to know the locations
of all GSs. This necessitates the full exchange of PLs. When
an agent receives a neighbor’s PL, it simply merges its own
PL with the received PL

PLk =
[

i∈(k∪N(k))

PLi

As for the VM, a full exchange would mean that each mes-
sage would contain MN number of integer values, which
would require a high bandwidth. In fact the bandwidth
issue is a prominent one in the general cooperative target
search problem. People have tried to address it by suggest-
ing the exchange of only recently updated cell information
[4]. This very often turns out to be only those cells that
lie in the recent flight path of the sender. Since any cell
can be on the list, the sender would also need to include
co-ordinate information for each cell whose information is
sent, thus tripling the number of bytes required to represent
the information for 1 cell. Some others have suggested the
exchange of last known positions of other agents along with
their destinations [13, 14]. However, this would require each
agent to maintain the history for all other agents. Moreover,
if the destination of an agent is chosen as a relatively close
point to current location, as in our case, there is very little
information embedded.

We propose the use of neural networks to estimate the
values of grid cells given some intelligently chosen partial
information. We utilize the general tendency of agents to
move in straight lines and the minimum turn radius of UAVs
to come up with a pattern of cells whose information would
be sufficient to obtain a good estimate of the remaining cells.
The pattern we propose is the one in Figure 4. The effect
is that any straight path taken by agents would intersect
with a shaded cell atleast once every 5 cells. Moreover, the
minimum turn radius of the UAVs wouldn’t allow them to
fly in a circle without cutting across a shaded cell. In reality
though, no agent in a non-PR state would fly in circles.

Essentially, this pattern would require only 3
8
th the in-

formation for the entire grid. However, the packet size
would increase linearly with respect to grid area and that
is quadratically with respect to a given side, if it is a square.
To overcome this problem, we divide the grid into horizontal
strips each 8 cells thick, as shown in Figure 4. Each strip has
an index number starting from 0 for the first strip. When a
neighboring agent sends a packet, it specifies the index num-
ber and a sequence of integers giving values corresponding

Figure 4: Pattern of cells chosen for exchange

Figure 5: Types of blocks handled by each DCS

to shaded cells alone. The co-ordinate information is not re-
quired because the receiving agent knows exactly which cell
each value corresponds to in the fixed pattern. Since the
thickness of each strip is fixed, packet size would increase
linearly with respect to one of the sides of the grid. The
sending agent would first send the strip that contains the
receiving agent. This would have information pertaining to
the immediate environment of the receiving agent. Follow-
ing this, the sending agent sends strips that are increasingly
far away from the receiving agent on either side (above or
below). The last strip sent would be the furthest from the
receiving agent and would be of least immediate relevance.

Having received a packet, the agent estimates the val-
ues for the remaining cells using Dynamic Cell Structures
(DCSs), which are basically radial basis function neural net-
works with lateral connections between neurons. The orig-
inal DCS was proposed by Bruske and Sommer [2]. A de-
tailed description of the modified, faster learning DCS used
in this paper is available at [15]. The DCS is chosen because
it is capable of differentiating between different situations by
using lateral connections between neurons that are related.
The hypothesis is that the DCS should be able to distinguish
between different cases when an agent flies across the block
horizontally or vertically, etc., and interpolate correctly. In
order to avoid the curse of dimensionality, we extract 4 × 4
blocks from the grid, each of which serves as a data point.
We identify 2 types of 4 × 4 blocks where each pattern in
a type is only a rotated version of the corresponding block
shown in Figure 5(a) and 5(b). To be more specific,

∀i, j(i is even) ∧ (j is even) → Bij ∈ TYPE1

∀i, j(i is odd) ∧ (j is odd) → Bij ∈ TYPE2

where Bij is the block with top left corner at (i, j). There-
fore, DCS1, after learning, takes a 7-tuple as its input corre-
sponding to the shaded cells in Figure 5(a) and produces a
9-tuple output corresponding to estimates of the unshaded

1162



Figure 6: Positions of GS and path of mobile GS

cells. Similarly, DCS2 takes a 5-tuple as its input and pro-
duces a 11-tuple output. The data to train the two DCSs is
obtained by running simulations with full communications
(full exchange of VMs). From one snapshot of the 20 × 20
VM grid on one agent, 73 data points are produced for DCS1
and 72 data points are produced for DCS2. The simulation
is run for 30 mins to generate millions of data points to train
the DCS. Subsequent to supervised learning offline, DCS1
(93 neurons, 7% estimation error) and DCS2 (129 neurons,
7% estimation error) are used on every agent to estimate
missing cells in information received from neighbors. For all
experiments conducted in this paper, the DCS-based belief
exchange mechanism is used.

