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ABSTRACT

The trend towards renewable, decentralized, and highly fluc-
tuating energy suppliers (e.g. photovoltaic, wind power, CHP)
introduces a tremendous burden on the stability of future
power grids. By adding sophisticated ICT and intelligent
devices, various Smart Grid initiatives work on concepts for
intelligent power meters, peak load reductions, efficient bal-
ancing mechanisms, etc. As in the Smart Grid scenario data
is inherently distributed over different, often non-cooperative
parties, mechanisms for efficient coordination of the suppli-
ers, consumers and intermediators is required in order to
ensure global functioning of the power grid. In this paper,
a highly flexible market platform is introduced for coordi-
nating self-interested energy agents representing power sup-
pliers, customers and prosumers. These energy agents im-
plement a generic bidding strategy that can be governed
by local policies. These policies declaratively represent user
preferences or constraints of the devices controlled by the
agent. Efficient coordination between the agents is realized
through a market mechanism that incentivizes the agents to
reveal their policies truthfully to the market. By knowing
the agent’s policies, an efficient solution for the overall sys-
tem can be determined. As proof of concept implementation
the market platform D’ACCORD is presented that supports
various market structures ranging from a single local energy
exchange to a hierarchical energy market structure (e.g. as
proposed in [10]).
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1. INTRODUCTION

In upcoming years, distribution networks (low and medium
voltage power grids) in most countries in the world will
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be connected to an increasing number of decentralized and
often fluctuating energy suppliers like wind power, photo-
voltaic and CHPs (Combined Heat and Power). In addition,
the grid will face a highly volatile and hardly predictable
demand as more and more machines and vehicles will be
powered by electrical energy (e.g. eCars). In order to en-
sure the efficiency, reliability and security of future power
supply, the Smart Grid adds an infrastructure for two-way
communication among the connected components to the tra-
ditional power grid. By facilitating real-time communication
between the grid components, the Smart Grid integrates
large, centralized generation units and small, decentralized
ones, along with consumers, into an overall structure that
can be used for balancing the grid. As information such as
load predictions, marginal prices, etc. is distributed over the
grid components and a central fully informed entity is not
available due to natural information asymmetries and self-
ish participants (suppliers/consumers), today’s central ap-
proaches to network control are either highly inefficient or
even not applicable any more, e.g. direct control of electrical
appliances in a private household through the distribution
network provider will not be acceptable for the end user.

Efficient grid control thus requires sophisticated coordina-
tion mechanism involving end consumers that actively par-
ticipate in grid control and therefore make a contribution to
grid stability and climate protection. Due to the decentral-
ized nature of the coordination problem, agent technologies
seem to provide a useful technological toolbox to tackle the
challenges that arise with the upcoming Smart Grid. In
this paper, we particularly investigate the applicability of
market-based coordination of supply and demand. In many
domains markets have proven to be a suitable mechanism
for coordinating selfish agents [6, 19] and agent-based en-
ergy markets might have substantial impact on improving
the efficiency and stability of the future power grid [24, 10,
21].

However, the practical applicability of agent-based energy
markets is obstructed by the complexity and diversity of the
individual strategies required for participating in the mar-
ket. Each appliance and generator has different features and
parameters, each consumer and provider has different pref-
erences about how to control the devices, various different
context and environment information has to be considered,
complex forecasting methods are required, etc. All these
aspects have to be considered when specifying an agent’s
bidding strategy. As a special implementation for each strat-
egy has proven to be highly inefficient, this paper presents a
generic strategy framework that supports developers to spec-
ify agent strategies in a highly flexible way. It can be used
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Figure 1: Agent Strategy Framework

to implement heterogenous autonomous bidding agents that
are able to interact with different market mechanisms in var-
ious domains. The architecture leverages the idea of policies
[8] for realizing a high-degree of autonomy while making sure
that the agents behave within a predefined action space. As
these policies are specified as declarative descriptions they
can be added and removed at runtime which allows to adapt
the strategies dynamically. For example, in the energy mar-
ket scenario new appliances in the household may come with
their policies how they can be regulated. This policies can
be used by the energy trading agent to adapt its strategy to
the new setting.

