
Exploration strategies based on Multi-Criteria Decision
Making for search and rescue autonomous robots

Nicola Basilico
Politecnico di Milano, Italy
basilico@elet.polimi.it

Francesco Amigoni
Politecnico di Milano, Italy
amigoni@elet.polimi.it

ABSTRACT
Autonomous mobile robots are considered a valuable technology
for search and rescue applications, where an initially unknown en-
vironment has to be explored to locate human victims. In thissce-
nario, robots exploit exploration strategies to autonomously move
around the environment. Most of the strategies proposed in litera-
ture are based on the idea of evaluating a number of candidatelo-
cations according toad hocutility functions that combine different
criteria. In this paper, we show some of the advantages of using a
more theoretically-grounded approach, based on Multi-Criteria De-
cision Making (MCDM), to define exploration strategies for robots
employed in search and rescue applications. We implementedsome
MCDM-based exploration strategies within an existing robot con-
troller and we experimentally evaluated their performancein a sim-
ulated environment.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence ]: Robotics—Autonomous Vehicles

General Terms
Algorithms

Keywords
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1. INTRODUCTION
In search and rescue with autonomous mobile robots, an ini-

tially unknown environment has to be explored and searched for
human victims [4]. Exploration strategiesthat drive the robots
around the partially known environment on the basis of the avail-
able knowledge are fundamental for achieving an effective behav-
ior. The mainstream approach for developing exploration strategies
is based on the idea of incrementally exploring the environment
by evaluating a number of candidate observation locations accord-
ing to an utility function and by selecting, at each step, thenext
best observation location. Exploration strategies differin the util-
ity functions they use to evaluate candidate locations. Although
in multirobot exploration the evaluation of candidate observation
locations is closely related to their coordinated allocations to the
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available robots, in this paper we focus only on evaluation of can-
didate observation locations. In systems proposed in literature, this
evaluation is performed using utility functions that aggregate mul-
tiple criteria measuring different aspects of the locations and that
are rarely based on a theoretical ground.

In this paper, we apply a decision-theoretical tool, calledMulti-
Criteria Decision Making(MCDM), to define exploration strate-
gies for search and rescue. Using decision-theoretical tools, on the
one hand, contributes to the further assessment of the science of
robotics and, on the other hand, provides practical advantages in
the definition of effective exploration strategies. Although MCDM
has been already applied to map building with a single robot [5], we
deem that its application to multirobot search and rescue represents
a significant contribution since it addresses a more challenging set-
ting for exploration strategies, where the primary objective is not
to build an accurate map of the physical space but to search the en-
vironment for locating the largest number of victims in a limited
amount of time. Differently from map building, in search andres-
cue settings operations must be performed quickly, privileging the
amount of explored area over the map quality. To the best of our
knowledge, this is the first attempt to apply MCDM to search and
rescue.

We consider a situation in which a team of robots have to search
an initially unknown environment for victims. Since noa priori
knowledge about the possible locations of the victims is assumed to
be available, we can reduce the problem of maximizing the number
of victims found in a given time interval to the problem of maxi-
mizing the amount of area covered by robots’ sensors in the same
time interval. Broadly speaking, the robots operate according to the
following steps: (a) they perceive the surrounding environment, (b)
they integrate the perceived data within a map representingthe en-
vironment known so far, (c) they decide where to go next, and (d)
they go there and start again from (a). We propose to use MCDM
for addressing step (c), namely for defining the explorationstrat-
egy. In our experiments, we implemented the proposed approach
as a modification of a publicly available controller used forthe
RoboCup Rescue Virtual Robots Competition [18]. In this way,
on the one hand, we can focus on the development of exploration
strategies (step (c)) exploiting an already tested framework for steps
(a), (b), and (d) and, on the other hand, we can fairly compareour
strategies with that originally used in [18].

2. RELATED WORK
Robotic explorationis a broad concept that can be defined as a

process that discovers unknown features in environments bymeans
of mobile robots. Exploration is employed in several tasks,like
map building [16], search and rescue [15], and coverage [8].For
example, in map building the features to be discovered are the ob-
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stacles and the free space, while in search and rescue can be the lo-
cations of victims or fires.Exploration strategiesare used to move
autonomous robots around environments in order to discovertheir
features. In this paper, we are interested in exploration strategies
employed for discovering the physical structure of environments
that are initially unknown. In these scenarios, we do not know ex
ante the complete set of the possible locations that the robots can
reach. We explicitly note that, as a consequence, we cannot employ
some exploration strategies, like those proposed in [11] and [13],
which require ana priori knowledge on the possible observation
locations. In the following, we survey a representative sample of
the countless exploration strategies that have been proposed in lit-
erature.

