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ABSTRACT

Autonomous mobile robots are considered a valuable teofyol
for search and rescue applications, where an initially onknen-
vironment has to be explored to locate human victims. Inghés
nario, robots exploit exploration strategies to autonoshomove
around the environment. Most of the strategies proposeiteiral
ture are based on the idea of evaluating a number of candimate
cations according tad hocutility functions that combine different
criteria. In this paper, we show some of the advantages ofjusi
more theoretically-grounded approach, based on Multie@d De-
cision Making (MCDM), to define exploration strategies fobots
employed in search and rescue applications. We implemeotae
MCDM-based exploration strategies within an existing rtotxum-
troller and we experimentally evaluated their performanaesim-
ulated environment.

Categories and Subject Descriptors
1.2.9 [Artificial Intelligence ]: Robotics—Autonomous Vehicles

General Terms
Algorithms

Keywords
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1. INTRODUCTION

In search and rescue with autonomous mobile robots, an ini-
tially unknown environment has to be explored and searcbed f
human victims [4]. Exploration strategiedhat drive the robots
around the partially known environment on the basis of thelav
able knowledge are fundamental for achieving an effecterak-
ior. The mainstream approach for developing exploraticatasgies
is based on the idea of incrementally exploring the enviremm
by evaluating a number of candidate observation locationerd-
ing to an utility function and by selecting, at each step, ribgt
best observation location. Exploration strategies diffethe util-
ity functions they use to evaluate candidate locations.h@lgh
in multirobot exploration the evaluation of candidate alagon
locations is closely related to their coordinated allamadito the
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available robots, in this paper we focus only on evaluatiboan-
didate observation locations. In systems proposed iratitee, this
evaluation is performed using utility functions that aggree mul-
tiple criteria measuring different aspects of the locatiand that
are rarely based on a theoretical ground.

In this paper, we apply a decision-theoretical tool, caNadti-
Criteria Decision Making(MCDM), to define exploration strate-
gies for search and rescue. Using decision-theoreticéd,ton the
one hand, contributes to the further assessment of thecscieh
robotics and, on the other hand, provides practical adgastin
the definition of effective exploration strategies. AltigbuMCDM
has been already applied to map building with a single rdijoie
deem that its application to multirobot search and rescoiesents
a significant contribution since it addresses a more chgilhgrset-
ting for exploration strategies, where the primary objexis not
to build an accurate map of the physical space but to seagobrih
vironment for locating the largest number of victims in aited
amount of time. Differently from map building, in search aed-
cue settings operations must be performed quickly, pguilg the
amount of explored area over the map quality. To the best of ou
knowledge, this is the first attempt to apply MCDM to searct an
rescue.

We consider a situation in which a team of robots have to searc
an initially unknown environment for victims. Since @opriori
knowledge about the possible locations of the victims isiaesl to
be available, we can reduce the problem of maximizing thetrarm
of victims found in a given time interval to the problem of nxax
mizing the amount of area covered by robots’ sensors in timesa
time interval. Broadly speaking, the robots operate adogrth the
following steps: (a) they perceive the surrounding envinent, (b)
they integrate the perceived data within a map represetiimgn-
vironment known so far, (c) they decide where to go next, ahd (
they go there and start again from (a). We propose to use MCDM
for addressing step (c), namely for defining the explorastat-
egy. In our experiments, we implemented the proposed approa
as a modification of a publicly available controller used fioe
RoboCup Rescue Virtual Robots Competition [18]. In this way
on the one hand, we can focus on the development of exploratio
strategies (step (c)) exploiting an already tested framlefaw steps
(a), (b), and (d) and, on the other hand, we can fairly compare
strategies with that originally used in [18].

2. RELATED WORK

Robotic exploratioris a broad concept that can be defined as a
process that discovers unknown features in environmentsdans
of mobile robots. Exploration is employed in several tasike
map building [16], search and rescue [15], and coverageH8t.
example, in map building the features to be discovered arelh



stacles and the free space, while in search and rescue che loe t
cations of victims or firesExploration strategiesre used to move
autonomous robots around environments in order to disdbedr
features. In this paper, we are interested in exploraticategies
employed for discovering the physical structure of envinents
that are initially unknown. In these scenarios, we do nowvkesa
antethe complete set of the possible locations that the robats ca
reach. We explicitly note that, as a consequence, we canmuibg
some exploration strategies, like those proposed in [1d][&8],
which require ara priori knowledge on the possible observation
locations. In the following, we survey a representative [ganof
the countless exploration strategies that have been pedpodit-
erature.

Unsurprisingly, most of the work on exploration stratedies
discovering the physical structure of environments has lmme
for map building. The mainstream approach models explumati
as an incremental Next Best View (NBV) process, i.e., a rigukea
greedy selection of the next best observation location.allisat

in Sections 3 and 4, tries to employ MCDM in search and rescue
applications.