The paper is structured as follows. In Section 2, we first
introduce the agent bidding process and the generic agent
strategy framework. Subsequently, in Section 3 we describe
the market mechanism for balancing energy supply and de-
mand. A realization of the overall architecture including
market as well as agent implementation is outlined in Sec-
tion 4. We review related work in Section 5 and finally
conclude in Section 6 with a short outlook.

2. AGENT ARCHITECTURE

In this section, we introduce the agent architecture for
automated trading on the energy market. The automation
involves autonomous acquisition, storage and processing of
information by the agent which is also displayed by the steps
perception, cognition and action in Figure 1. As also de-
picted in the figure, these steps can be assigned to the three
layers of agent strategy design as defined in [22]. In the
following we discuss each layer (step) in more detail.

2.1 Information Layer

The information layer contains information which an agent
i € T has gathered from the market, the environment or its
own private information at time tx with k& € N. Much in
line with [22], we can define the market and agent state as
follows.

Definition 1 (Market State) A market state captures the
public information that is available at a certain point in time
ti. Is is defined via a vector Oy (ti) = (z, By, , prices,, qi,,)
where x represents the trading object, price, the clearing
price and qy, the overall traded quantity at time tr, and By,
the orders to buy or sell energy which are present in the or-
der book at time ti.' The expressivity of a bid b is defined
through the bidding language in the market (c.f. Section 3.1).

'Note that full disclosure of By, is only available for markets
with public order book. Markets with sealed bids usually
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Given the set of publicly available information on the mar-
ket, the agents internal state containing private information
such as preferences is defined below.

Definition 2 (Agent State) An agenti’s state at time tj,
is defined by the vector 0;(tx) (ids, ity , Visty , COMPi )
where id; specifies whether the agent acts as buyer or seller,
Gi,t, defines the quantity of energy required (or provided) by
the agent at time ti, vi¢, the reservation price or marginal
costs of an agent, and comp;(ti) the computational resources
available at the given point in time.

In addition to the Market and Agent State there might be
additional information necessary dependent on the applica-
tion scenario. For example, in the Smart Grid scenario the
state of the power grid could be relevant for determining
the bidding strategy. As such additional information is not
yet perceived by the agent or market, we add an additional
Environment State which generically captures application
specific information.

Definition 3 (Environment State) The agent’s environ-
ment state g (tr) captures the values of a set of application-
specific variables (el,tw...,en,tk) over time ti. The vari-
ables are not part of the agent itself nor can they be observed
on the market directly. They can be rather perceived by the
agent when observing its direct environment.

Typically, information about environment states is perceived
via sensors (e.g. measurement of frequency or voltage in a
electrical grid) and is aggregated to a higher level of abstrac-
tion that can be interpreted automatically by the agents. In
the context of Smart Grid initiatives several innovative tools
that can be utilized within the agent reasoning process are
proposed to capture the grid status ranging from smart me-
ters to advanced power electronics.

Example

First, we have to adapt the information layer to the smart
grid market scenario. This requires to adapt the market
state to the market mechanism Ox(tx) = (2, By, prices,,
qt,, ) defined in Section 3.2. As electricity is a highly homoge-
nous good, the trading object x represents simply electricity
according to the IEC Norm 60038:1983 with a predefined
set of quality criteria, such as frequency between 50hz and a
voltage level of 230V with a tolerance of 10V for example.
As the market mechanism does not reveal the bids of other
participants we assume order book B = @. The prices, is a
tuple (max(a', b"), min(a'™", b")) representing the bid/ask-
spread in the market and g:, is the overall amount of elec-
tricity traded at time t; measured in kW h.