Unsurprisingly, most of the work on exploration strategiesfor
discovering the physical structure of environments has been done
for map building. The mainstream approach models exploration
as an incremental Next Best View (NBV) process, i.e., a repeated
greedy selection of the next best observation location. Usually, at
each step, an NBV system considers a number of candidate loca-
tions on the frontier between the known free space and the unex-
plored part of the environment (in such a way they are reachable
from the current position of the robot) and selects the best one [20].
The most important feature of an exploration strategy is howit eval-
uates candidate locations in order to select the best one.

In evaluating candidate locations, different criteria canbe used.
A simple one is the distance from the current position of the robot [20],
according to which the best observation location is the nearest one.
However, most works combine different criteria in more complex
utility functions. For example, in [14] the cost of reachinga can-
didate locationp is linearly combined with its benefit. Measuring
the cost as the distanced(p) of p from the current location of the
robot and the benefit as an estimate of the new informationA(p)
acquirable fromp, the global utility ofp is computed as:

u(p) = A(p)− βd(p), (1)

whereβ balances the relative weight of benefit versus cost (authors
show that choosingβ within the interval[0.01, 50] does not causes
significant variations in the exploration performance). Another ex-
ample of combination of different criteria is [9], in which distance
d(p) and the expected information gainA(p) of a candidate loca-
tion p are combined in an exponential function

u(p) = A(p)e−λd(p) (2)

(whereλ is a parameter that weights the two criteria). In [1], a
technique based on relative entropy is used to combine traveling
cost and expected information gain. In [17], several criteria (such
as uncertainty in landmark recognition and number of visible fea-
tures) are combined in a multiplicative function. In [12], traveling
cost to reach a location is used as the main criterion for evaluating
candidate locations, while the utility of the locations (calculated
according to the proximity of other robots) is used as a tie-breaker.

The above strategies aggregate different criteria in utility func-
tions that are definedad hocand are strongly dependent on the cri-
teria they combine. In [2], the authors dealt with this problem and
proposed a more theoretically-grounded approach based on multi-
objective optimization, in which the best candidate location is se-
lected on the Pareto frontier. Besides distance and expected infor-
mation gain, also overlap is taken into account. This criterion is
related to the amount of old information that will be acquired again
from a candidate location. Maximizing the overlap can improve the
self-localization of the robot. The work presented in this paper fol-
lows the same theoretically-grounded approach and, as described

in Sections 3 and 4, tries to employ MCDM in search and rescue
applications.

Compared with exploration strategies for map building, only few
works proposed exploration strategies for autonomous search and
rescue. A work that explicitly addressed this problem is [18], which
proposes to combine the distanced(p), the expected information
gainA(p), and the probability of a successful communicationP (p)
from a candidate locationp in the following utility function:

u(p) =
A(p)P (p)

d(p)
. (3)

This strategy has been employed, with good results, in different
RoboCup Rescue Virtual Robots Competitions. In this work we
experimentally compare the exploration strategies developed with
our approach with that proposed in [18], which is explicitlyde-
voted to the same goal. Another exploration strategy for search and
rescue is reported in [6], where a formalism based on Petri nets is
used to exploita priori information about the victims’ distribution
(e.g., if they are uniformly spread or concentrated in few clusters)
to improve the search.

3. MULTI-CRITERIA DECISION MAKING
When designing an effective exploration strategy for exploring

initially unknown environments, the main challenge is to achieve
a good global (long-term) performance by means of local (short-
term) decisions that are made on the basis of partial knowledge.
In our scenario, the partial knowledge is given by the current map
built by the robots and short-term decisions are made by evaluating
a number of alternatives, i.e., candidate observation locations on
the frontiers between the explored and unexplored space, and by
selecting the best one. The “goodness” of an observation location
can be measured with respect to multiple criteria, as we haveseen
in the previous section. The number of criteria that can be con-
sidered is, in principle, unlimited. As the tasks the robotsperform
become more complex (think, for example, of an exploring robot
that has also to find victims, localize fire sources, communicate
with a base station, and so on), this number is likely to increase.

In this work, we explicitly consider the evaluation of candidate
locations as a multi-objective (or multi-criteria) optimization prob-
lem. We have a setC of candidate locations among which we want
to choose the “best” one. We denote the set ofn criteria considered
in the evaluation process asN = {1, 2, . . . , n}. Given a candidate
p ∈ C we denote withui(p) ∈ I its utility with respect to criterion
i ∈ N , whereI ⊆ R represents the set of possible utility values.
Note that we assume that all utilities have values over the same set
I . The larger the utilityui(p), the better locationp satisfies crite-
rion i. Each candidatep can be associated to a vector ofn elements,
namely its utilities,up = (u1(p), u2(p), . . . , un(p)). The problem
of selecting the “best” candidate observation location comes down
to the problem of selecting the optimal candidate locationp∗ from
C.

