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ABSTRACT
Game-theoretic analyses of multi-agent systems typically as-
sume that all agents have full knowledge of everyone’s pos-
sible moves, information sets and utilities for each outcome.
Bayesian games relax this assumption by allowing agents to
have different “types,” representing different beliefs about
the game being played, and to have uncertainty over other
agents’ types. However, applications of Bayesian games al-
most universally assume that all agents share a common
prior distribution over everyone’s type. We argue, in concord
with certain economists, that such games fail to accurately
represent many situations. However, when the common
prior assumption is abandoned, several modeling challenges
arise, one of which is the emergence of complex belief hier-
archies. In these cases it is necessary to specify which parts
of other agents’ beliefs are relevant to an agent’s decision-
making (or need be known by that agent). We address this
issue by suggesting a concise way of representing Bayesian
games with uncommon priors. Our representation centers
around the concept of a block, which groups agents’ view of
(a) the game being played and (b) their posterior beliefs.
This allows us to construct the belief graph, a graphical
structure that allows agents’ knowledge of other agents’ be-
liefs to be carefully specified. Furthermore, when agents’
views of the world are represented by extensive form games,
our block structure places useful semantic constraints on
the extensive form trees. Our representation can be used
to naturally represent games with rich belief structures and
interesting predicted behavior.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
Systems

General Terms
Economics, Game Theory, Human Factors

Keywords
Bayesian games, common prior assumption, equilibrium, be-
lief hierarchy, formalism, knowledge requirements

Cite as: Representing Bayesian Games Without a Common Prior (Ex-
tended Abstract), Dimitrios Antos and Avi Pfeffer, Proc. of 9th Int.
Conf. on Autonomous Agents and Multiagent Systems (AA-
MAS 2010), van der Hoek, Kaminka, Lespérance, Luck and Sen (eds.),
May, 10–14, 2010, Toronto, Canada, pp.
Copyright c© 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

1. INTRODUCTION
Game theory has recently gained wide acceptance as an

analysis tool for multi-agent systems. The theory allows in-
telligent agents to reason strategically about their behavior,
as well as the behavior of other agents in the environment.
It also offers powerful solution concepts, like Nash equilib-
rium. Yet game theory seems to sometimes make excessive
assumptions about what agents in a system might know. For
instance, it usually assumes that the choices available to ev-
ery player, the set of outcomes of the game, and each player’s
utility for every such outcome, are all common knowledge.
Many situations in multi-agent systems are not adequately
described by such a framework. Other agents’ preferences
and utility functions cannot generally be known with any
certainty, while sometimes even the choices available to the
players, or the observations they receive, might not be fully
known. To an extent, Bayesian games (BGs) allow uncer-
tainty over these aspects to be formally captured and rea-
soned about. In a BG, each player has some private infor-
mation (e.g., her utility function or available moves), all of
which are signified by her “type;” moreover, every player is
assumed to know her type, but might be uncertain over other
players’ types. However, even BGs usually assume that the
joint distribution over players’ types is common knowledge.
This assumption is known as the common prior assumption
(CPA). In many practical situations, however, the use of
the CPA is unacceptable or misleading (for three thoughtful
treatises of the CPA, see [3], [1] and [6]).

This paper addresses two challenges. First, to make BGs
with uncommon priors easier to model, it presents a novel
technique for representing such games. This technique offers
several advantages: Defining a game is conceptually easy, as
the agents’ private information and beliefs are conveniently
grouped into blocks. Blocks may contain any representa-
tion for a game (e.g., extensive form). Moreover, the beliefs
across the various blocks can be used to construct the be-
lief graph, a structure that describes which parts of other
agents’ priors are relevant to the decision-making of a par-
ticular agent. The belief graph therefore reveals how much
an agent needs to know about others’ belief hierarchies to
compute a solution (equilibrium) to the game.

Second, the paper provides a middle road between the
two undesirable alternatives discussed above. Rather than
having to choose between the priors being common knowl-
edge or completely subjective, our formalism allows precise
control of which priors a player of a particular type knows
(or needs to know). It is possible in our formalism for one
type of a player to be more knowledgeable about other play-
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ers’ priors than another type. This is especially useful when
some types of players are “boundedly rational,” and hence
have limited knowledge of the game. Such a representational
capability is achieved through the belief graph.

(Note: A full version of the paper is available at the au-
thors’ website.)

