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ABSTRACT
Performing everyday manipulation tasks successfully depends on
the ability of autonomous robots to appropriately account for the
physical behavior of task-related objects. Meaning that robots have
to predict and consider the physical effects of their possible actions
to take.

In this work we investigate a simulation-based approach to naive
physics temporal projection in the context of autonomous robot ev-
eryday manipulation. We identify the abstractions underlying typi-
cal first-order axiomatizations as the key obstacles for making valid
naive physics predictions. We propose that temporal projection for
naive physics problems should not be performed based on abstrac-
tions but rather based on detailed physical simulations. This idea is
realized as a temporal projection system for autonomous manipula-
tion robots that translates naive physics problems into parametrized
physical simulation tasks, that logs the data structures and states
traversed in simulation, and translates the logged data back into
symbolic time-interval-based first-order representations. Within this
paper, we describe the concept and implementation of the tempo-
ral projection system and present the example of an egg-cracking
robot for demonstrating its feasibility.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Knowledge Representation Formalisms
and Methods

General Terms
Design, Experimentation

Keywords
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1 Introduction
Accomplishing everyday manipulation tasks successfully requires
robots to predict the consequences of actions before committing to
them: the robot has to decide where and how hard to hit an egg in
order to open it without damaging its content (see Figure 1). Or, it
should reason about whether it is necessary to hold a cup upright to
avoid spilling the coffee inside. To make such decisions the robot
has to predict the changes of the physical state caused by its actions.

To compute the consequences of picking up a cup of coffee too
rapidly we can model the setting as a fluid dynamics problem and
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Figure 1: Robot TUM-Rosie manipulates egg in simulation.

solve the respective equations for the variables of interest. This
way the robot could compute the fluid flow caused by the robot
action and derivated variables. However, these computations do not
readily provide the information needed to choose the appropriate
action parametrization. It is more informative to predict whether or
not a given action parametrization will cause coffee to be spilled.
Abstracting the reality into a small qualitative state space, such as
coffee spilled or not spilled will also cut down the search space for
action selection and thereby make the search more tractable.

Researchers in Artificial Intelligence have investigated approaches
to represent and reason about such knowledge under the notion of
naive physics and commonsense reasoning. The attempt to for-
mulate and automate this knowledge using first-order logic has re-
ceived most of the attention so far. Researchers in qualitative rea-
soning [18] have formalized various physics problems. The objec-
tives of this approach are most comprehensively stated in Hayes’s
Naive Physics Manifesto [8]. More recently, the Common Sense
Problem Page [14] lists challenge problems. Most relevant are at-
tempts to so-called mid-size axiomatizations [15].

The basic idea is to formalize the laws of physics and situations
as logical axioms in an abstract and qualitative language and then
deduce the predictions of what will happen from these axioma-
tizations. Unfortunately, the formalizations tend to become very
lengthy and often it is difficult to make the right predictions based
on axiomatizations of qualitative physics. One of the main rea-
sons is that logical axiomatizations often quantify over the values
of state variables or abstract away from some state variables assum-
ing that they are not relevant for valid predictions. However, when
considering actions such as cracking an egg the effects of actions
can vary largely with small changes of action parametrizations. The
effects depend on where exactly and how hard the egg is hit, how
strong and where it is held, and on the exact state of the egg’s yolk,
etc. Without exactly knowing the values of all state variables it
might be impossible to predict the action effects.

Indications of these difficulties are the number and the restric-
tions of action logics that try to capture phenomena such as con-
current actions, the size of axiomatizations of simple physical phe-
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nomena for problems on the Common Sense Problem Page, or, the
impossibility to perform certain predictions in a qualitative repre-
sentations, such as predicting whether a robot will see a certain ob-
ject when it navigates through the environment while at the same
time turning its camera.

These problems do not occur in physics simulations where physics
engines (such as ODE1 or Bullet2) can simulate such phenomena
without problems because they apply accurate dynamics models at
a fine level of granularity.
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Figure 2: Naive physics inference scheme.
In this paper we combine the ideas of qualitative reasoning about

courses of action and their physical effects and having accurate and
realistic modeling as depicted in Figure 2. We do so by translat-
ing qualitative physics problem formalizations into a parametrized
simulation problem, performing a detailed physics-based simula-
tion, logging the state evolution into appropriate data structures and
then translating these subsymbolic data structures into an interval-
based first-order symbolic/qualitative representation of the respec-
tive episode. The resulting fact-base is then used to infer the an-
swers to the qualitative reasoning problems.