Dealing with this multi-criteria scenario, the optimalityof candi-
dates involves the concept ofPareto frontier. Formally, the Pareto
frontier of C can be defined as the largest subsetP ⊆ C such that
for everyp ∈ P there is not any candidateq ∈ C with ui(q) >
ui(p) for all i ∈ N . A candidateq ∈ C \ P is said to bePareto-
dominatedand can be safely discarded, since at least a preferable
candidate is guaranteed to exist inP . Therefore, choosing a candi-
date on the Pareto frontierP is a fundamental requirement to select
a “good” candidate. The actual selection is performed via aglobal
utility functionu(p) = f(up) = f(u1(p), u2(p), . . . , un(p)) that
combines together utilities in an aggregate value (well-known ex-

100



amples are the arithmetic and weighted mean). Since comput-
ing the Pareto frontierP can be computationally expensive (es-
pecially when the number of candidates grows), the selection is
usually done by looking directly at the initial setC, namelyp∗ =
arg maxp∈C f(up). It can be easily shown that iff() is a non-
decreasing function in every one of itsn arguments, thenp∗ is guar-
anteed to be on the Pareto frontier. As the previous section shows,
the mainstream approach followed in literature to define global util-
ity functions is to combine a pre-determined number of criteria in
an ad hocform. Despite it is not explicitly mentioned, almost all
these methods are Pareto optimal, since a non-decreasing global
utility function is a “natural” choice.

In the following section, we describe Multi-Criteria Decision
Making (MCDM) as a general method for defining global utility
functions and we discuss some of its advantages and properties
that make it a valid tool for defining exploration strategiesfor au-
tonomous mobile robots.

3.1 Combining Criteria with the Choquet In-
tegral

We introduce and motivate the proposal of MCDM by consider-
ing the important aspect of the dependency between criteria, that is
often neglected by global utility functions. Criteria thatare used to
evaluate candidate locations are not always independent. For exam-
ple, think of criteria that estimate the same feature using different
methods, like two criteria that estimate the distance of a candidate
location from the current position of the robot according tothe Eu-
clidean and Manhattan distance. Intuitively, when combining them
into a global utility function, their overall contributionto the global
utility of a candidate location should be less than the sum oftheir
individual ones. In this case, aredundancyrelation holds between
criteria. A dual situation occurs when two or more criteria are very
different and, in general, can be hardly optimized together. In this
case, asynergyrelation holds between criteria, and their overall
contribution should be considered larger than the sum of theindi-
vidual ones. An example involves the estimated informationgain
and the overlap. These criteria can be considered synergic,since
large utilities for both are very difficult to achieve by a single candi-
date and candidates that satisfy both criteria reasonably well should
be preferred to candidates that satisfy them in an unbalanced way.
In order to consider these issues we need a way to define a global
utility function that accounts for redundancy and synergy between
criteria when combining them. MCDM provides a general aggre-
gation method which can deal with this and with other aspectsand
that exploits theChoquet integralto compute global utilities [10].
Let us introduce it.

We first introduce a (total) functionµ : P(N) → [0, 1] (P(N) is
the power set of setN ) with the following properties:µ({∅}) = 0,
µ(N) = 1, and if A ⊂ B ⊂ N , thenµ(A) ≤ µ(B). That is,µ
is a normalizedfuzzy measureon the set of criteriaN that will be
used to associate a weight to each group of criteria. The weights
specified by the definition ofµ describe the dependency relations
that hold for each group of criteria. Criteria belonging to agroup
G ⊆ N are said to be redundant ifµ(G) <

∑
i∈G µ(i), synergic

if µ(G) >
∑

i∈G µ(i), and independent otherwise.
The global utilityf(up) for a candidatep is computed as the

discrete Choquet integralC() with respect to the fuzzy measureµ
usingp’s utilities:

f(up) = C(up) =

n∑

j=1

(u(j)(p)− u(j−1)(p))µ(A(j)), (4)

where(j) ∈ N indicates thej-th criterion according to an increas-

ing ordering with respect to utilities, i.e., after that criteria have
been permutated to have, for candidatep,

u(1)(p) ≤ . . . ≤ u(n)(p) ≤ 1.

It is assumed thatu(0)(p) = 0. Finally, the setA(j) is defined as

A(j) = {i ∈ N |u(j)(p) ≤ ui(p) ≤ u(n)(p)}.
UsingC(up) to compute global utilities allows to consider criteria’s
importance and their mutual dependency relations.