Compared with exploration strategies for map buildingydeiv
works proposed exploration strategies for autonomouskeard
rescue. A work that explicitly addressed this problem ig,[Bich
proposes to combine the distand@), the expected information
gain A(p), and the probability of a successful communicati(p)
from a candidate locatiopin the following utility function:

_ A(p)P(p)
u(p) = W

This strategy has been employed, with good results, inreiffe
RoboCup Rescue Virtual Robots Competitions. In this work we
experimentally compare the exploration strategies dgeslavith
our approach with that proposed in [18], which is explicitlg-
voted to the same goal. Another exploration strategy farcheand
rescue is reported in [6], where a formalism based on Petsiine

®)

each step, an NBV system considers a number of candidate loca used to exploit priori information about the victims’ distribution

tions on the frontier between the known free space and the-une
plored part of the environment (in such a way they are redehab
from the current position of the robot) and selects the bes{20].
The most important feature of an exploration strategy is ihewal-
uates candidate locations in order to select the best one.

In evaluating candidate locations, different criteria t@nused.
A simple one is the distance from the current position of timt [20],
according to which the best observation location is theastame.
However, most works combine different criteria in more ctexp
utility functions. For example, in [14] the cost of reachiagan-
didate locatiorp is linearly combined with its benefit. Measuring
the cost as the distane&p) of p from the current location of the
robot and the benefit as an estimate of the new informatigm)
acquirable fronp, the global utility ofp is computed as:

u(p) = A(p) — Bd(p), 1)

(e.g., if they are uniformly spread or concentrated in feustgrs)
to improve the search.

3. MULTI-CRITERIA DECISION MAKING

When designing an effective exploration strategy for exptp
initially unknown environments, the main challenge is thiaece
a good global (long-term) performance by means of localrfsho
term) decisions that are made on the basis of partial kn@geled
In our scenario, the partial knowledge is given by the curneap
built by the robots and short-term decisions are made byiatiag
a number of alternatives, i.e., candidate observationtitmes on
the frontiers between the explored and unexplored spackpwgn
selecting the best one. The “goodness” of an observatiatitot
can be measured with respect to multiple criteria, as we baga
in the previous section. The number of criteria that can be co
sidered is, in principle, unlimited. As the tasks the rolmsform

whereg balances the relative weight of benefit versus cost (authors become more complex (think, for example, of an exploringotob

show that choosing within the interval[0.01, 50] does not causes
significant variations in the exploration performance).oftrer ex-
ample of combination of different criteria is [9], in whiclsthnce
d(p) and the expected information gaif(p) of a candidate loca-
tion p are combined in an exponential function

u(p) = A(p)e @ )

(where \ is a parameter that weights the two criteria). In [1], a
technique based on relative entropy is used to combinelingve
cost and expected information gain. In [17], several detésuch
as uncertainty in landmark recognition and number of visfel-
tures) are combined in a multiplicative function. In [12hveling
cost to reach a location is used as the main criterion fouetig
candidate locations, while the utility of the locationsI¢cgated
according to the proximity of other robots) is used as a tesaker.
The above strategies aggregate different criteria intytilinc-
tions that are definedd hocand are strongly dependent on the cri-
teria they combine. In [2], the authors dealt with this pesbland
proposed a more theoretically-grounded approach basedutin m
objective optimization, in which the best candidate |lcmatis se-
lected on the Pareto frontier. Besides distance and exgpéetiar-
mation gain, also overlap is taken into account. This ddters
related to the amount of old information that will be acqdiegain
from a candidate location. Maximizing the overlap can imprthe
self-localization of the robot. The work presented in thaper fol-
lows the same theoretically-grounded approach and, asildedc
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that has also to find victims, localize fire sources, commairic
with a base station, and so on), this number is likely to iasee

In this work, we explicitly consider the evaluation of cadhalie
locations as a multi-objective (or multi-criteria) optiration prob-
lem. We have a set' of candidate locations among which we want
to choose the “best” one. We denote the set ofiteria considered
in the evaluation process 8 = {1, 2,...,n}. Given a candidate
p € C we denote withu; (p) € I its utility with respect to criterion
i € N, wherel C R represents the set of possible utility values.
Note that we assume that all utilities have values over theesset
I. The larger the utilityu;(p), the better locatiom satisfies crite-
rioni. Each candidatge can be associated to a vectomoélements,
namely its utilitiesu, = (u1(p), u2(p),. .., un(p)). The problem
of selecting the “best” candidate observation location eshown
to the problem of selecting the optimal candidate locatidfrom
C.