Second, the agent’s private state 0;(tx) = (idi, ¢i,tp,, Vit
comp; ., ) is adapted as follows: the agent is either a buyer,
seller or prosumer (buyer as well as seller), i.e. id; = {seller,
buyer, prosumer}, ¢, represent the maximum amount of
electricity that can be provided/consumed by agent ¢ at
time ¢k, vi, is the maXimum/minimum valuation of a sin-
gle kKW h of electricity, and comp;,, is currently not used
within the smart grid scenario.

Third, the environment state observable by all agents com-
prises information about the status of the electricity network
that can be measured via sensors, such as frequency ey, ,

publish only the highest bid and ask. We thus define the
market state as pa(tn) = (x, asky,, bidy, , prices, , g, )-




voltage ey, , or current e, and time ¢y, . Consequently,
0i(tr) = (€f,ty» €uty» €erty, ). In addition, specific sensor data
might be available to some of the agents which could include
the current temperature within a fridge, the current load of
a manufacturing machine, etc.

2.2 Knowledge Layer

At this layer previously defined information is combined
with user or appliance policies given at design/configuration
time. These polices capture general rules that define admis-
sible or forbidden actions, respectively. They thereby con-
strain the strategy space of an agent in the bidding process.
In the following definition, we adopt a rather general ap-
proach for defining the strategy space S of a market agent.

Definition 4 (Strategy Space) The strategy space S; avail-

able to an agent i at time ty is defined by a cartesian prod-
uct Si(ty) = M x O;(tx) X A; covering the agent i’s action
space A;, the possible states ©;(tr) and the market mecha-
nism descriptions M. Consequently, a strategy s € S; avail-
able to agent i defines which action a € A should be exe-
cuted for a given market mechanism m € M in a given state
(0:(tk), Or(tr), O (tr)) € Oiltr).

The description of a market mechanism is particularly im-
portant if more than one mechanism (e.g. one-sided mech-
anisms like the english or dutch auctions, or double auc-
tions) should be supported. There are several approaches
how market processes can be formalized and described [12,
1, 13]. For example, the Game Description Language GDL
[13] formalizes games — which are also general formulation of
auction protocols — using Datalog and thereby also formally
describes the action space for the agents that can be reused
in our strategy definition.

By now we have defined the set of possible agent bid-
ding strategies S;. However, not all of these strategies are
equally desirable or even allowed. Therefore, we allow the
specification of policies which define whether a certain ac-
tion is allowed for a market mechanism in a given state or
not. In general, policies can be seen as a set of constraints
that have to be met by a solution to a certain problem. In
literature, solving a problem specified by a set of constraints
is denoted as constraint satisfaction problems (CSP) [4]. A
CSP is described by a set of attribute identifiers L — each
representing one aspect of the problem — and the domains
of these attributes D. As our goal is to specify constraints
over the strategy space we assume D = S.

Definition 5 (Constraint Satisfaction Problem) A CSP

within the scope of this paper is a tuple (L, D, ®), where L
represents the involved attributes of the problem, D the do-
mains of these attributes and ® a set of constraints that de-
fines whether a given configuration ¢ € C = D1 X ......xX D,
is allowed or not. A constraint ¢ € ® consists of a scope
and a relation, i.e. ¢ = (scp,rel). The scope scp of a con-
straint is a k-tuple of attribute labels (I1,...,lx) € LT and
the relation rel of a constraint the set of k-tuples defining
the allowed attribute values rel C D1 X ---x Dy for the given
scope.? As enumeration of all possible relations is often not
feasible (e.g. for infinite domains) we allow relations to be
defined via predicates py : D1 X -+ X Dy, — rely.