2. THE REPRESENTATION
The main idea behind our formalism is that modeling a

game becomes simpler if the agents’ types and beliefs are
captured in a conceptually appealing and graphical way. We
therefore introduce the concept of a “block,” and define a
game as a collection of blocks B. A block b ∈ B consists
of two elements: (1) the model m(b) an agent has about
the world, and (2) the beliefs β(b) the agent assumes, and
believes others to assume, in that block. The agent’s model
is a complete game in normal or extensive form, with ev-
eryone’s information sets, available moves and utilities fully
specified. The beliefs in block b consist of n(n−1) probabil-
ity distributions over B, indexed pb

ij for all i, j ∈ N , i �= j,

where N is the set of agents (|N | = n). The distribution pb
ij

captures agent i’s beliefs over which block agent j might be
using. Also, let us denote by pb

ij(b
′) the probability assigned

to block b′ by the distribution pb
ij .

It is straightforward to map this construct onto a Bayesian
game. For each agent i, her typeset Ti is equivalent to the
set of blocks B. When agent i is of a particular type, say
b ∈ B, then agent i’s private information (utility, observa-
tions, etc.) are fully captured by the game m(b). Moreover,
i’s posterior distribution over the beliefs of all other agents
given her type, p(T−i = (tj)j �=i|Ti = b), is given by the
product

Q
j �=i pb

ij(tj) of the distributions in β(b). Notice how
in our formalism the modeling is performed in terms of the
posterior distributions pi(Tj |Ti = b) = pb

ij , not the priors
pi(T ). Given these posteriors, any prior that is consistent
with them will be essentially expressing the same game.

In each block b, the set of pure strategies for player i
contains all her pure strategies in the model m(b). For the
game as a whole, a pure strategy for i is then a choice of pure
strategy for every block b ∈ B. Moreover, if the models m(b)
are represented in extensive (tree) form, a pure strategy for
i for the whole game is a mapping from all information sets
of all trees m(b) to an action available to her in every such
information set. Similarly, mixed strategies are probability
distributions over pure strategies. Finally, a strategy profile
σ denotes, for every agent i and every type b ∈ B, a choice
of mixed (or behavioral) strategy σi,b .

The main solution concept for a Bayesian game is a Bayes-
Nash equilibrium. A strategy profile σ is a Bayes-Nash equi-
librium if, for all agents i and for all types b, the strategy
σi,b maximizes i’s expected utility against strategies σj,b′ ,
where each is weighted according to the posterior distribu-
tion pb

ij(b
′). If the CPA is adopted, all agents agree on the

game being played and therefore the equilibrium represents
an optimal solution to it. Replacing the common prior with
commonly known, differing priors maintains the agents’ be-
lief that this equilibrium is an optimal solution, but each of
them thinks that only her utility is maximized in expectation
under the equilibrium. Others’ utilities are not necessarily
maximized; they only think, using their erroneous priors,
that their utilities are maximized. Hence equilibria are in a
sense subjective solutions. On the other hand, if priors are

also private, then it need not necessarily hold that agents
even agree on what the equilibria of the game are. If the
prior of agent i is very different from the prior agentj assumes
for i, then clearly the equilibria of the game, as computed
by the two agents, might be completely unrelated.

3. THE BELIEF GRAPH
One useful property of our formalism is that it allows for

belief dependencies to be uncovered easily. In particular, it
can help a modeler answer the question“Which of the beliefs
of other agents are relevant to agent i’s decision-making?”
This is performed by constructing the game’s belief graph.
The belief graph is constructed as follows: Its nodes are the
set of blocks B. Then, we add an edge (b, b′) and we label it
“i.j” if pb

ij(b
′) > 0. In other words, the edge (b, b′) denotes

that agent i in block b assumes that j might be using block
b′ as his model of the world. The destination block b′ may
be the same as the source b (self-edge). Next, we define a
path π = (b1, . . . , bm) such that, for every node bk, where k ∈
[1, m−1], there is an edge (bk, bk+1) and, for each consecutive
edge pair {(bk, bk+1), (bk+1, bk+2)}, where k ∈ [1, m−2], the
label of the first edge is “i.j” and the label of the second
is “j.k” for some agents i, j and k. (A path may very well
contain self-edges.) We say that a block-agent pair (b′, j) is
reachable from pair (b, i) if there is a path from b to b′ in
which the first agent is i and the last agent is j. The set of
reachable blocks from (b, i) is denoted by R(b, i). The belief
graph captures which distributions an agent needs to take
into account in its decision-making. Only those posterior

distributions pb′′′
j , where (b′′′, l) ∈ R(b, i), are relevant to

agent i’s decision-making, when that agent is in block b.

4. RELATED WORK
Other representations for games have been proposed as a

solution to representational and conceptual aspects of game-
theoretic analysis. Some of the most relevant are games
of awareness [2], networks of influence diagrams [1], and I-
POMDPs [5].
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