Dealing with this multi-criteria scenario, the optimaldjcandi-
dates involves the concept Béreto frontier Formally, the Pareto
frontier of C' can be defined as the largest sulBet C such that
for everyp € P there is not any candidate € C with u;(q) >
u;(p) forall+ € N. A candidatey € C'\ P is said to bePareto-
dominatedand can be safely discarded, since at least a preferable
candidate is guaranteed to existf Therefore, choosing a candi-
date on the Pareto frontiét is a fundamental requirement to select
a “good” candidate. The actual selection is performed \géohal
utility functionu(p) = f(up) = f(ui(p),u2(p),. .., un(p)) that
combines together utilities in an aggregate value (wedivkm ex-



amples are the arithmetic and weighted mean).
ing the Pareto frontie can be computationally expensive (es-
pecially when the number of candidates grows), the seleétio
usually done by looking directly at the initial s€t namelyp* =
argmaxpec f(up). It can be easily shown that jf() is a non-
decreasing function in every one of itarguments, thep* is guar-
anteed to be on the Pareto frontier. As the previous sechiows
the mainstream approach followed in literature to definbalatil-

ity functions is to combine a pre-determined number of detén
anad hocform. Despite it is not explicitly mentioned, almost all
these methods are Pareto optimal, since a non-decreasibgl gl
utility function is a “natural” choice.

In the following section, we describe Multi-Criteria Deicis
Making (MCDM) as a general method for defining global utility
functions and we discuss some of its advantages and preperti
that make it a valid tool for defining exploration stratediesau-
tonomous mobile robots.

3.1 Combining Criteria with the Choquet In-
tegral

We introduce and motivate the proposal of MCDM by consider-
ing the important aspect of the dependency between critbaais
often neglected by global utility functions. Criteria tlzae used to
evaluate candidate locations are not always independenexém-
ple, think of criteria that estimate the same feature usiffgrént
methods, like two criteria that estimate the distance ofralickate
location from the current position of the robot accordinghte Eu-
clidean and Manhattan distance. Intuitively, when comigrthem
into a global utility function, their overall contributicio the global
utility of a candidate location should be less than the surnheif
individual ones. In this case,radundancyrelation holds between
criteria. A dual situation occurs when two or more critetie eery
different and, in general, can be hardly optimized togethethis
case, asynergyrelation holds between criteria, and their overall
contribution should be considered larger than the sum oifrttiie
vidual ones. An example involves the estimated informagiaim
and the overlap. These criteria can be considered synesigice
large utilities for both are very difficult to achieve by agi|ecandi-
date and candidates that satisfy both criteria reasonadllystvould
be preferred to candidates that satisfy them in an unbadiawes.

In order to consider these issues we need a way to define a globa

utility function that accounts for redundancy and synergtnzen
criteria when combining them. MCDM provides a general aggre
gation method which can deal with this and with other aspaats
that exploits theChoquet integrato compute global utilities [10].
Let us introduce it.

We first introduce a (total) function : P(N) — [0, 1] (P(N)is
the power set of seV) with the following propertiesi:({#}) = 0,
uw(N) =1,andifA C B C N, thenu(A) < p(B). Thatis,u
is a normalizeduzzy measuren the set of criteridv that will be
used to associate a weight to each group of criteria. Thehtsig
specified by the definition of. describe the dependency relations
that hold for each group of criteria. Criteria belonging tgraup
G C N are said to be redundant/if G) < >, u(i), synergic
if 1(G) > Y ,c 1(i), and independent otherwise.

The global utility f(u,) for a candidatep is computed as the
discrete Choquet integrél() with respect to the fuzzy measuge
usingp’s utilities:

n

> (i (p) = ug—n ()u(Ay), @)

Jj=1

flup) = C(up)
where(j) € N indicates thg-th criterion according to an increas-
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Since comput-ing ordering with respect to utilities, i.e., after thatteria have

been permutated to have, for candidate

uy(p) < ... <umy(p) < 1.

Itis assumed thai ) (p) = 0. Finally, the setd ;) is defined as

Ay ={i € Nlugy(p) < ui(p) < umy(p)}

UsingC(u,) to compute global utilities allows to consider criteria’s
importance and their mutual dependency relations.

3.2 Some Properties of MCDM

In this section, we discuss a number of properties of thequegp
MCDM approach. A first general feature of the Choquet intiigra
that, differently fromad hocglobal utility functions, it can be ap-
plied to any number of criteria. Indeed, rigorously spegkil() as
defined in (4) is not an aggregation function, for which thenber
of arguments is fixed priori, but anaggregation operatorAn ag-
gregation operator is a collection of aggregation funcjame for
each number. of criteria to be combined. For example, the arith-
metic and weighted means are aggregation operators siegbsh
sically specify an aggregation technique for every possilimber
of criteria, while global utility functions like (2) and (3re aggre-
gation functions suitable only for the set of criteria theyé been
tailored for. In this sense, we can say that an aggregatieratqr is
more general than an aggregation function. An obvious ddgan
of using an aggregation operator instead of an aggregatiustibn
is the increased flexibility, because adding and removiritgrea
can be accomplished preserving the way in which they are com-
bined. As we will discuss in the next sections, this featurabées
easy refinements of the exploration strategies and faeitasome
experimental activities such as assessing the impact afvieg or
including a criterion.