The key contribution of this paper is the combination of first-
order symbolic representation with physics-based simulation as a
inference mechanism for predicting the effects of actions. This
combination provides the best of both worlds: it provides the struc-
ture and compactness of symbolic representations and the real-
ism and accuracy of physics-based simulation. Taken together the
robot can predict consequences of actions such as whether an egg
will break when the robot performs a specific parametrized move,
whether a table will be clean after wiping it with a sponge or whether
the sponge needs to be pressed out before, whether using a specific
parametrization of a pick up action would cause the coffee in a cup
be spilled. The point is that while these predictions are symbolic
they are computed from realistic models. Combining the simula-
tion with sampling in the state space as well as in the parametriza-
tion space of actions also allows for probabilistic predictions.

In the remainder of the paper we proceed as follows: First, we
shortly revisit a well-known problem in naive physics, namely crack-
ing an egg. Second, we explain how our approach addresses prob-
lems of this kind by tightly integrating logic-based reasoning and
physics-based simulation. Third, we demonstrate the feasibility of
our approach through experiments. Finally, we conclude after dis-
cussing related work.

2 Cracking An Egg
In this paper we take the cracking of an egg as our running example.
Egg cracking has been proposed by [3] as a challenge problem for
logical formalization and reads as follows:
1
http://www.ode.org

2
http://www.bulletphysics.com

“A cook is cracking a raw egg against a glass bowl.
Properly performed, the impact of the egg against the
edge of the bowl will crack the eggshell in half. Hold-
ing the egg over the bowl, the cook will then separate
the two halves of the shell with his fingers, enlarging
the crack, and the contents of the egg will fall gently
into the bowl. The end result is that the entire contents
of the egg will be in the bowl, with the yolk unbro-
ken, and that the two halves of the shell are held in the
cook’s fingers.”

Solutions to this problem should not only characterize aspects men-
tioned above but also account for variants of the problem:

“What happens if: The cook brings the egg to impact
very quickly? Very slowly? The cook lays the egg in the
bowl and exerts steady pressure with his hand? The
cook, having cracked the egg, attempts to peel it off its
contents like a hard-boiled egg? The bowl is made of
looseleaf paper? of soft clay? The bowl is smaller than
the egg? The bowl is upside down? The cook tries this
procedure with a hard-boiled egg? With a coconut?
With an M & M?”

The cracking an egg problem poses many challenges, especially in
the context of everyday robot manipulation. In order to solve it we
regard the following aspects to be substantial: First, the abstrac-
tion level of a formalization should reflect the sensing and acting
capabilities of the manipulating robot. Second, variants should be
handled without the need of explicit modeling. And third, concur-
rent actions and events should be taken into account.

3 Temporal Projection
Let’s now consider how simulation-based temporal projection in-
fers answers to naive physics problems like cracking an egg or
pouring coffee to a cup. After giving a short overview of the overall
system, we present each part in more detail.

Figure 3: Simulation-based temporal projection system.

3.1 System Overview
An overview of the proposed simulation-based temporal projection
system is shown in Figure 3. We formalize task-relevant domain
knowledge about object classes and individuals within an ontology.
Assertions about individual objects are stored in a knowledge base
and used for automatically parametrizing a physics-based simula-
tion. Within the simulator we describe everyday objects with de-
tailed 3D models, augment the descriptions with object controllers
that compute physical phenomena not covered by the rigid body
dynamics, e.g. breaking of objects, and attach monitoring routines
to objects in order to collect object specific data. For a task like egg
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cracking, we run simulations with differently parametrized con-
trol programs, whereby states of objects are monitored and logged.
Logged simulations are then translated into time-interval-based rep-
resentations, called timelines. Finally, we use PROLOG for reason-
ing about the generated timelines. As can be seen in Figure 3, for
its reasoning PROLOG also accesses the domain knowledge.
3.2 Domain Knowledge
We use first-order representations to formalize domain knowledge.
Within our approach, we describe general physical knowledge about
object types and their properties as well as specific knowledge about
individuals in Description Logic (DL). In the following we explain
what kind of knowledge we represent.