3.2 Some Properties of MCDM
In this section, we discuss a number of properties of the proposed

MCDM approach. A first general feature of the Choquet integral is
that, differently fromad hocglobal utility functions, it can be ap-
plied to any number of criteria. Indeed, rigorously speaking, C() as
defined in (4) is not an aggregation function, for which the number
of arguments is fixeda priori, but anaggregation operator. An ag-
gregation operator is a collection of aggregation functions, one for
each numbern of criteria to be combined. For example, the arith-
metic and weighted means are aggregation operators since they ba-
sically specify an aggregation technique for every possible number
of criteria, while global utility functions like (2) and (3)are aggre-
gation functions suitable only for the set of criteria they have been
tailored for. In this sense, we can say that an aggregation operator is
more general than an aggregation function. An obvious advantage
of using an aggregation operator instead of an aggregation function
is the increased flexibility, because adding and removing criteria
can be accomplished preserving the way in which they are com-
bined. As we will discuss in the next sections, this feature enables
easy refinements of the exploration strategies and facilitates some
experimental activities such as assessing the impact of removing or
including a criterion.
C(up) enjoys several other properties [10]. Here, we briefly dis-

cuss some properties that are significant in connection withthe def-
inition of exploration strategies and that characterize MCDM as a
suitable approach to define global utility functions.

Increasing monotonicity in each argument
For allup, u′p ∈ In,

• if ∀i ∈ N, ui(p) ≤ u′i(p), thenC(up) ≤ C(u′p),

• if ∀i ∈ N, ui(p) < u′i(p), thenC(up) < C(u′p).

This property can be exploited to guarantee that the maximization
of C() over the set of candidate locationsC will select a Pareto op-
timal candidate. As we discussed before, almost all aggregation
functions proposed in literature for exploration strategies satisfy
this property.

Stability for linear transformations
For all up ∈ In andr, s ∈ R with r > 0 such that, for alli ∈ N ,
rui(p) + s ∈ I , it holds that

C(ru1(p) + s, ru2(p) + s, . . . , run(p) + s) =

rC(u1(p), u2(p), . . . , un(p)) + s.

This property ensures the independence of the particular scale in
which utilities are measured (up to a linear transformation). In this
paper we assume, without any loss of generality, that utilities have
values inI = [0, 1]; however, any other common scale would have
been equivalent. In general, this property is rarely satisfied by ag-
gregation functions proposed in literature, where often criteria are
measured with respect to different scales and combined without any
normalization (see, for example, [9] and [18]).
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Continuity
Givenn, the corresponding aggregation functionC() is continuous
on In. This property prevents the global utility to exhibit irregular
variations with respect to small changes of the utility values that
are aggregated. When the global utility is computed by adopting
exponential or fractional functions (see (2) and (3)), thisproperty
is satisfied.

Idempotence
If, for a givenp, all ui(p) = u ∈ I , then

C(u1(p), u2(p), . . . , un(p)) = C(u, u, . . . , u) = u.

This property assures a sort of consistency, namely, if all the criteria
are satisfied with the same degreeu, then the global utility isu.
This property is rarely exhibited by the aggregation functions used
in literature, with the drawback that the particular form inwhich
criteria are combined can introduce a bias in the evaluation, for
example by implicitly giving more importance to some criteria to
the detriment of others.

3.3 Generality of MCDM
Another important advantage of MCDM is its generality. In-

deed, different aggregation operators turn out to be particular cases
of the Choquet integral, up to a proper choice of weights for the
fuzzy measureµ. For instance, a class of aggregation operators that
can be expressed with the Choquet integral areweighted means. A
weighted mean is defined as

∑n
i=1 wiui(p) wherewi is the weight

of criterion i and
∑n

i=1 wi = 1. This aggregation operator can
be obtained from Choquet integral by settingµ({i}) = wi for all
i ∈ N and by constrainingµ to be additive:

µ(S) =
∑

i∈S

wi ∀S ∈ P(N).

Note that additivity ofµ reflects independence between criteria,
namely joint contributions are exactly the sum of marginal ones.
Therefore, weighted means should be considered suitable when
such independence between criteria holds. Moreover, the arith-
metic mean and thek-th criterion projection can be obtained as fur-
ther particular cases of weighted means by imposingwi = 1/n ∀i ∈
N andwk = 1, wi = 0 ∀i ∈ N \ {k}, respectively. In the con-
text of exploration, this means that the strategy proposed in [14]
and based on (1) can be viewed as a special case of MCDM-based
exploration strategies. Moreover, also the global utilityfunction
proposed in [12] can be viewed as a special case of MCDM, basi-
cally being ak-th criterion projection.

A second class of aggregation operators that are special cases
of the Choquet integral is composed ofordered weighted means.
An ordered weighted mean is defined as

∑n
j=1 wju(j)(p) (i.e., a

weighted mean in whichwj is the weight of thej-th criterion ac-
cording to an increasing ordering of utilities). An orderedweighted
mean aggregation operator can be obtained from the Choquet inte-
gral by settingµ({i}) = wi for all i ∈ N and by definingµ(S)
according to:

µ(S) =
n∑

i=n−|S|+1

wi ∀S ∈ P(N).