C(up) enjoys several other properties [10]. Here, we briefly dis-
cuss some properties that are significant in connectiontivitidef-
inition of exploration strategies and that characterizeDCas a
suitable approach to define global utility functions.

Increasing monotonicity in each argument
For alluy, u, € I™,

o if Vi e N, ui(p) < uj(p), thenC(up) < C(uy),
o if Vi € N, ui(p) < uj(p), thenC(up) < C(up).

This property can be exploited to guarantee that the masgitioiz
of C() over the set of candidate locatio@swill select a Pareto op-
timal candidate. As we discussed before, almost all agtjcega
functions proposed in literature for exploration stra¢sgsatisfy
this property.

Stability for linear transformations

For allu, € I"™ andr, s € R with » > 0 such that, for ali € N,
ru;(p) + s € 1, it holds that

C(rui(p) + s,ru2(p) + s,...,run(p) + 8) =
7'C(u1(p),uQ(p), s 7u’ﬂ(p)) +s.

This property ensures the independence of the particutde $c
which utilities are measured (up to a linear transformatiémthis
paper we assume, without any loss of generality, thatieslitave
values inl = [0, 1]; however, any other common scale would have
been equivalent. In general, this property is rarely satisfiy ag-
gregation functions proposed in literature, where oftéteida are
measured with respect to different scales and combineautitmy
normalization (see, for example, [9] and [18]).



Continuity

Givenn, the corresponding aggregation functif) is continuous
on I"™. This property prevents the global utility to exhibit ircégr
variations with respect to small changes of the utility ealuhat
are aggregated. When the global utility is computed by adgpt
exponential or fractional functions (see (2) and (3)), firisperty
is satisfied.

Idempotence
If, for a givenp, all u; (p) = u € I, then

C(lh(p),’u,z(p), .

This property assures a sort of consistency, namely, ifialttiteria
are satisfied with the same degreethen the global utility isu.

This property is rarely exhibited by the aggregation fumasi used
in literature, with the drawback that the particular formwhich

criteria are combined can introduce a bias in the evaluafion
example by implicitly giving more importance to some ciieio

the detriment of others.

3.3 Generality of MCDM

Another important advantage of MCDM is its generality. In-
deed, different aggregation operators turn out to be pdaticases
of the Choquet integral, up to a proper choice of weights ffier t

sun(p)) = Clu,u, ..., u) = u.

(whenw; = w, = 0 andw; = —15 Vi € N\ {1,n}). This
shows the possibility offered by MCDM of obtaining complgte
different global utility functions (and, as a consequerdifferent
behaviors of the robot) by simply setting weightsIn this sense,
we say that MCDM constitutes a general approach for definiag e

ploration strategies.

4. MCDM-BASED EXPLORATION STRATE-
GIES FOR SEARCH AND RESCUE

We apply the proposed MCDM approach to search and rescue,
where mobile robots are deployed in an initially unknowniesm-
ment with the goal to explore it and locate human victims imitn
limited amount of time. As discussed in Section 1, this agijun
domain offers a challenging scenario to test exploraticategies.

We implemented MCDM-based exploration strategies in an ex-
isting robot controller for search and rescue applicatids looked
at the participants to the RoboCup Rescue Virtual Robotspedim
tion where different teams compete in developing simuladédtic
platforms operating in Urban Search And Rescue scenarios- Si
lated in USARSIm [7] (an high fidelity 3D robot simulator).dfn
an analysis based on availability of code and performantzaroa
in the competition, we selected the controller developethbyAm-
sterdam and Oxford Universities (Amsterdam Oxford Joirgdre
Forces, AOJRH for the 2009 competition [19]. The reasons for

fuzzy measurg:. For instance, a class of aggregation operators that implementing MCDM-based exploration strategies in antagds

can be expressed with the Choquet integrahegghted meansA
weighted mean is defined 83", wiu:(p) wherew; is the weight
of criterion: and>_"_ , w; = 1. This aggregation operator can
be obtained from Choquet integral by setting{i}) = w; for all

¢ € N and by constraining to be additive:

p(S) = w VS € P(N).
i€S

Note that additivity ofy reflects independence between criteria,
namely joint contributions are exactly the sum of marginaés
Therefore, weighted means should be considered suitabés wh
such independence between criteria holds. Moreover, titie- ar
metic mean and thk-th criterion projection can be obtained as fur-
ther particular cases of weighted means by imposing- 1/n Vi €

N andwy, = 1,w; = 0 Vi € N\ {k}, respectively. In the con-
text of exploration, this means that the strategy proposefd4]

controller are that we can focus only on the explorationtsgias,
exploiting existing and tested methods for navigationalzation,

and mapping and that we have a fair way to compare our explo-
ration strategies with that originally used in the congollIn the
following we describe the original controller and how we rified

it to implement MCDM-based strategies.

4.1 The AOJRF Controller

In this section, we describe some of the controller’s fesgtuhat
are relevant to the scope of this paper (please refer to [ir8a f
complete description).