For representing domain knowledge in DL, we use the seman-
tic web ontology language OWL3. We build our representations on
OpenCyc’s4 upper-ontology and extend type and property descrip-
tions whenever necessary. For example, let’s have a closer look
at the physically relevant knowledge about eggs and how it can be
formalized in DL. We consider an egg as consisting of an eggshell
and its content, i.e. egg white and egg yolk. An eggshell is a solid
rigid (but fragile) container that has a shape, a mass, and extensions
in space. Since the eggshell is fragile it can break. The egg’s con-
tent is a liquid which has a viscosity and a mass. Figure 4 depicts
a simplified excerpt of the ontology that shows type, relation and
property information about eggs. For describing a specific situation
individuals of relevant objects and their properties are explicitly
asserted, e.g., an individual of type Egg, egg3, has eggshell3 and
yolk3 as its parts, where eggshell3 and yolk3 have a mass of 0.01
and 0.04 respectively. Other properties and relations are specified
similarly. For a specific task like egg cracking information about
all relevant objects is asserted in the knowledge base. These asser-
tions build the basis for parametrizing the physics-based simulation
which is explained in the next section.

EGG

LIQUID SOLID CONTAINER

EGGWHITEYOLK EGGSHELL

VISCOSITY MASS EXTENSIONS RIGIDITY FRAGILITY SHAPE

HASPART HASPART

ISTYPE ISTYPE ISTYPE

HASPROP HASPROP HASPROP HASPROP HASPROP HASPROP HASPROP

Figure 4: Ontology showing physical aspects of eggs.

3.3 Physics-based Simulation
Within our approach, we utilize a physics-based simulator, namely
Gazebo5, for computing the effects of robot actions, object interac-
tions and other physical events.

For the computation, we parametrize the simulator on the basis
of the logical axiomatization, i.e. the domain knowledge, run sim-
ulations and log data of features like position, velocity, forces, and
contact points between objects over time. After explaining shortly
how a physics-based simulator computes physical effects generally,
we present how the Gazebo simulator can be configured and how
we derive a configuration based on the assertions in the knowledge
base.

Generally a physics-based simulator works as follows: the simu-
lator starts its computation of physical effects based on an initial
3
http://www.w3.org/2004/OWL

4
http://www.opencyc.org

5
http://playerstage.sourceforge.net/gazebo/gazebo.html

configuration. Then it periodically receives motor control com-
mands which are translated into forces and updates the state of the
simulated world according to physical laws. Within each tiny up-
date step, forces are applied to affected objects by considering both
the object’s current dynamic state and its properties like mass and
friction. Later we explain how we augment the simulation in order
to account for physical phenomena like breaking or absorbing.

The initial configuration of the Gazebo simulator is based on an
XML file, called world file. The world file describes properties of
the simulation, specifies parameters for the physics engine (ODE)
and describes all things occurring in the world, including robots,
sensors and everyday objects. The following excerpt of a world file
shows entries for the physics engine and the objects eggshell3 and
yolk3.

<gazebo:world ...>
<physics:ode>
<stepTime>.006</stepTime>
<gravity>0 0 -9.8</gravity>...

</physics:ode>
<model:physical name="eggshell3">
<xyz>0 0 1.23</xyz>
<rpy>0 0 0</rpy>
<include embedded="true">

<xi:include href="../models/eggshell3.model" />
</include>

</model:physical>
<model:physical name="yolk3">...

</gazebo:world>

Within a world file each object has its own model description.
Such model descriptions comprise mainly the object’s shape and
a set of physical properties like size, mass, and rigidity. Figure 5
visualizes some parameters for both models: eggshell3 and yolk3.
These models configurations are derived from the information stored
in the knowledge base. When properties are not explicitly specified
within the knowledge base, we simply assume default values.

To simulate physical phenomena like breaking objects we aug-
ment the model descriptions, how this is realized is presented in the
next section.