Some further particular cases of ordered weighted means that can
be modeled with a proper choice of weightswi are the minimum
and maximum (whenw1 = 1 andwn = 1, respectively), the me-
dian (whenw n

2
= w n

2 +1 = 0.5 andn is even or whenw n+1
2

= 1

andn is odd), and the arithmetic mean excluding the two extremes

(whenw1 = wn = 0 andwi = 1
n−2

∀i ∈ N \ {1, n}). This
shows the possibility offered by MCDM of obtaining completely
different global utility functions (and, as a consequence,different
behaviors of the robot) by simply setting weightsµ. In this sense,
we say that MCDM constitutes a general approach for defining ex-
ploration strategies.

4. MCDM-BASED EXPLORATION STRATE-
GIES FOR SEARCH AND RESCUE

We apply the proposed MCDM approach to search and rescue,
where mobile robots are deployed in an initially unknown environ-
ment with the goal to explore it and locate human victims within a
limited amount of time. As discussed in Section 1, this appliation
domain offers a challenging scenario to test exploration strategies.

We implemented MCDM-based exploration strategies in an ex-
isting robot controller for search and rescue applications. We looked
at the participants to the RoboCup Rescue Virtual Robots Competi-
tion where different teams compete in developing simulatedrobotic
platforms operating in Urban Search And Rescue scenarios simu-
lated in USARSim [7] (an high fidelity 3D robot simulator). From
an analysis based on availability of code and performance obtained
in the competition, we selected the controller developed bythe Am-
sterdam and Oxford Universities (Amsterdam Oxford Joint Rescue
Forces, AOJRF1) for the 2009 competition [19]. The reasons for
implementing MCDM-based exploration strategies in an existing
controller are that we can focus only on the exploration strategies,
exploiting existing and tested methods for navigation, localization,
and mapping and that we have a fair way to compare our explo-
ration strategies with that originally used in the controller. In the
following we describe the original controller and how we modified
it to implement MCDM-based strategies.

4.1 The AOJRF Controller
In this section, we describe some of the controller’s features that

are relevant to the scope of this paper (please refer to [18] for a
complete description).

The controller manages a team of robots. The robotic platform
used is a Pioneer P3AT, whose basic model and sensors are pro-
vided with the USARSim simulator. The map of the environment
is maintained by a base station, whose position is fixed in theen-
vironment, and to which robots periodically send data. The map
is two-dimensional and represented by two occupancy grids.The
first one is obtained with a small-range (typically3 meters) scan-
ner and constitutes thesafe area, i.e., the area where the robots can
safely move. The second one is obtained from maximum-range
scans (typically20 meters) and constitutes thefree area, i.e., the
area which is believed to be free but not yet safe. Moreover, arep-
resentation of theclear areais also maintained as a subset of the
safe area that has been checked for the presence of victims (this
task is accomplished with simulated sensors for victim detection).
Given a map represented as above, a set of boundaries betweensafe
and free regions are extracted and considered as frontiers.For each
frontier, the middle point is considered as a candidate location to
reach. The utility of a candidate locationp is evaluated by combin-
ing the following criteria:

• A(p) is the amount of the free area beyond the frontier ofp
computed according to the free area occupancy grid;

• P (p) is the probability that the robot, once reachedp, will
be able to transmit information (such as the perceived data or

1http://www.jointrescueforces.eu/
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the locations of victims) to the base station (whose position
in the environment is known), this criterion depends on the
distance betweenp and the base station;

• d(p, r) is the distance betweenp and current position of robot
r, this criterion can be calculated with two different methods:
dEU (), using the Euclidean distance, anddPP (), using the
exact value of the distance returned by a path planner.

Given these criteria, the global utility for a candidatep is calculated
using function (3). We will refer to the exploration strategy using
this global utility function as the “AOJRF strategy”.

The allocation of candidate locations to robots is performed with
the following algorithm, which is executed by each robot indepen-
dently, knowing (from the base station) the current map and the
positions of other robots [18]:

1. compute the global utilityu(p, r) of allocating each candi-
datep to each robotr using (3) whered(p, r) is calculated
using the Euclidean distancedEU() (namely using an under-
estimate of the real distance),

2. find the pair(p∗, r∗) such that the previously computed util-
ity is maximum,(p∗, r∗) = arg maxp,r u(p, r),

3. re-compute the distance betweenp∗ andr∗ usingdPP () with
the path planner (namely considering the real distance) and
update the utility of(p∗, r∗) using such exact value instead
of the Euclidean distance,

4. if (p∗, r∗) is still the best allocation, then allocate robotr∗

to locationp∗, otherwise go to Step 2,

5. eliminate robotr∗ and candidatep∗ and go to Step 2.

The reason behind the utility update of Step 3 is that computing
dPP () requires a considerable amount of time. Doing this for all
the candidate locations and all robots would be not affordable in
the rescue competition, since a maximum exploration time of20
minutes is enforced.

4.2 Developing MCDM-based strategies
We now describe the changes we made to the original controller

to include our MCDM-based strategies.