The controller manages a team of robots. The robotic platfor
used is a Pioneer P3AT, whose basic model and sensors are pro-
vided with the USARSIm simulator. The map of the environment
is maintained by a base station, whose position is fixed irethe
vironment, and to which robots periodically send data. Tlm

and based on (1) can be viewed as a special case of MCDM-baseds two-dimensional and represented by two occupancy gfitie

exploration strategies. Moreover, also the global utifitpction

proposed in [12] can be viewed as a special case of MCDM, basi-

cally being ak-th criterion projection.

A second class of aggregation operators that are species cas
of the Choquet integral is composed aflered weighted means
An ordered weighted mean is definedas"_, wju(;)(p) (i.e., a
weighted mean in whichy; is the weight of thej-th criterion ac-
cording to an increasing ordering of utilities). An ordereeighted
mean aggregation operator can be obtained from the Chateet i
gral by settingu({:}) = w; for all i € N and by definingu(.S)
according to:

n

>

i=n—|S|+1

1(S) w; VS € P(N

).

Some further particular cases of ordered weighted meansaina
be modeled with a proper choice of weights are the minimum
and maximum (whemw; = 1 andw, = 1, respectively), the me-
dian (whenw% =wz1, =05 andn is even or whenvn41 = 1

andn is odd), and the arithmetic mean excluding the t\/\2/o extremes
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first one is obtained with a small-range (typicalymeters) scan-
ner and constitutes treafe areai.e., the area where the robots can
safely move. The second one is obtained from maximum-range
scans (typically20 meters) and constitutes tlieee area i.e., the
area which is believed to be free but not yet safe. Moreoveapa
resentation of thelear areais also maintained as a subset of the
safe area that has been checked for the presence of victimss (t
task is accomplished with simulated sensors for victim c@ias).
Given a map represented as above, a set of boundaries betafeen
and free regions are extracted and considered as frorfiergach
frontier, the middle point is considered as a candidatetiocao
reach. The utility of a candidate locatiprs evaluated by combin-
ing the following criteria:

e A(p) is the amount of the free area beyond the frontiep of
computed according to the free area occupancy grid;

e P(p) is the probability that the robot, once reachedwill
be able to transmit information (such as the perceived data o

'ht t p: // www. j oi ntrescuef or ces. eu/



the locations of victims) to the base station (whose pasitio
in the environment is known), this criterion depends on the
distance betweep and the base station;

e d(p,r)isthe distance betweerand current position of robot
r, this criterion can be calculated with two different metsiod
dru (), using the Euclidean distance, adgp(), using the
exact value of the distance returned by a path planner.

Given these criteria, the global utility for a candidatis calculated
using function (3). We will refer to the exploration strayagsing
this global utility function as the “AOJRF strategy”.

The allocation of candidate locations to robots is perfatméh
the following algorithm, which is executed by each robotepén-
dently, knowing (from the base station) the current map &med t
positions of other robots [18]:

1. compute the global utility.(p, r) of allocating each candi-
datep to each robot using (3) wherei(p, ) is calculated
using the Euclidean distandg: () (namely using an under-
estimate of the real distance),

2. find the pair(p*, r*) such that the previously computed util-
ity is maximum,(p*, r*) = arg maxp,r u(p,r),

3. re-compute the distance betweerandr* usingd p p () with
the path planner (namely considering the real distance) an
update the utility of(p*, r*) using such exact value instead
of the Euclidean distance,

4. if (p*,r™) is still the best allocation, then allocate robdt
to locationp™, otherwise go to Step 2,

5. eliminate robot* and candidat@™ and go to Step 2.

The reason behind the utility update of Step 3 is that computi
dpp() requires a considerable amount of time. Doing this for all
the candidate locations and all robots would be not affdedab
the rescue competition, since a maximum exploration timggof
minutes is enforced.

4.2 Developing MCDM-based strategies

We now describe the changes we made to the original controlle
to include our MCDM-based strategies.

criteria () criteria ©()
A 0.4 d, P 0.25
s [citeria T n(Q T criteria I a d 0.25 d, b 0.35
a A 0.5 A, d 0.95 g P 0.1 P, b 0.25
% d 0.3 AP 0.7 o b 0.25 A d, P 0.75
P 0.2 ad, P 0.4 2 [4,d |07 A, d, b 0.9
A, P 0.5 A, P.b | 0.75
Ab 0.65 d,. P, b 0.45

citeria | p1 0 | 120

A 0.6 0.4

Z d 0.1 0.5

o P 0.3 0.1

S A4 0.8 0.95

A, P 0.9 0.5

d, P 0.3 0.5

Table 1: Weights used for the MCDM-based strategies.

The first MCDM-based strategy we propose adopts the same cri-

teria of the AOJRF strategy (i.e4, P, andd, as described above),
but combines them with the MCDM approach. Basically, we re-
place function (3) with function (4), with the weights refet in
Tab. 1 (top-left). We call this the “MCDM strategy”.