Body id: #42
x: -0.082 y: 0.297 z: 0.265
type: {solid, eggshell} mass: 0.1

Joint id: #88
body1: #42 body2: #18
x: -0.123 y: 0.322 z: 0.199
roll: 0.0 pitch: -54.092 yaw: -31.626
type: {solid, eggshell} forcelimit: 150 broken: false

Body id: #71
x: -0.053 y: 0.305 z: 0.082
type: {liquid, egg-yolk} mass: 0.1

Figure 5: Modeling shape and physical properties of an egg.
The shape of the egg is modeled with a graph-based structure
of bodies which are linked by joints. The physical properties
of these individual bodies and joints, which are shown exem-
plarily on the left side, determine the physical properties of the
whole egg, e.g. its mass and fragility.

3.4 Augmented Simulation
The Gazebo simulator is designed for simulating robots, sensors
and objects, whereby physical aspects of objects and their inter-
actions are more or less limited to rigid body dynamics. Since
we want to simulate naive physics problems with phenomena like
breaking, cutting, mixing, cooking, baking, or melting we augment
object model descriptions with detailed shape models, controllers
for simulating physical phenomena, and monitors for logging states
of objects. The extended model descriptions are collected in a li-
brary for simulating phenomena of everyday physics.
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Instead of modeling objects as rigid bodies, we describe the shape
of objects similar to work by [9] with graph-based structures which
allow us to inspect physical aspects at a more detailed level. Fig-
ure 5 visualizes the shape of an eggshell with egg yolk inside. The
basic entities for modeling the shape of an object are bodies and
joints, which are mutually connected. Properties of an object like
type, mass, spatial extensions, and rigidity determine the attributes
of these basic entities.

In order to simulate new classes of objects, e.g. objects that
are breakable, cutable, or objects that absorb liquids we add con-
trollers to the object model descriptions. These controllers are
called within each simulation step and perform some specialized
computation. The computation can be based on physical proper-
ties calculated by the simulator or on results computed by other
controllers. Thereby object attributes like temperature, being wet,
being dirty, or being broken can be computed. This allows us to
simulate a new range of processes like filling, cutting, or breaking.

In addition to controllers, we add monitoring routines to object
model descriptions to log the object’s state at each simulation step.
The data that is monitored and logged is specified for each object
individually.

3.5 From Logged Simulations to Timelines
In this section we explain how we ground first-order representations
in logged data structures of the simulator. Before we explain how
log files are translated into logic, we will present the representation
formalism for temporal knowledge and shortly discuss its relation
to domain knowledge.

For representing temporal knowledge, i.e. object configurations
and events at given time points, we make use of notations common
in the event calculus [10] and its extensions. In the following we
present predicates relevant for temporal reasoning.

The notation is based on two concepts, namely fluents and events.
Fluents are conditions that change over time, e.g., a cup contains
coffee: contains(cup,coffee). Events (or actions) are temporal enti-
ties that have effects and occur at specific points in time, e.g., con-
sider the action of pouring coffee: pourTo(coffee,pot,cup). Logical
statements about both fluents and events are expressed mainly by
two predicates:
• Holds(f,t) and
• Occurs(ev,t),

where f denotes a fluent, ev denotes an event and t simply de-
notes a point in time. The statement Holds(f,t) represents that fluent
f holds at time t, whereas Occurs(ev,t) represents an occurrence of
event ev at time t. Although fluents and events look as if they were
predicates themselves, they are not: both fluents and events are rei-
fied as functions returning respective instances. Thus, by treating
them as ’first-class citizens’ in a first-order representation allows us
to state at what points in time they hold or occur.

The relation of domain and temporal knowledge is straight for-
ward. Domain knowledge, in particular the assertions about indi-
vidual objects, characterize the initial conditions for the temporal
reasoning. From the temporal reasoning point of view, the asser-
tional knowledge holds at time point 0.0, i.e. Holds(f,0.0). That
the assertional knowledge describes the initial conditions for the
temporal reasoning perfectly makes sense since it is also used for
parametrizing (or initializing) the simulation as we explained ear-
lier.

Logged simulations are translated into interval-based timeline
representations by using the predicates Holds and Occurs. When-
ever a fluent or event is recognized an instance of its corresponding
type is generated and either the Holds or the Occurs predicate is
asserted for the observed timepoint. We reuse a generated instance

only if the fluent or event is also valid in successive timesteps.
Thereby we get an interval-based representation of timelines. Ta-
ble 1 and Table 2 list examples of implemented fluents and events
for which we assert predicates from the logged simulations.