M
C

D
M

criteria µ() criteria µ
A 0.5 A, d 0.95
d 0.3 A, P 0.7
P 0.2 d, P 0.4 M

C
D

M
b

criteria µ() criteria µ()
A 0.4 d, P 0.25
d 0.25 d, b 0.35
P 0.1 P, b 0.25
b 0.25 A, d, P 0.75

A, d 0.75 A, d, b 0.9
A, P 0.5 A, P, b 0.75
A, b 0.65 d, P, b 0.45

M
C

D
M

w

criteria µ1() µ2()
A 0.6 0.4
d 0.1 0.5
P 0.3 0.1

A, d 0.8 0.95
A, P 0.9 0.5
d, P 0.3 0.5

Table 1: Weights used for the MCDM-based strategies.

The first MCDM-based strategy we propose adopts the same cri-
teria of the AOJRF strategy (i.e.,A, P , andd, as described above),
but combines them with the MCDM approach. Basically, we re-
place function (3) with function (4), with the weights reported in
Tab. 1 (top-left). We call this the “MCDM strategy”.

Choosing a particular set of weights can be tricky. In this phase,
the designer considers the application domain and defines the im-
portance of single and groups of criteria. We remark that searching

for the “best” set of weights is an ill-posed problem in the context
of MCDM. MCDM is not a method to determine the best explo-
ration strategy, but provides a flexible and general tool to combine
criteria. Therefore, we assigned weights manually, considering the
search and rescue context. For example, the MCDM strategy as-
signs more importance toA than toP andd (see Tab. 1 (top-left)),
pushing the robot to discover new areas, even covering long dis-
tances or risking a loss of communication. The joint contribution
of d andP is inhibited by establishing redundancy between them.
On the other side, a synergy holds betweend andA, privileging
locations satisfying these criteria in a balanced way. Thismanual
method for assigning weights does not scale well with the number
n of criteria. Indeed,2n − 2 weights have to be assigned. How-
ever, specification of weights is done at design-time and there are
semi-automated techniques to compute weights for large sets of
criteria [10].

To apply MCDM, utilities have to be normalized to the chosen
common scaleI = [0, 1]. We note that the robot’s decision at any
step depends only onC and not on previous decisions and previous
sets of candidate locations. Hence, we use a linear relativenor-
malization. For example, given a robotr, the utility of a candidate
p related to the distanced() is normalized usingud(p, r) = 1 −
(d(p, r)−minq∈C d(q, r))/(maxq∈C d(q, r)−minq∈C d(q, r)).
This poses a problem for normalizing the updated utility in Step 3,
since it would require to determine the path for every candidate
location, making the20 minutes limit too strict to achieve an ac-
ceptable performance (recall thatdPP () is computationally expen-
sive). To deal with this problem we use the following procedure
in Step 3: once computeddPP (p∗, r∗), we normalize it by using
the previously calculated valuesdEU(p, r∗) for other candidates
p ∈ C.

The second MCDM-based strategy we propose shows the flexi-
bility of MCDM in adding a new criterion, i.e., the robot’s battery
remaining chargeb. Explicitly considering the battery can improve
exploration by preventing the robot from making decisions it can-
not complete (e.g., selecting a location not reachable withthe resid-
ual energy). To computeub(p) we need an estimate of the energy
spent for reachingp. We consider a very simple model in which
the power consumption is translated in a time interval. In order to
estimate the time needed to reach a locationp we consider the path
the robot should follow in terms of linear segments and rotations.
By approximating the linear and angular velocities of the robot as
constants, we can derive estimates of the timeb(p) needed to reach
p. Obviously, the smallerb(p) the largerub(p). Notice thatb and
d show an evident dependency relation given by the fact that long
traveling distances often correspond to long times. However, de-
spite this similarity, includingb in the set of criteria can, to some
extent, provide more informed decisions since it captures also the
difficulty for covering a path which generally is not captured by d
(consider, for example, short but winding paths that could require
lot of time and battery). Modeling a redundancy relation between
these two criteria is the proper way to include both of them inthe
decision-making process without unbalancing decisions toward the
common selection principle encoded inb and d. We denote the
strategy includingb as “MCDMb strategy”, whose weights are re-
ported in Tab. 1 (top-right). As it can be seen, the weight assigned
to the set{d, b} is lower than the sum of weights ofb andd. Re-
dundancy and synergy are also defined on sets of more than two
criteria; for example, criteriad, P , andb are redundant and the
weight of the set{d, P, b} is smaller than the sum of the weights of
its elements.