Choosing a particular set of weights can be tricky. In thiaggh
the designer considers the application domain and defiresrth
portance of single and groups of criteria. We remark thatchirag
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for the “best” set of weights is an ill-posed problem in thetext

of MCDM. MCDM is not a method to determine the best explo-
ration strategy, but provides a flexible and general toobtmlzine
criteria. Therefore, we assigned weights manually, cansid the
search and rescue context. For example, the MCDM strategy as
signs more importance td than toP andd (see Tab. 1 (top-left)),
pushing the robot to discover new areas, even covering l@g d
tances or risking a loss of communication. The joint coniiidn

of d and P is inhibited by establishing redundancy between them.
On the other side, a synergy holds betwakeand A, privileging
locations satisfying these criteria in a balanced way. Tiésual
method for assigning weights does not scale well with thebam

n of criteria. Indeed2™ — 2 weights have to be assigned. How-
ever, specification of weights is done at design-time anckthee
semi-automated techniques to compute weights for large ofet
criteria [10].

To apply MCDM, utilities have to be normalized to the chosen
common scald = [0, 1]. We note that the robot’s decision at any
step depends only aiil and not on previous decisions and previous
sets of candidate locations. Hence, we use a linear relatve
malization. For example, given a robatthe utility of a candidate
p related to the distancé() is normalized usingu(p,r) = 1 —
(d(p7 ’f’) — mingec d(Q7 r))/(maxqec d(q7 7”) — mingec d(Q7 ’f’))
This poses a problem for normalizing the updated utility iepS3,

g since it would require to determine the path for every caagid

location, making the0 minutes limit too strict to achieve an ac-
ceptable performance (recall that () is computationally expen-

sive). To deal with this problem we use the following proasdu
in Step 3: once computedrp (p*, r*), we normalize it by using

the previously calculated valuek:u (p,r*) for other candidates

peC.

The second MCDM-based strategy we propose shows the flexi-
bility of MCDM in adding a new criterion, i.e., the robot’s thery
remaining chargé. Explicitly considering the battery can improve
exploration by preventing the robot from making decisidnsan-
not complete (e.g., selecting a location not reachable thvéhesid-
ual energy). To compute, (p) we need an estimate of the energy
spent for reaching. We consider a very simple model in which
the power consumption is translated in a time interval. bieoto
estimate the time needed to reach a locatieve consider the path
the robot should follow in terms of linear segments and ot
By approximating the linear and angular velocities of thieotoas
constants, we can derive estimates of the ¢ needed to reach
p. Obviously, the smalleb(p) the largeru,(p). Notice thath and
d show an evident dependency relation given by the fact thmgt lo
traveling distances often correspond to long times. Howele-
spite this similarity, including in the set of criteria can, to some
extent, provide more informed decisions since it captulss the
difficulty for covering a path which generally is not captdifey d
(consider, for example, short but winding paths that coslglire
lot of time and battery). Modeling a redundancy relationaesn
these two criteria is the proper way to include both of therthin
decision-making process without unbalancing decisiowsitd the
common selection principle encoded tirendd. We denote the
strategy including as “MCDMb strategy”, whose weights are re-
ported in Tab. 1 (top-right). As it can be seen, the weighigassl
to the set{d, b} is lower than the sum of weights éfandd. Re-
dundancy and synergy are also defined on sets of more than two
criteria; for example, criteria, P, andb are redundant and the
weight of the se{d, P, b} is smaller than the sum of the weights of
its elements.

We also show how MCDM can be adopted for defining different
behaviorsin exploration. Broadly speaking, a behavior defines the



preferences according to which the robot selects obsenvaita-
tions. Given a set of criteria, a behavior is associateddgérticu-
lar set of weights of those criteria. By changing the weighisng
exploration, we can switch between different behaviorsyiag the
criteria’s importance that drive robot decisions. Thishtdque al-
low us to improve the exploration strategy’s adaptabilitgifferent
situations. Hence, we define a third MCDM-based stratedleda
the “MCDMw strategy”, whose weights are reported in Tab.dt{b
tom). This strategy encloses two different behaviors, give the
sets of weights denoted as and -, defined over the original set
of criteria of the MCDM strategy (i.e A, P, andd, as described
above). In addition, we define the following policy for swiiag
through behaviors. The weights defined:hy() are used during the
first 10 minutes of search while those definedby() are used dur-

ing the lastl0 minutes. The first set of weights encodes an aggres-

sive behavior oriented towards the maximization of the nesaa
This behavior is reasonable during the first part of the $eatten
a long remaining time is left and the robot can privilege thant
of new area even if long paths have to be followed. Diffeserttie
second set of weights induces a more conservative behaunis.
behavior accounts for the fact that remaining time is shuditgives
more importance to distancg((d) = 0.1 while u2(d) = 0.5).