Table 1: Fluents for static physical configurations.
fluent intuitive description
contacts(o1, o2) object o1 and object o2 contact each other
attached(o1, o2) object o2 is attached to object o1
supports(o1, o2) object o1 supports object o2
contains(o1, o2) container o1 contains object (or stuff) o2
broken(o1) object o1 is broken
spilled(o1) object o1 is spilled

Table 2: Fluents for physical events.
fluent intuitive description
colliding(o1, o2) object o1 and object o2 are colliding
falling(o1) object o1 is falling
moving(o1) object o1 is moving
openingGripper(o1) robot is opening gripper o1
closingGripper(o1) robot is closing gripper o1
breaking(o1) object o1 is breaking
spilling(o1) object o1 is spilling over a surface

How fluents and events are grounded in the data structures of the
simulator is exemplarily explained for the fluents contacts(o1, o2)
and supports(o1, o2) and the events moving(o1) and breaking(o1).

A contact between objects is directly reported by the simulator:

Holds(contacts(o1, o2), ti)⇔
Collisions = SimulatorValueAt(Collisions, ti)∧
Member(〈o1, o2〉,Collisions)

Object o1 supports an object o2 when there exists a contact be-
tween both objects and the maximum value of o1’s bounding box
within z-dimension is slightly less or equal than the minimum value
of o2’s bounding box and o2’s center of mass lies within the spa-
tial extensions of object o1 regarding the x-y-dimensions. The later
condition is captured by the isDirectlyBelow predicate. Further-
more the gravity force of o2 has to be canceled out:

Holds(supports(o1, o2), ti)⇔
Holds(contacts(o1, o2), ti)∧
p1 = SimulatorValueAt(Pose(o1), ti)∧
p2 = SimulatorValueAt(Pose(o2), ti)∧
isDirectlyBelow(p1, p2)∧
gravityForceIsCanceledOut(o2)

An object o1 is moving when its pose has changed between two
successive timesteps tj and ti:

Occurs(moving(o1), ti)⇔
p1 = SimulatorValueAt(Pose(o1), ti)∧
p2 = SimulatorValueAt(Pose(o1), tj)∧
previousTimestep(tj , ti)∧
p1 6= p2

An object o1 is breaking in timestep t1 when one of its joints
is detached within that timestep. The controller that realizes the
breaking phenomenon of objects directly reports which joints are
detached in a timestep:

Occurs(breaking(o1), ti)⇔
j1 = SimulatorValueAt(Detached(joint1), ti)∧
Member(j1,GetJoints(o1))

The next section explains how we do reasoning on the grounded
fluents and events asserted in timelines.
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3.6 Reasoning on Timelines
Figure 6 shows a sequence of images of a simulated egg dropped
onto the floor. By examining this simple example we show how
PROLOG can be used for reasoning about both timelines derived
from logged simulations and domain knowledge. Let’s consider the
PROLOG query:

?- holds(F1,T1), fluentT(F1,supports), objOf(F1,egg1),
after(T2,T1), occurs(E1,T2), objOf(E1,egg1).

where F1 and E1 are variables for a fluent and event respec-
tively, T1 and T2 are time intervals, supports is the type of flu-
ent F1, and egg1 denotes an individual. The query basically asks
for all events E1 that hold for egg1 after egg1 is no longer sup-
ported. For the dropped egg example,E1 is bound to falling(egg1),
colliding(egg1,floor), and breaking(egg1). The after relation used
in the query above is one of the thirteen possible temporal relation-
ships between time intervals [1] which we have implemented as
predicates for reasoning about timelines.

Figure 6: Simulation of an egg dropped onto the floor. From
left to right: falling, colliding, breaking, and broken.

Figure 7 illustrates the complete process of naive physics reason-
ing for a situation where a robot wants to grasps an egg but his hand
is wet. Similar to the example query above, the robot could ask
what will happen if (after) it grasps the egg with its wet hand. The
initial conditions describing the actual situation are taken from the
knowledge base to parametrize the simulation, the fact that the hand
is wet would reduce the friction of the hand. Then the simulation
is run whereby states of objects are monitored and logged. After
the logged simulations are translated into interval-based first-order
representations the query will be answered based on the resulting
timelines. Depending on the reduced friction of the hand the egg
might slip away and fall onto the floor which cause the eggshell to
break and the egg yolk to be spilled.