2Note that the definition assumes that the constraint is de-
fined on the first k attributes.
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A strategy s € S is evaluated with respect to a k-ary con-

straint with scpg = (l1,..., 1) and rely = {(d7¢,. .., d5s"),
o ’{Zl, e dzgl)} as defined below:

1 iff 35 € [1,q],Vi € [1, k] : match(dr¢, dS) = true
o - [L.q], i € [1,4] - mateh(df", )

0 else

(1)
The Equation 1 is evaluated to 1 for a given constraint ¢ and
a given strategy s if there is a tuple in the relation rely, for
which each attribute value df;l matches the corresponding
attribute value d; in the configuration. The predicate match
is used to compare two attribute values. In the most simple
case, where attribute values represent “flat” datatypes, such
as integers or strings, this could be realized by a simple
syntactic comparison, e.g. match(d?fl,df) = true iff d;fl =
d;.
In order to judge a strategy s € S as admissible, Equation
1 has to hold for all constraints ¢ € ®. This is ensured by
the following formula:

Ga(s) =[] Gs(s)

pedP

(2)

Based on the evaluation of constraints we are able to de-
fine the set of acceptable strategies S; C S; for agent i by
removing the strategies that violate at least one constraint:

S ={s € Si|Ga(s) = 1} (3)

The set S; is therefore the strategy space that has to be
considered in the behavioral layer where the best strategy is
selected and executed.

Example

In the following, we give specifically for the Smart Grid sce-
nario some example polices that define how an energy agent
should behave. Typically, such policies are defined either by
the user and specify her/his preferences or are provided by
the appliances/generator vendors and specify the devices’
working modes.

Demand Profile: A customer (or prosumer) has to be able
to specify his preferences with respect to the electricity de-
mand. Typically, the overall required amount of electricity
for a single agent qffézm” is split in an amount aqf’}zm” es-
sentially required by agent i and the sheddable load (1 —
a)ngirall that is negotiable according to the market price.
In this context, a € [0, 1] is the share of inflexible demand.
Thus, the minimal required load can be expressed by con-

straining g; ¢, (part of the agent state) using the constraint
verall

¢minQ = (Qi,tkﬂ"elminQ) with TelminQ = {Q\q > aqg,tk
Appliances Specification: As the share of inflexible and
negotiable energy depends on the appliances of the customer
(i.e. qfszmu = ff:l + qff:Q +...), the demand profile can
be constructed from individual policies coming with the ap-
pliances. This also means that ¢ming could also be defined
for individual appliances separately. In addition, policies
can regulate whether an appliance such as a fridge, indus-
trial manufacturing machine, etc. can either (i) reduce total
load in time t; to some extent or (7) shift load from time ¢y
with high energy prices to a later point in time tx4+. where
energy prices are cheaper (i.e. load shedding). An example
for a constraint defining that a certain share of load can
be shifted within a certain timeframe ¢ is given the follow-

. . . fridge . o
ng: qbshedding = ({qi,tk }arelshedding) with T'elshedding =



{4t Zte[ts,tk] qit > qif”dge At < ts + €} stating that ag-
gregated electricity within the period [ts,¢s + €] has to be
above a given threshold ¢/"**¢. Note that this policy only
defines what load shedding strategies can be implemented
with a given device, not how an agent determines the share
of energy that is finally shifted. The latter requires complex
preference orderings and sophisticated energy price forecast-
ing methods [18, 9]. As discussed in [8, 11], the presented
policy framework is able to express such more sophisticated
strategies using the concept of utility function policies.

Pricing: While for the inflexible load an unlimited price is
offered by the customer, the maximal price for the sheddable
load depends on the customer’s attitude. A simple strategy
to define the extend to which electricity is bought above
the ag; k,-level can be implemented using historical market
prices. Let n; € R be the price elasticity of a customer with
i = (Aqi/q:)/(Api/ps). A highly negative n; represents a
”savaholic” whereas a 7); near zero represents a rather conve-
nient customer with a low responsiveness w.r.t. the market
price.> Therefore, we can define a constraint on the cus-
tomer’s reservation price ¢mawzprice = ({Vi,ty }, r€lmazPrice)
with relmazprice = {v € R|v < n;v;,4, } using price elasticity
and the valuation.