4. SIMULATION AND RESULTS
The cooperative control architecture thus presented is im-

plemented and tested using a combination of 2 simulators:
X-Plane 8.64 for realistic UAV control and Qualnet 4.5 for
realistic communications. Any communication between 2
UAVs goes through Qualnet, which determines whether the
wireless transmission was a success based on its communica-
tion model. UAVs in this simulation have a maximum speed
of 25ms−1. The controller for the UAV is implemented us-
ing proportional integral derivative (PID) components and
nonlinear dynamic inversion (NDI) components in order to
achieve accurate waypoint navigation. The decisions taken
by the agent are translated to target waypoints for the con-
troller. A set of controlled experiments are conducted to
observe change in behavior and performance of the cooper-
ative control architecture with change in number of UAVs.
A 2km×2km disaster area is used for all experiments. The
agents start out at random positions on the field with no
prior knowledge of ground stations except for the base sta-
tion. Three GSs are used of which 1 is stationary and con-
tinuously emitting, while the other 2 are intermittent with
one being mobile and the other, stationary. The initial posi-
tions of all GSs and the path for the mobile GS is as shown
in Figure 6. The mobile GS stops emitting wireless sig-
nals for very short durations. GS2 on the other hand, only
appears after 100s through the simulation and disappears
again at 400s, before reappearing at 600s. Every GS gen-
erates packet streams of 10 packets/second towards every
other GS, including the base station. Every experiment is
run for 15 minutes and repeated 5 times to ensure no anoma-
lous behavior.

The parameter varied between each experiment is number
of agents. We start with 5 agents so that there are atleast 2
agents remaining when 3 of them become proxy agents. We
increase the number of UAVs until 10. Figure 7(a) plots lavg

over time for one sample run of each experiment. We observe

Figure 7: (a) lavg, average latency of packets de-
livered in the last TW time units; (b) Q based on
Equation 1

Figure 8: Distribution of planes in the 4 states
through time for each experiment

the general tendency of latency to reduce with increase in
number of agents. The interesting behavior though is the
sudden spikes in latency at times when a new GS is found.
This can be attributed to the fact that the new PR agent
would have begun buffering packets from the new GS, but
stayed unable to forward them until another agent came
in contact with this PR agent. However, the adaptive state
transition mechanism ensures that RL agents are introduced
to minimize this latency. Within each experiment, we also
observe that latency generally decreases. This is a direct
consequence of trying to maximize Q in Equation 1, which is
plotted in Figure 7(b) and shown to be generally increasing
in value, albeit non-monotonically.

In Figure 8, we observe the relative distribution of agents
in different states through time. We see how SR agents
slowly become unnecessary with increase in number of agents
because HB agents can already provide a satisfactory search
effort. The consistently changing SR:HB:RL ratios we ob-
serve can be attributed to the effective adaptive state tran-
sition mechanism that modulates Δτ and Δν to maintain a
positive slope for Q.
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Figure 9: Global performance metrics (averaged
over multiple runs of each experiment)

The values of maximum tij from the global version of the
VM, are plotted in Figure 9. The longest any cell had to
wait for a re-visit is very low for all the experiments con-
sidering 3 of the agents would have been in PR state. The
observation that actually goes to show the effectiveness of
the search method laid out in section 3.1, is the time taken
to find all GSs (shown in Figure 9). The spread of a search
needs to be wide with minimal overlaps to have a low find
time. The results here go to show that the scoring mecha-
nism in Equation 2 achieves exactly this. Finally, a relatively
low average latency implies that the emergent network ar-
chitecture is a latency minimizing one. The time taken for
a UAV to fly from one GS to another is about 80s given
the 25ms−1 speed of UAVs. To achieve a latency of as low
as 20s on average (as shown in Figure 9), the distance a
packet could have traveled on a UAV is quarter the distance
between the GSs. The remaining distance would have had
be covered by wireless transmission. Using the set of be-
haviors described for an agent, it is possible to determine
that the agents would converge to a chain-relay architecture
for 2 points on the ground. However, it is hard to deter-
mine analytically whether this latency minimizing behavior
is extended to scenarios with more than 2 GSs. The experi-
ments have proven that the mechanism adopted by the HB
agents and RL agents, actually manages to keep the latency
reasonably low.

5. CONCLUSION
In this paper, we have presented a novel cooperative con-

trol mechanism to coordinate a swarm of UAVs and estab-
lish a wireless communications backbone connecting mul-
tiple ground stations. In particular, 4 states of operation
are introduced with an adaptive state transition mechanism.
The adaptive update rule modifies the behavior of the swarm
based on the current state, so as to minimize packet latency
and maximize cell visit frequency. The search operation is
designed in such a way that the same data structures can
be used for the relay operation as well, thus enabling a hy-
brid search and relay state. We also take into consideration
the bandwidth limitations of wireless links and present a
novel solution to acquire fairly accurate information from
neighboring agents despite using little bandwidth (specifi-
cally 3

8
th). To this end, a DCS-based state estimation pro-

cedure is proposed that utilizes knowledge of UAV dynam-
ics restrictions and the general behavior of an agent. Em-
pirical results have shown that the proposed mechanism is
not only able to perform both the search and relay opera-

tion efficiently but also adapt to changing situations such as
addition or loss of ground stations. The next step in this
project shall involve implementation of the proposed mech-
anism alongside the set of MP2028 autopilots that we use
to fly our Hangar 9 Alpha 60 UAVs. Further work on the
algorithm front would involve exploring the idea of making
each agent a reconfigurable formation of UAVs.
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