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ABSTRACT
Distributed collaborative adaptive sensing (DCAS) of the atmo-
sphere is a new paradigm for detecting and predicting hazardous
weather using a large dense network of short-range, low-powered
radars to sense the lowest few kilometers of the earths atmosphere.
In DCAS, radars are controlled by a collection of Meteorological
Command and Control (MC&C) agents that instruct where to s-
can based on emerging weather conditions. Within this context,
this work concentrates on designing efficient approaches for allo-
cating sensing resources to cope with restricted real-time require-
ments and limited computational resources. We have developed a
new approach based on explicit goals that can span multiple system
heartbeats. This allows us to reason ahead about sensor allocations
based on expected requirements of goals as they project forward
in time. Each goal explicitly specifies end-users’ preferences as
well as a prediction of how a phenomena will move. We use a
genetic algorithm to generate scanning strategies of each single M-
C&C and a distributed negotiation model to coordinate multiple
MC&Cs’ scanning strategies over multiple heartbeats. Simulation
results show that as compared to simpler variants of our approach,
the proposed distributed model achieved the highest social welfare.
Our approach also has exhibited similarly very good performance
in an operational radar testbed that is deployed in Oklahoma to ob-
serve severe weather events.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems

General Terms
Design, Experimentation, Performance

Keywords
Multi-agent systems, sensor networks, coordination, negotiation

1. INTRODUCTION
Over the last 6 years we have been developing and deploying a

new paradigm called collaborative adaptive sensing of the atmo-
sphere (CASA) for detecting and predicting hazardous weather [5,
15]. This new paradigm is achieved through a distributed, collab-
orative, adaptive sensing (DCAS) architecture. Distributed refers
to the use of large numbers of small radars, whose range is short
enough to see close to the ground in spite of the Earth’s curvature
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and to avoid resolution degradation caused by radar beam spread-
ing. Collaborative operation refers to the coordination of the beams
from multiple radars to cover the blind, attenuated or cluttered re-
gions of their neighbors and to simultaneously view the same re-
gion in space (when advantageous), thus achieving greater sensi-
tivity, precision, and resolution than possible with a single radar.
Adaptive refers to the ability of these radars and their associated
computing and communications infrastructure to dynamically re-
configure in response to changing weather conditions and end-user
needs. The principal components of a CASA DCAS system in-
cludes the sensors (radars); algorithms that detect, track, and pre-
dict meteorological hazards; interfaces that enable end-users to ac-
cess and interact with the system; storage; and an underlying sub-
strate of distributed computation that dynamically processes sensed
data and manages system resources. At the heart of a DCAS system
is its Meteorological Command and Control (MC&C) that perform-
s the system’s main control loop - ingesting data from the remote
radars, identifying meteorological features in this data, reporting
features to end-users, and determining each radar’s future scan s-
trategy based on detected features and end-user requirements.

MC&Cs’ resource allocation problem of deciding radars’ scan
strategies is challenging due to a number of reasons. First, DCAS
is an end-user driven approach and different users (e.g., Nation-
al Weather Service (NWS) whose role is to issue severe weath-
er watches and warnings, regional Emergency Managers (EMs)
whose role is to alert the public about weather hazards and to co-
ordinate first responders) have different data collection preferences
and needs. Second, in DCAS, adaptive radars are controlled by a
collection of MC&Cs and each MC&C tries to find the best scan
strategy for the set of radars it controls. While such a distributed
model brings some good properties (e.g., robustness, scalability),
the problem of coordinating scan strategies of multiple MC&Cs
arises as radars belonging to different MC&Cs may have an over-
lapping region. In certain situations, it is advantageous to have
two or more radars focus their scans on overlapping regions in the
atmosphere to provide accurate estimation of wind velocity vec-
tors. In some other situations, a single radar’s scanning can provide
very high quality data and coordination can allow other radars to s-
can other meteorological features. Third, DCAS is a real-time sys-
tem and radars must be re-tasked by the MC&Cs every 60 seconds,
which defines the system heartbeat interval [5, 15]. Therefore, the
optimization for allocating radar resources should be completed in
less than 60 seconds. Furthermore, the strategy space of each radar
is infinite since each scan action can be represented by a region in
the atmosphere.

In the previous resource allocation model [3], all the MC&Cs
are myopically optimizing every “single” heartbeat’s utilities with-
out explicitly taking into account end-users’ various needs over
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multiple heartbeats. It turns out this model leads to poor perfor-
mance since subsequent changes in the environment may make
these myopic decisions not appropriate anymore. For instance, an
MC&C may repeatedly scan a high utility phenomenon (no matter
how many times it has been scanned before) and thus miss some
less important phenomena. Furthermore, a user’s data requirement
can be satisfied in different ways over multiple heartbeat intervals,
which implies that it needs to search over multiple system heart-
beats to find radars’ optimal scanning strategies and address po-
tential conflicts of available resources (sensing, computation, and
bandwidth) over multiple heartbeats. In addition, predictions about
future events [9] are useless in this optimization framework.