5. EXPERIMENTAL EVALUATION

In the first experiments we evaluate the performance of th®MC
strategy when compared with other strategies. We congidek®-
JRF strategy (corresponding to (3)), the WS strategy (spmed-
ing to (1) with 3 = 1), and the DIST strategy, by which loca-
tions are selected simply by minimiziagi.e., choosing always the
nearest location). AOJRF and WS are continuous and inciglgsi
monotonic aggregation functions. These two strategiesagtee
a Pareto optimal selection, however AOJRF strategy lacRexi
bility since including further criteria would require to-oefine the
aggregation technique, while WS can be considered as aapeci
case of MCDM-based strategies (see Section 3.3). Neveshel

AOJRF and WS have been proved to achieve good results in prac-

tice, therefore, by comparing the MCDM strategy with thene, w
aim at deriving insights on how performance changes whergusi
more theoretically-grounded way to define global utilitpétions.
DIST is a very simple strategy that can be viewed as a paaticul
case of MCDM-based strategy. Indeed, it can be obtained by re
stricting the set of criteria to the singletan(see Section 3.3). By
comparing MCDM and DIST we aim at confirming that making
more informed local decisions actually results in a betlebal
performance.

We considered teams of one or two robots, as in [18] (note that

(@) Map A

Figure 1: The maps used for tests.

mapped safe area varies with time (each point is the avenagge o
10 runs).

1 Robot - Map A 1 Robot - Map B

Largest area achieved (no. of runs)

ok M w s oo N

Largest area achieved (no. of runs)

ok N w s oo

MCDM AOJRF  DIST ws MCDM AOJRF  DIST ws

total safe area (mean) - 1 Robot -~ Map A total safe area (mean) - 1 Robot - Map B

MCDM
—&— AOJRF
—+—DIST

ws

MCDM
—&— AOJRF
—#—DIST

ws

5 10 15 20 5 10 15 20
minutes minutes

Figure 2: Comparison between MCDM and other exploration
strategies with one robot.

The MCDM strategy discovered the largest area in the mgjorit

the maximum number of robots allowed in the RoboCup Rescue of runs, outperforming (on average) other strategies. Ating to

Virtual Robots Competition id). The robots are deployed in the
two indoor environments of Fig. 1 that show different chéeac
istics. Map A is cluttered and composed of corridors and many
rooms, while Map B is characterized by the presence of opacesp
A configuration is defined as an environment, a team of robets d
ployed in it, and the exploration strategy adopted. For eactfig-
uration, we executetld runs (with randomly selected starting loca-
tions for the robots) 020 minutes each. We assess performance by
measuring the amount of free, safe, and clear area at eactemin
of the exploration. Due to space limitations, we report atdya on
safe area (free area is less significant and clear area iastmthe
safe area).

Figs. 2 and 3 show the results of the first experiments withmnte
of one and two robots, respectively. Histograms comparetine
ber of runs in which a strategy obtained the largest amousafaf
area at the end of tHz0 minutes exploration. Graphs show how the
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an ANOVA test, the averages of the total safe area (in Map 4) ar
statistically significantly different between DIST and lkeame of

the other three strategies. Differences between MCDM, AQJR
and WS are not statistically significant in Map A. In Map B, the
MCDM strategy shows a statistically significant differengben
compared to DIST and AOJRF, while the statistical diffeeebhe-
tween MCDM and WS is slightly acceptable. These findings re-
flect an interesting insight associated to the differentatteris-
tics of the two environments. Map A is cluttered and, expigrit,

the robots deal with a relatively large number of frontiensoag
which to choose 30 candidate locations on average at each step
with one robot andl0 with two robots). Map B is characterized
by open spaces, resulting in a smaller number of candidate fr
tiers (6 candidate locations on average at each step with one robot
and 8 with two). However, despite their large number, frontiers
in Map A are very similar in the contribution they can give bet



2 Robots - Map A 2 Robots - Map B
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Figure 3: Comparison between MCDM and other exploration
strategies with two robots.

explored area. Differently, in Map B the situation in whicheo
alternative is remarkably better than others is more frequ@on-
sider, for instance, a frontier that lies close to an obstéfrtbm
where an observation will return a small new area) and anaife
in front of an open space. In such situation, the benefitsigeav
by a “right choice” would be more evident. This is what hagpen
during the exploration of Map B, showing why differencesistn
strategies are statistically significant in this environinel his ba-
sically confirms the single robot results presented in [Gfoee-
ing the idea that when very different alternatives are preaed
making a good choice is very rewarding, MCDM-based expionat
strategies achieve satisfactory results.