Simulation

falling(egg)

colliding(egg)

breaking(egg)

broken(egg)

Initial conditions
Holds(wet(hand),0)

Holds(supported(egg),0)

¬Holds(falling(egg),0)

¬Holds(broken(egg),0)

. . .

What happens if

grasping(egg,hand,force)

wet(hand)

Timelines
Holds(supported(egg),1.4)

Holds(falling(egg),2.04)

Holds(colliding(egg),2.5)

Holds(breaking(egg),5.3)

Holds(broken(egg),5.3)

Inferred predicates

broken(egg)

spilled(eggyolk)

Robot

Figure 7: Complete process of the temporal projection.

In addition to fluents and events that are grounded within the
data structures of the simulator, more complex events like picking
up an object or an overflowing container can be defined by utilizing
grounded fluents, events and additional temporal constraints. For
the description of complex events we follow the notion of chroni-
cles [7].

4 Experiments
For showing the feasibility of our approach we have conducted sev-
eral robot manipulation experiments for the problem of cracking an
egg as described in Section 2. In these experiments we addressed
the requirements posed in the problem formulation. Furthermore
we have conducted experiments for the problem of pouring and ab-
sorbing liquids.

The robot model used in our experiments is the PR2 robot plat-
form developed by Willow Garage6. The PR2 has an omnidirec-
tional base, a telescoping spine and a pan-tilt head. Each of the
two compliant arms of the platform have four degrees of freedom
(DOF) with an additional three DOF in the wrist and one DOF grip-
per. The sensor setup is comprised of a laser sensor on the base, a
tilting laser sensor for acquiring 3D point clouds, two stereo cam-
era setups and a high resolution camera in the head. The hands also
have cameras in the forearms, while the grippers have three-axis ac-
celerometers and fingertip pressure sensor arrays. The entire setup
is realistically modeled and ready to use in the Gazebo simulator.

4.1 Cracking an Egg
Cracking an egg against another object and then separating (split-
ting) it requires a robot to be able to grasp an egg at all. Therefore
we start our experiments with a scenario where a robot is supposed
to simply grasp an egg lying on a table.

The first experiment consists of several trials in which a robot,
in this case the PR2, is using different values of gripper force to
grasp an egg. The experiment underlines the importance of a phys-
ical simulation since it allows to determine an appropriate force
for grasping an egg which would not be possible by pure symbolic
reasoning.

The simulation setup for this experiment is simple and consists
of the PR2 robot model and the egg model lying on a table being
spawned in a Gazebo environment. The robot is trying to pick up
the egg by applying different forces with his gripper. It starts with
the lowest force level and after each try the force is increased, the
old egg is unspawned and a new one is created as the old one might
be damaged during the experiment. In each trial the robot tries to
pick the egg up and hold it up for a period of time. During the
experiments we found three possible outcomes (see Figure 8): the
egg slips out of the robot’s gripper, the egg is held by the robot
successfully, and the egg is crashed by the robot (Figure 9).

Within the experiment we identified four force levels as being
too low for grasping the egg, three force levels as appropriate and
five force levels as being too high. A video showing this experiment
is available online7.

The data structures of the simulation were logged and trans-
lated into interval-based first-order representations. Thereby the
results of the experiment are made available in the logical program-
ming environment PROLOG which is demonstrated by the follow-
ing queries

?- occurs(E,T1), eventT(E,’ClosingGripper’),
argsOf(E, [rightGripper, force7]), holds(F,T2),
after(T2,T1), fluent(F,Type), argsOf(F,Args).

E = closingGripperEvt7,
T1 = 3.25,
F = attachedFl1,
T2 = 5.0,
Type = ’Attached’,
Args = [rightGripper, egg1].

?- occurs(E,T1), eventT(E,’ClosingGripper’),
argsOf(E, [rightGripper, force12]), holds(F,T2),

6
http://www.willowgarage.com/pages/pr2/overview

7
http://www.youtube.com/watch?v=MzMnTooXyCc

111



Figure 8: PR2 robot picking up an egg with different force lev-
els (upper left: successful; upper right: egg slipping; bottom
left: egg crashed, parts of the eggshell fell onto the table; bot-
tom right: egg crashed).

after(T2,T1), fluent(F,Type), argsOf(F,Args).