Analogously to the policies on customer side, policies for
electricity producers could be defined. For example, each
type of energy plant such as solar plants, wind turbines, or
combined heat and power plants come with common policy
sets that regulate whether /how production schedules can be
changed dynamically, define the marginal costs, etc. In ad-
dition, policies may specify regulatory constraints important
for the security of energy supplies or antitrust guidelines.

As policy specifications are purely declarative, policies
from different appliances ¢ can be combined to policy sets
® which are evaluated using Equation 2 leading to the set
of possible strategies for a concrete setting. Note that this
is a huge advantage of the framework as appliances are con-
stantly added or removed and this should be supported in a
plug’'n’play fashion.

2.3 Behavioral Layer

The behavioral layer is responsible for deciding on the best
action to take at each point in time. In order to select an
action, we have to rank the strategies according to prefer-
ences of the agent. This can be done by defining a utility
function u; : S — RT over the relevant strategy space S.
Then the best strategy is determined by solving the follow-
ing maximization problem.

s = argmax u;(s)
ses
Given the best strategy, we execute the action a’ contained
in the tuple s which typically involves sending one or more
bids to the market. Note that the utility function and strat-
egy space typically depends on the application scenario as
well as market mechanism used. In this context, the avail-
able set of actions A is determined by the bidding language
of the market mechanism used. For example, in an one-shot
auction only one bid can be sent to the mechanism while
in sequential auction protocols more complex actions might
be involved. Another important application-dependency is
the selection of the best price that should be sent to the

3For empirical findings on the price elasticities of real energy
consumers refer to [20, 21].
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Figure 2: Bidding process according to strategy
framework. Note that for sake of readability time-
dependency is omitted in the figure.

market. While for incentive compatible mechanisms bidding
the real reservation price v; ¢, is the dominant equilibrium
strategy for all agents (independent of the strategy of the
other agents), for other market mechanisms this is not the
case as strategic over- or underbidding might increase the
expected return for individual agents. Due to this scenario-
dependency we outline the application of the bidding strat-
egy framework using the concrete Smart Grid scenario in
Section 3.

Example

As we rely on an incentive compatible market mechanism
(c.f. Section 3), the behavior layer can be much simplified.
In this special case, the action space is simply A = R x
R where a tuple represents a bid b = (v,q) defining the
maximal valuation of agent v and the required quantity gq.
As the dominant — and thus v maximizing — strategy of a
rational agent is to reveal its true valuation and maximal
quantity, the only rational action is to choose strategy s € S
with minimal deviation from v; ¢, and g¢;¢, defined in 0;.

2.4 Summary

Before giving some insights into the implementation of the
strategy framework we shortly summarize the agent reason-
ing process as shown in Figure 2. In the first step, market,
environment and agent state information are perceived and
passed to the cognition step. Here the information is in-
terpreted using the agent’s policies. This leads to a set of
acceptable strategies that are evaluated using a given util-
ity function. The action contained in the utility maximiz-
ing strategy is finally executed and the corresponding bid(s)
is/are sent to the market.

3. MARKET MECHANISM

In order to fully specify a market mechanism, we have to
define two aspects: a bidding language for communicating
the agents’ preferences to the market and the mechanism it-
self consisting of the allocation function X and pricing func-
tion P.

3.1 Bidding language



Generally, a bidding language defines the preferences that
an agent wants to reveal to the market, i.e. bidding is about
reporting the preference function v;. When designing a bid-
ding language, there is a trade-off between the expressivity
of the language, the privacy loss of users and the complexity
of the market mechanism. For example, a bidding language
could support expressing how valuation changes depending
on time, on available units, etc. For the energy scenario we
therefore decided to use a quite restricted bidding language.
This has the advantages that we are able to implement a
quite efficient mechanism and the agents do not have to re-
veal too much private data to the mechanism. However, note
that this could lead to less efficient markets if dependencies
between bids cannot be compensated with local agent intel-
ligence (e.g. smart splitting of originally complex bids into
simple bids). A general overview of bidding language with
different expressivity can be found in [16].