2 Robots - Map A 2 Robots - Map B

~ w Iy )

N

Largest area achieved (no. of runs)
Largest area achieved (no. of runs)

MCDM MCDMb MCDMw MCDM MCDMb MCDMw

total safe area (mean) - 2 Robots — Map A total safe area (mean) - 2 Robots ~ Map B

MCDM
—e— MCDMb
—#— MCDMw

MCDM
—e— MCDMb
—+— MCDMw

400
300

200 %4

100

5 10 15 20 5 10 15 20
minutes minutes

Figure 4: Comparison between the MCDM-based strategies.
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Fig. 4 shows the performance of the three MCDM-based explo-
ration strategies with two robots (we omit results with oobat,
for which the same considerations can be drawn). A first com-
parison that is worth doing is between MCDM and MCDMb, to
assess the impact éf inclusion in evaluating a location. When
adopted for exploring Map A, these two strategies perforeiet-
larly, not showing any statistically significant differenio the total
safe area. However, the effects of introducing critehoran be
noted by looking at the final maps built by the robots. A repres
tative example is shown in Fig. 5, which reports the two mdps o
tained with MCDM and MCDMb after a run. Considering that the
criteriond pushes the robots to discard locations that require com-
plicate paths with several rotating maneuvers, the rolats sme
avoiding to deeply explore corners, rooms, and other ckdtparts
of the environment, preferring corridors and open spacés re-
sult is that the obtained map, from the one hand, is lessq@duit,
from the other hand, is more representative of the gengualagy
of the environment. This kind of map can be more useful tofest
sponders in giving a broad idea of the topology of the envirent
(as discussed in [3]). The introduction of the criteripdoes not
show the same qualitative behavior in Map B, where the presen
of open spaces makes intricate paths very rare. The emptdyme
of this criterion in an open space is not justified by the ctimra
istics of the environment, showing an example where “to@imu
informed” local decisions could achieve a not so good glques
formance.

(a) MCDM

(b) MCDMb
Figure 5: An example of maps obtained after an exploration.

Adopting different behaviors with the MCDMw strategy led to
the best results in Map A. Roughly speaking, this strategylines
the benefits of MCDM and MCDMb strategies. In the first half of
the exploration a more aggressive behavior is adoptedhdrio
maximize the explored area. Then, as the residual time deese
the strategy becomes more conservative, trying to saveauoiel-
ing cluttered zones. In Map B, the employment.afin the first
part of the exploration showed the main drawback of a veryesyg
sive behavior: its vulnerability to decisions that happzbé not as
good as expected. In a number of situatigaspushed the robots
to cover long distances for reaching locations with potgiytiarge
amounts of new area that, due to information gain estimatien
rors, were not so informative once reached. This is the reagy
MCDM and MCDMw curves are relatively separated in the fifst
minutes of exploration (Fig. 4).

Fig. 6 depicts an example of paths followed by a robot when em-
ploying the three MCDM-based strategies. The startingtionan
all the three cases is at the center of the top corridor. Allstnate-
gies initially drive the robot toward the right part of thetoorridor
until the first difference can be observed in the path of MCDMuw/



aggressive behavior pushed the robot to go back at the éctéya
with the vertical corridor to obtain a wide view over the figgace.
MCDM and MCDMb start to significantly differ in the bottom end
of the central vertical corridor. More precisely, MCDMb'sith
resulted more regular than that of MCDM. Indeed, MCDM drove
the robot to explore a sequence of rooms while, with MCDMB, th
robot chose to enter the bottom horizontal corridor. MCDBIwW’
paths avoided all the rooms in the right part of the enviromme
(first 10 minutes) but performed a more detailed exploration in the
left part of the map (last0 minutes of the exploration). This ex-
ample shows how obtained paths are coherent with the design p
ciples of each strategy and demonstrates that the dedisgametic
framework of the MCDM-based strategies can provide somel lev
of predictability.

MCDMb
MCDMw

Figure 6: Example of paths of MCDM-based strategies.

From our results, we can say that MCDM can be an effective
method for defining good exploration strategies in searchras-
cue applications. Local decisions made with MCDM-basedaexp
ration strategies resulted in a comparable and sometinties per-
formance, when compared to other exploration strategigsosed
in literature. In particular, MCDM showed significant impes
ments in situations (like those faced in Map B) where makhrg t
right decision is more rewarding. In addition, MCDM preseat
remarkable flexibility in composing criteria that can be leijed
to add new criteria or to define multi-behavioral strategjies can
adapt to different situations.

6. CONCLUSIONS

In this paper, we have presented the application of the MCDM
decision-theoretic approach to the definition of explamtstrate-

gies for search and rescue. We have shown that MCDM provides all7]

general and flexible way for developing utility functions &valu-
ating candidate observation locations. Experimentallteshow
that MCDM-based exploration strategies achieve a goodoperf
mance, when compared wistd hocstrategies used in exploration.

Possible future work includes the development of autontedie-
nigues to set the values of weights in MCDM, in order to furthe
simplify the inclusion of new criteria in the evaluation cdrwi-
date locations, and the application of MCDM-based strate¢
other domains, like planetary exploration. Another insérey di-
rection is working on the robot-frontier allocation, trgito achieve
a closer integration between evaluation of candidate ioesitand
coordination of robots.
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