E = closingGripperEvt12,
T1 = 3.0,
F = brokenFl1,
T2 = 4.25,
Type = ’Broken’,
Args = [egg1]

where the first and the second query ask for fluents that hold after
grasping the egg with force7 and force12, respectively. Whereas
using force7 result in a successful trial where the egg is attached
to the robot’s gripper, using force12 result in a situation where the
egg is broken. Given the simulation-based temporal projections of
what will happen if the robot grasps an egg with a particular force
it is possible to determine an appropriate value for the grasp force
parameter.

In the second experiment we used a valid grasping force to pick
up an egg and test its behavior when hitting it against obstacles and
tables. The egg is picked up and then is hit or pressed against an
obstacle. The results here are of course dependent on the forces
that affect the egg model: while hitting the egg against another
object very gently would not break it, hitting it stronger or press-
ing it firmly against the table would produce breaking. Figure 10
shows the egg model being cracked after being hit against an obsta-
cle. This experiment can be used to gather information on how to
safely manipulate such a fragile object and how the robot’s actions
influence the forces applied to the object.

The last experiment was focused on egg splitting. The robot
is grasping the egg from the table that’s lying on the table and,
after hitting it against an obstacle and cracking it, is trying to split
it using his other gripper (Figure 11). This experiment was not
entirely successful as the egg to be too fragile for the PR2 grippers.
The result of most of the trials involved in this experiment was the
cracked egg being completely crashed by the two grippers.

In contrast to the logical formalization that has been proposed

Figure 9: The egg model crashing in a grasp trial because of
too much gripper force.

by [15] our approach is able to make temporal projections about al-
most all aspects of the problem specification and its variants. Their
theory [15] is based on roughly 70 axioms, but variations such as

• the cook brings the egg to impact very quickly or very slowly
• the bowl is upside down
• the cook tries the procedure with a hard-boiled egg, coconut,

or an M&M
• the cook puts the egg in the bowl and exerts steady pressure

with his hand
• the cook, having cracked the egg, attempts to peel it off its

contents like a hard-boiled egg

cannot be handled without further extensions. All these vari-
ations, except the last, seem to be feasible with our simulation
approach. We simply have to adapt the robot control program to
induce a different manipulation behavior, to change the configu-

Figure 10: An egg model cracked by hitting an obstacle.
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Figure 11: An egg splitting trial using the PR2 robot model.

ration of the environment, or to adjust the physical parameters of
the object models, e.g. size, structure and/or fragility of objects.
Although the adjustment of the physical parameters is not trivial,
it seems to be much easier than the extension of a logical theory
since machine learning techniques can be applied for finding the
appropriate physical models.

Figure 12 shows the robot moving its arm away from the egg
after breaking it. In the beginning, parts of the eggshell stuck to
the gripper and fell off at a later point in time. It is impossible
to model such phenomena within logical abstractions, whereas in
detailed simulations they simply emerge from the laws of physics.
This example strongly emphasizes the benefit of combining first-
order representations with physics simulations.

Figure 12: Grasping an egg. (1) eggshell stuck to gripper (2)
eggshell fell off the gripper.

4.2 Pouring Liquids
In this scenario the robot picks up a filled container from the table,
moves it above a second container, and then pours the water from
the first to the second container. We looked at several variants of
the problem: (a) the second container has holes, (b) the second
container is upside down, (c) honey (instead of water) is poured
to an upside down container (d) the task is performed successfully,
meaning that the liquid completely ends up in the second container,
(e) the second container is already filled which causes it to overflow
as soon as the robot pours further liquid to it, meaning that some
liquid is spilled on the table.

The following query asks for the conditions that hold after the
pouring action:

?- occurs(E,T1), eventT(E,pouringTo),
argsOf(E,[cup1,liq1,cup2]),
after(T2,T1), holds(F,T2).

where in variant (a) and (e) F is bound to contains(cup2,liq1),
spilled(liq1) and supports(table1,liq1), in variant (b) F is bound to
spilled(liq1), supports(table1,liq1) and supports(cup2,liq1), in (c)
F is bound to spilled(liq1) and supports(cup2,liq1), and in (d) F is
bound to contains(cup2,liq1) (Figure 13). The notably difference
between variants (b) and (c) result from the fact that honey has a

Figure 13: Pouring liquids to containers (a) Pouring liquid to
container with holes (b) Pouring water to an upside down con-
tainer (c) Pouring honey to an upside down container.

higher viscosity than water. Within the simulation this is reflected
by the different friction values for water and honey.