Based on these considerations, we define the set of requests
to buy energy B and the set of offers to sell energy B°
where BY N B® = () and BY U B" = B holds. A bid b; € B
represents a tuple b = (v;,¢;) where v; defines the reserva-
tion price for a single unit of the good z (i.e. maximal price
for requests and minimal prices for offers) and ¢; : X — R*
defines how many units of the good are desired/provided.
As for the good “energy” it is reasonable to assume divisi-
bility, the overall reservation price is given by v;(z)q:(z) or
simply v;¢;.

3.2 Mechanism Design

Having defined how agents submit their bids and asks
to the market, we are able to define the choice and pay-
ment functions. As we have multiple producer and consumer
agents in the energy market, our goal in this section is to
design a two-sided market mechanism — often called double
auction or exchange. In addition, for energy markets we
can assume divisible bids (i.e. partial execution of bids), a
call market (i.e. accumulation of bids over a period of time),
buy-side and sell-side aggregation of bids, and risk-neutral
agents with quasi-linear preferences.

Given the set of requests B® and offers BY, the winner
determination problem is defined as an allocation function
that maximizes the social welfare in the market. The corre-
sponding linear program is defined as follows.

max ST (i) (4)
* bi€BR b;eBO
s.t. Z qizi; < ¢ vb; € BY (5)
b;eBO
S o<1 vb; € B (6)
b;eBR
0<z; <1 vb; € BR Wb, € B® (7)

Unfortunately, defining the payment function (and the mech-
anism as a whole) in a way that the resulting double auc-
tion is efficient, incentive compatible and budget balanced
is generally impossible as stated by the seminal impossibil-
ity theorem of Myerson and Satterthwaite [15]. However,
it is possible to design a mechanism that meets two of the
three properties. In literature, several different variants have
been proposed. Using the well-known Vickrey-Clark-Groves
(VCG) mechanism we get an efficient and incentive compat-
ible auction, however, budget-balance cannot be guaranteed
any more. To calculate prices the offers B® have to be ar-
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ranged in descending order (b1,...,b;,...,b,) and requests
B%in ascending order (a1, ..., i, ..., anm) w.r.t. their prices.
We then determine the index [ where v} < v with v{ in b;
and v} in a;. Given this index [ we set the price for buyers to
max(a',b' ™) and for sellers min(a'**, b'). Other approaches
which implement a budget balanced mechanism are — for in-
stance — presented in [14].

D’ACCORD - AN AGENT-BASED MAR-

KET PLATFORM

After introducing the conceptual design of the strategy
framework, we present the implementation of the framework
in this section. In the next section, we give a brief overview
of the Market Platform D’ACCORD which also provides
a plug-in mechanism and communication infrastructure for
agents representing energy consumers and providers. The
plugin mechanism is subsequently used in Section 4.2 to im-
plement the bidding process described in Section 2.

4.

4.1 Overview

D’ACCORD is a lightweight distributed negotiation plat-
form providing a .NET-based communication and negoti-
ation infrastructure to software agents that act as partic-
ipants in negotiations. The agents take an active part in
negotiations by following the overall interaction protocol of
a market mechanism according to their own local negotia-
tion strategies.

The platform supports arbitrary complex negotiation pro-
tocols controlling the overall negotiation process by speci-
fying policies for the initiation and termination of negotia-
tions, participation, submission and if applicable withdrawal
of bids. The protocol may include inter alia, known au-
tomated negotiation protocols comprising one-to-one (bar-
gaining), one-to-many (e.g. Open-outcry or English auction)
and many-to-many relationship such as continuous double
auctions [1]. The platform integrates different technologies
for computing the negotiation outcomes depending on the
requirements of the particular market mechanism. Cur-
rently, D’ACCORD supports rule-based execution of config-
urable negotiation protocols as well as linear optimization
for price formation. Figure 3 shows the generic deployment
of D’ACCORD runtime nodes which are used to build a
flexible market structure.