We also show how MCDM can be adopted for defining different
behaviorsin exploration. Broadly speaking, a behavior defines the
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preferences according to which the robot selects observation loca-
tions. Given a set of criteria, a behavior is associated to the particu-
lar set of weights of those criteria. By changing the weightsduring
exploration, we can switch between different behaviors, varying the
criteria’s importance that drive robot decisions. This technique al-
low us to improve the exploration strategy’s adaptability to different
situations. Hence, we define a third MCDM-based strategy, called
the “MCDMw strategy”, whose weights are reported in Tab. 1 (bot-
tom). This strategy encloses two different behaviors, given by the
sets of weights denoted asµ1 andµ2, defined over the original set
of criteria of the MCDM strategy (i.e.,A, P , andd, as described
above). In addition, we define the following policy for switching
through behaviors. The weights defined byµ1() are used during the
first 10 minutes of search while those defined byµ2() are used dur-
ing the last10 minutes. The first set of weights encodes an aggres-
sive behavior oriented towards the maximization of the new area.
This behavior is reasonable during the first part of the search when
a long remaining time is left and the robot can privilege the amount
of new area even if long paths have to be followed. Differently, the
second set of weights induces a more conservative behavior.This
behavior accounts for the fact that remaining time is short and gives
more importance to distance (µ1(d) = 0.1 while µ2(d) = 0.5).

5. EXPERIMENTAL EVALUATION
In the first experiments we evaluate the performance of the MCDM

strategy when compared with other strategies. We consider the AO-
JRF strategy (corresponding to (3)), the WS strategy (correspond-
ing to (1) with β = 1), and the DIST strategy, by which loca-
tions are selected simply by minimizingd (i.e., choosing always the
nearest location). AOJRF and WS are continuous and increasingly
monotonic aggregation functions. These two strategies guarantee
a Pareto optimal selection, however AOJRF strategy lacks inflexi-
bility since including further criteria would require to re-define the
aggregation technique, while WS can be considered as a special
case of MCDM-based strategies (see Section 3.3). Nevertheless,
AOJRF and WS have been proved to achieve good results in prac-
tice, therefore, by comparing the MCDM strategy with them, we
aim at deriving insights on how performance changes when using a
more theoretically-grounded way to define global utility functions.
DIST is a very simple strategy that can be viewed as a particular
case of MCDM-based strategy. Indeed, it can be obtained by re-
stricting the set of criteria to the singletond (see Section 3.3). By
comparing MCDM and DIST we aim at confirming that making
more informed local decisions actually results in a better global
performance.

We considered teams of one or two robots, as in [18] (note that
the maximum number of robots allowed in the RoboCup Rescue
Virtual Robots Competition is4). The robots are deployed in the
two indoor environments of Fig. 1 that show different character-
istics. Map A is cluttered and composed of corridors and many
rooms, while Map B is characterized by the presence of open spaces.
A configuration is defined as an environment, a team of robots de-
ployed in it, and the exploration strategy adopted. For eachconfig-
uration, we executed10 runs (with randomly selected starting loca-
tions for the robots) of20 minutes each. We assess performance by
measuring the amount of free, safe, and clear area at each minute
of the exploration. Due to space limitations, we report onlydata on
safe area (free area is less significant and clear area is similar to the
safe area).

Figs. 2 and 3 show the results of the first experiments with a team
of one and two robots, respectively. Histograms compare thenum-
ber of runs in which a strategy obtained the largest amount ofsafe
area at the end of the20 minutes exploration. Graphs show how the

(a) Map A (b) Map B

Figure 1: The maps used for tests.

mapped safe area varies with time (each point is the average over
10 runs).
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Figure 2: Comparison between MCDM and other exploration
strategies with one robot.

The MCDM strategy discovered the largest area in the majority
of runs, outperforming (on average) other strategies. According to
an ANOVA test, the averages of the total safe area (in Map A) are
statistically significantly different between DIST and each one of
the other three strategies. Differences between MCDM, AOJRF,
and WS are not statistically significant in Map A. In Map B, the
MCDM strategy shows a statistically significant differencewhen
compared to DIST and AOJRF, while the statistical difference be-
tween MCDM and WS is slightly acceptable. These findings re-
flect an interesting insight associated to the different characteris-
tics of the two environments. Map A is cluttered and, exploring it,
the robots deal with a relatively large number of frontiers among
which to choose (30 candidate locations on average at each step
with one robot and40 with two robots). Map B is characterized
by open spaces, resulting in a smaller number of candidate fron-
tiers (5 candidate locations on average at each step with one robot
and 8 with two). However, despite their large number, frontiers
in Map A are very similar in the contribution they can give to the
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Figure 3: Comparison between MCDM and other exploration
strategies with two robots.

explored area. Differently, in Map B the situation in which one
alternative is remarkably better than others is more frequent. Con-
sider, for instance, a frontier that lies close to an obstacle (from
where an observation will return a small new area) and another one
in front of an open space. In such situation, the benefits provided
by a “right choice” would be more evident. This is what happens
during the exploration of Map B, showing why differences between
strategies are statistically significant in this environment. This ba-
sically confirms the single robot results presented in [5], enforc-
ing the idea that when very different alternatives are present and
making a good choice is very rewarding, MCDM-based exploration
strategies achieve satisfactory results.
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Figure 4: Comparison between the MCDM-based strategies.