In a follow-up experiment the robot cleans the table with a sponge
(Figure 14). The corresponding query looks as follows:

?- occurs(E,T1), eventT(E,wiping),
argsOf(E,[sponge1,table1]),
after(T2,T1), holds(F,T2).

where F is bound to absorbs(sponge1,liq1).

Figure 14: Wiping table with sponge (teleoperated) (a) Grip-
per approaches sponge (b) Gripper pushes sponge over liquid
which in turn is absorbed (c) Gripper pushes sponge and both
absorbed liquid and sponge move together.

5 Related Work
Solutions to a naive physics problem, namely egg cracking [3],
were formulated by [11, 15] based on logical axiomatizations. Lim-
itations of these approaches are mainly that physical details are ab-
stracted away and that variants cannot be handled very flexibly. To
overcome such limitations this work proposes a simulation-based
approach: we take a logical axiomatization and translate it into
a parametrized simulation problem, simulate and log simulation
data, translate logged simulation data into an interval-based first-
order representation which is used for answering queries about a
qualitative reasoning problem.

The integration of numerical simulation and qualitative meth-
ods has been investigated before, for example, work on qualitative-
numeric simulation [2] and self-explanatory simulations [5]. Work
by [12] has shown an integration of numerical simulation and quali-
tative modeling based on the Qualitative Process Theory [4] for vir-
tual interactive environments. But none of the approaches, we are
aware of, have investigated a simulation-based approach for mak-
ing predictions in the context of every robot object manipulation.
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Our simulation-based approach is in a similar line of work by
[9] who integrated logic and simulation for commonsense reason-
ing. Whereas they use a general purpose simulation, we utilize
a physics-based simulator augmented with phenomena of everyday
physics since we are particularly interested in naive physics reason-
ing for robot manipulation. Instead of looking at isolated problems,
we aim for a tight integration between the our proposed reasoning
system and other processes like planning, e.g., to predict whether a
meal is edible when executing a specific plan for cooking pasta.

The grounding of logical predicates like contacts(o1, o2) in data
of logged simulations is done similar to work by [17] who grounded
semantics in visual perception. Similarly, we ground only primi-
tive predicates in logged simulations. Complex predicates are for-
mulated in PROLOG and are based on primitive or other complex
predicates similar to definitions of symbolic chronicles [7].

The underlying idea of our approach is not restricted to prob-
lems in naive physics, but it can effectively be applied to tasks like
the visibility of objects in scenes, perspective taking [13], physics-
based motion planning [19], navigation in environments with non-
rigid objects [6], and the prediction of interfering effects of contin-
uous and concurrent actions [16].

6 Conclusions
In this paper we presented a simulation-based approach to naive
physics temporal projection in the context of robot manipulation.
Instead of making predictions based on logical axiomatizations, we
propose an inference system based on physics simulations.

We developed techniques for transferring qualitative reasoning
problems to physics simulations, for monitoring states of objects
and logging them to appropriate data structures, for translating logs
into first-order representations, and for answering queries on the
resulting representations. We successfully conducted experiments
that show that it is feasible to infer answers to naive physics prob-
lems based on physical simulations. We think that the effort needed
to get a functionality in simulation-based inference is less than for
axiomatizing the respective functionality. Additionally, details of
investigated problems are not abstracted away within detailed sim-
ulations. Furthermore, inference tasks that are notoriously difficult
to axiomatize are doable in simulation-based reasoning, for exam-
ple, tasks including concurrent actions, soft bodies, liquids, and
physical processes like mixing, overboiling, or scorching. In this
work we are neither aiming for high-performance nor high-fidelity
simulations, but rather exploiting simulation technologies for an-
swering questions about naive physics problems which a abstracted
in a reasonable small qualitative state space. We expect that issues
related to performance and realistic models will be addressed by
the game and animation film industry.

Thereby, we believe that this system provides a functionality
needed for successfully accomplishing complex everyday robot ma-
nipulation tasks. In future work, we will address how robots can
employ the simulation-based temporal projection approach for de-
termining the appropriate parametrizations for their actions.
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