A running D’ACCORD system comprises at least a single
runtime node. However, an arbitrary number of nodes can
be supported. The different nodes discover each other using
the Peer Name Resolution Protocol (PNRP) or via a central
resolver service. Evaluations have shown that for medium-
sized distribution networks with about 500 agents and mar-
ket clearing intervals of 5 seconds a single D’ACCORD node
is sufficient. More complex network structures including hi-
erarchical structures — as used by the PowerMatcher system
[10] — can be supported.

As shown in Figure 3 agents can either be deployed di-
rectly on one of the runtime nodes as .NET dynamic link
libraries (plug-in concept) and / or as Web services that
implement the interaction and negotiation interface of the
D’ACCORD framework. Agents can then participate in
one or multiple negotiations that are each dynamically as-
serted to a runtime node in the D’ACCORD mesh. So-
called negotiation hosts manage the context (state space) of
one or multiple negotiations and supervise the correct ap-
plication of the negotiation protocols in a distributed way.
The deployment is highly scalable in terms of the number
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Figure 4: Overview of Agent Implementation.

of D’ACCORD runtime nodes, the number of directly de-
ployed agents and the number of Web service agents that
interact with a D’ACCORD runtime node by Web service
calls.

4.2 Energy Agent Realization

In this section we present an implementation of the strat-
egy framework presented in Section 2 within a D’ACCORD
agent. Figure 4 shows the main component which are de-
scribed in the following.

Bidding Strategy: This is the main component of the
agent and implements the agent reasoning steps perception,
cognition and action as outlined in Section 2. Perception
at time t; involves the collection of market state informa-
tion O (tr), agent state information 6;(¢,) and environment
state information ¢ (ty). Furthermore, history state infor-
mation can be accessed via the History Logger. The state
information is then interpreted with respect to the policies ®
acquired from the user model or directly from appliances or
generators and the admissible strategies are ranked with the
utility function u;. The evaluation can be done using stan-
dard constraint or linear programming solvers. The best bid
is sent to the market using the D’ACCORD Bidding Inter-
face. Once an agreement is received the appropriate control

1694

User Model: On the one hand, the User Model represents
the user interface where preferences of the user can be speci-
fied. The preferences are expressed via polices ¢ and param-
eters of the utility function w;. On the other hand, the User
Model allows the user to enter electrical devices that cannot
be directly accessed (monitored or controlled) by the agent.
For example, a user may specify that the agent controls a
household with 4 persons. The user may also specify a cer-
tain profile (e.g. savoholic vs. comfort profile) that indicates
her price elasticity. As long as no smart meter is installed
the User Model initializes a device "household” with a stan-
dard load profile scaled up to 4 persons.

History Logger: The History Logger is used to store all
relevant state information for each point in time tg.

Device: In this context, a Device represents a (single or
aggregated) consumer or producer with metering and of-
ten also automated control functionality (e.g. switch off/on,
regulate intensity).

Dewvice Driver: The Device Driver is a layer of abstraction
between the agent and the hardware devices. Unfortunately,
up to now no consensus on a standard communication inter-
face with the different devices has been established within
the Smart Grid initiatives. Currently, our solution strives to
support at least a part of the IEC 61850 standard with some
proprietary extensions. However, depending on the devices
that should be connected other communication stacks might
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Figure 5: Simplified sketch of the device model.

be required.

Device Model: The Device Model manages all informa-
tion the agent has about the connected hardware devices.
The Device Model allows the Bidding Strategy components
to query status information about the device such as max-
imum/current capacity or current load/production. More-
over, the device model also provides functions for produc-
tion/consumption forecasting, e.g., for photovoltaic or wind
plants based on weather forecasts. Figure 5 sketches parts
of the device model. A certain device is represented by a
class implementing either Consumer or Energy Plant class
(or both in case of a prosumer such as a battery). The model
provides methods for deriving aggregated information about
all devices, about all Loads, about all Consumers, and indi-
vidual information about each single device. This is required
as user policies may be specified at all levels of abstraction,
i.e. policies may regulate parameters of the overall system
as well as parameters of a single device.