Fig. 4 shows the performance of the three MCDM-based explo-
ration strategies with two robots (we omit results with one robot,
for which the same considerations can be drawn). A first com-
parison that is worth doing is between MCDM and MCDMb, to
assess the impact ofb’s inclusion in evaluating a location. When
adopted for exploring Map A, these two strategies performedsimi-
larly, not showing any statistically significant difference in the total
safe area. However, the effects of introducing criterionb can be
noted by looking at the final maps built by the robots. A represen-
tative example is shown in Fig. 5, which reports the two maps ob-
tained with MCDM and MCDMb after a run. Considering that the
criterionb pushes the robots to discard locations that require com-
plicate paths with several rotating maneuvers, the robots save time
avoiding to deeply explore corners, rooms, and other cluttered parts
of the environment, preferring corridors and open spaces. The re-
sult is that the obtained map, from the one hand, is less precise but,
from the other hand, is more representative of the general topology
of the environment. This kind of map can be more useful to firstre-
sponders in giving a broad idea of the topology of the environment
(as discussed in [3]). The introduction of the criterionb does not
show the same qualitative behavior in Map B, where the presence
of open spaces makes intricate paths very rare. The employment
of this criterion in an open space is not justified by the character-
istics of the environment, showing an example where “too-much
informed” local decisions could achieve a not so good globalper-
formance.

(a) MCDM (b) MCDMb

Figure 5: An example of maps obtained after an exploration.

Adopting different behaviors with the MCDMw strategy led to
the best results in Map A. Roughly speaking, this strategy combines
the benefits of MCDM and MCDMb strategies. In the first half of
the exploration a more aggressive behavior is adopted, trying to
maximize the explored area. Then, as the residual time decreases,
the strategy becomes more conservative, trying to save timeavoid-
ing cluttered zones. In Map B, the employment ofµ1 in the first
part of the exploration showed the main drawback of a very aggres-
sive behavior: its vulnerability to decisions that happen to be not as
good as expected. In a number of situations,µ1 pushed the robots
to cover long distances for reaching locations with potentially large
amounts of new area that, due to information gain estimationer-
rors, were not so informative once reached. This is the reason why
MCDM and MCDMw curves are relatively separated in the first10
minutes of exploration (Fig. 4).

Fig. 6 depicts an example of paths followed by a robot when em-
ploying the three MCDM-based strategies. The starting location in
all the three cases is at the center of the top corridor. All the strate-
gies initially drive the robot toward the right part of the top corridor
until the first difference can be observed in the path of MCDMw. Its
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aggressive behavior pushed the robot to go back at the intersection
with the vertical corridor to obtain a wide view over the freespace.
MCDM and MCDMb start to significantly differ in the bottom end
of the central vertical corridor. More precisely, MCDMb’s path
resulted more regular than that of MCDM. Indeed, MCDM drove
the robot to explore a sequence of rooms while, with MCDMb, the
robot chose to enter the bottom horizontal corridor. MCDMw’s
paths avoided all the rooms in the right part of the environment
(first 10 minutes) but performed a more detailed exploration in the
left part of the map (last10 minutes of the exploration). This ex-
ample shows how obtained paths are coherent with the design prin-
ciples of each strategy and demonstrates that the decision-theoretic
framework of the MCDM-based strategies can provide some level
of predictability.

Figure 6: Example of paths of MCDM-based strategies.

From our results, we can say that MCDM can be an effective
method for defining good exploration strategies in search and res-
cue applications. Local decisions made with MCDM-based explo-
ration strategies resulted in a comparable and sometimes better per-
formance, when compared to other exploration strategies proposed
in literature. In particular, MCDM showed significant improve-
ments in situations (like those faced in Map B) where making the
right decision is more rewarding. In addition, MCDM presents a
remarkable flexibility in composing criteria that can be exploited
to add new criteria or to define multi-behavioral strategiesthat can
adapt to different situations.

6. CONCLUSIONS
In this paper, we have presented the application of the MCDM

decision-theoretic approach to the definition of exploration strate-
gies for search and rescue. We have shown that MCDM provides a
general and flexible way for developing utility functions for evalu-
ating candidate observation locations. Experimental results show
that MCDM-based exploration strategies achieve a good perfor-
mance, when compared withad hocstrategies used in exploration.

Possible future work includes the development of automatictech-
niques to set the values of weights in MCDM, in order to further
simplify the inclusion of new criteria in the evaluation of candi-
date locations, and the application of MCDM-based strategies to
other domains, like planetary exploration. Another interesting di-
rection is working on the robot-frontier allocation, trying to achieve
a closer integration between evaluation of candidate locations and
coordination of robots.
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