External Services: The agent architecture has to be able
to incorporate external services within the bidding process
such as weather forecasting services, services for timeseries
analysis, or even external providers of entire strategies for
buying/selling energy. In this context, we envision a Web
shop that allows energy buyers and consumers to select their
preferred services and to combine them easily to implement
their own innovative bidding strategies. However, up to now
we statically incorporate only a weather forecasting service
which is used for predicting future energy production sched-
ules.

5. RELATED WORK

As the focus of this paper is the introduction of a highly
flexible strategy framework that can be easily adapted to a
wide range of different devices in a plug’n’play fashion, we
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omit a discussion of simulation results and a performance
evaluation of our market-based system at this point. There
is a wide range of related work (e.g. [24, 10, 21]) which
has shown that — given the right agent strategies — market-
based balancing of energy supply and demand could reduce
peak loads and increase the efficiency of the power grid com-
pared to traditional power management systems. However,
the performance depends purely on the setting (e.g. the de-
vices connected to the grid) and the chosen strategies. Our
approach is orthogonal in that we do not discuss the de-
sign of individual strategies but provide the framework and
infrastructure for expressing the strategies and for automat-
ically applying them to monitor and control a wide range
of devices. In the context of designing an infrastructure for
market-based energy allocation two major streams of work
can be identified: () On the one hand there are some widely
used agent platforms such as JADE (Java Agent DEvelop-
ment Framework) [7] or Cougar [3]. While they provide
some basic coordination (including some market) mecha-
nisms such as negotiation and auction protocols, they do not
support the agent developers in specifying domain-specific
agent strategies for participating in the coordination pro-
cess. This makes the development of agents often very cum-
bersome and complicated since for each resource and mar-
ket mechanism different strategies are needed and no design
time support for strategy development is provided. (i) On
the other hand, there are a lot of powerful systems imple-
menting (often domain specific) marketplaces, which also
provide some means for developing the corresponding agent
strategies. The Trading Agent Competition [23] provides a
testbed for non-cooperative agent strategies. Commercially
highly relevant application examples can be found within
the financial domain, where the area of algorithmic trad-
ing has become increasingly important over the last years
[17]. However, these strategies are specific for a concrete
market mechanism and domain. Therefore, they are not



geared towards highly configurable strategies that provide
the flexibility to add resources at runtime which is a major
requirement in the Smart Grid domain. For example, when
developing an agent-based energy market, agents represent-
ing households must adapt their strategy in a plug'n’play
fashion when adding or removing appliances in the house-
hold. While there is work that addresses agent strategy
design using more general setting [5, 22|, these approaches
still lack the flexibility and configurability required to sup-
port highly configurable strategies.

6. CONCLUSION AND OUTLOOK

In this paper, we have addressed the complexity prob-
lem that obstructs the application of agent-based markets
in the Smart Grid domain. By introducing a generic strat-
egy framework that can be governed by declarative policies,
the complexity of defining user- and device-specific bidding
strategies can be reduced. The reduction of complexity is
possible since energy agents implement the same generic
framework which can be configured dynamically with poli-
cies. As these policies can be provided by device manufac-
turers, Plug’n’Play for new devices becomes possible.

In the future, we are going to extend our market platform
in two directions: First, we are going to add functionality for
considering network constraints and transmission losses in
the market. This is realized by implementing a nodal pricing
approach where the location of a consumer/generator and
the real power flow in the grid is explicitly taken into account
when determining the allocation and prices. Second, we will
extend the agent implementation with more sophisticated
methods for strategy design. This involves the development
of tools for an easy integration and combination of external
services. In order to evaluate our approach more closely
we support the idea of an Energy-TAC game as proposed
in [2]. In this context, an interesting question is whether
all required strategy can be expressed with our policy-based
strategy framework.
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