The focus of this paper is investigating the practicality of apply-
ing real-time distributed multi-step optimization approaches in a
real application involving complex resource allocation. We found
that a real-time distributed multi-step optimization approach is fea-
sible and it contributes to better performance. This paper proposes
a novel distributed resource allocation approach to address diverse
user preferences over multiple heartbeats. We introduce the con-
cept “goal” (or constraint) to represent end-users’ preferences on
radars’ scan strategies. Each goal specifies the region of a phe-
nomenon over multiple heartbeats and how well a user’s prefer-
ence is satisfied given radars’ scan strategies over multiple heart-
beats. Then the resource allocation problem can be formulated as
a continuous time constraint optimization problem. The goal based
formulation allows us to reason ahead about allocations based on
expected requirements of goals over multiple heartbeats and pre-
diction about future weather phenomena. Given that the strategy
space of each radar is continuous and the real-time requirement, it
is impractical to exhaustively search all the possible strategies. Al-
ternatively, each MC&C finds approximate local optimal solutions
employing a genetic algorithm. Different strategies are mapped
into chromosomes and genetic operators like mutation, selection,
and crossover are employed. A distributed asynchronous negoti-
ation model is used to coordinate the scan strategies of multiple
MC&Cs. Each MC&C always notifies its current multi-heartbeat
strategy to its neighbor MC&Cs. Based on the current strategies
of its neighbor MC&Cs, an MC&C proposes to change its strategy
and decides whether to make the change based on the marginal util-
ities of its neighbors’ strategy changes. This asynchronous negoti-
ation continues until the heartbeat deadline approaches. Simulation
results show that as compared to other mechanisms, the proposed
distributed model achieved the highest social welfare. We have also
verified the performance of our approach in the operational radar
testbed deployed in Oklahoma while it was responding to actual
severe weather events. These empirical results mirror the positive
results achieved in our simulation studies.

The remainder of this paper is organized as follows. Section 2
discusses related work. We next formalize the resource allocation
problem in Section 3. We then discuss the genetic algorithm for
finding each MC&C’s local optimal strategies. The distributed ne-
gotiation model is presented in Section 5. Section 6 reports simu-
lation results. Section 7 discusses the performance of our approach
in the real sensor system and Section 8 concludes this paper.

2. RELATED WORK
The development of decentralized optimization and coordination

techniques to achieve good system-wide performance is a funda-
mental challenge for practical distributed sensor networks, which
mainly comes from various constraints, e.g., realtime response,
limited communication and computational resources. While multi-
agent systems community has developed a variety of techniques
for distributed resource allocation in sensor networks [4, 8], these

approaches cannot be directly applied to our special domain with
complex user preferences.

The problem of decentralized coordination can be formulated
as a distributed constraint optimization problem (DCOP), which
makes it possible for us to use a wide range of existing algorithms
for DCOP, e.g., ADOPT [6]. However, these complete algorithms
cannot be directly applied to problem due to their limitations such
as high computational complexity and large size of exchanged mes-
sages. Furthermore, these algorithms are for one-step optimiza-
tion but our problem is a continuous optimization problem. While
there have been numerous approximate stochastic algorithms based
on entirely local computation for solving DCOPs [14], these algo-
rithms often converge to poor-quality solutions because agents typ-
ically communicate only their preferred state, failing to explicitly
communicate utility information [8]. Max-sum algorithm has re-
cently been applied to the sensor network domain (e.g., [12]), our
recent study [2] showed that the max-sum algorithm did not outper-
form the approach in [3] and had a much worse performance when
there were more overlapping radars.

Negotiation has been used in distributed sensor networks in the
past; however, previous techniques are not entirely appropriate for
our setting. In the argumentation-based approach [11], an initia-
tor attempts to recruit other sensors to scan a specific task. In
our domain, a per goal negotiation would not be feasible based
on time limitations. Contract-net based negotiation schemes [10]
in which agents make bids based on utility calculations face simi-
lar limitations. If the contract net protocol is adopted, every time
an MC&C’s neighbor changes its scan strategy, that MC&C must
perform potentially as many optimizations for marginal utility cal-
culations as the size of the powerset of the boundary goals belong-
ing to it. The similar problem exists while adopting combinatorial
auctions [1]. The negotiation model for single step optimizations
for the DCAS system [3] fails to capture users’ preferences over
multiple heartbeats and accordingly, may result in low social wel-
fare due to lack of reasoning about future actions. In addition, the
synchronous negotiation protocol in [3] may have bad performance
due to its lack of concurrency in real time optimization.

3. PROBLEM FORMULATION
This section formalizes the problem of optimizing resource allo-

cation which has observed phenomena as its input and scan com-
mands as its output. The following components are involved in
solving the meteorological control problem: goal generation, lo-
cal optimization that generates scan commands for each MC&C’s
radars, and negotiation which coordinates MC&Cs’ scan actions.

3.1 Goal Generation
In the current design, the DCAS system dynamically adapts radar

scans at 60 second intervals to sense the evolving weather and dis-
seminates information to users based on their changing and diverse
preferences for data. An NWS forecaster may analyze the verti-
cal structure of a storm to determine whether to issue a warning by
viewing a sector scan at multiple elevations, while an emergency
manager may require two radars to collaborate in order to pinpoint
the location of the most intense part of a storm for spotter deploy-
ment, and a researcher may require 360 degree scans at all ele-
vations to initialize a numerical weather prediction model. These
diverse information preferences require different radar scan strate-
gies. We use scan goals to formulate diverse user preferences and
phenomena regions over multiple heartbeats. A goal g specifies:

• Generation time Ts(g).
• Deadline Te(g). There could be a goal existing for only one

heartbeat, i.e., Te(g)=Ts(g). It is also possible that Te(g)−
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Ts(g) > 0, i.e., the satisfaction of the goal may involve scan
actions over multiple heartbeats.
• Scan area(s). A goal g is either to find new phenomena or to

find more details of an existing known phenomenon. For the
former case (e.g., 360◦ scan), the scan area will not change
over time. For the latter case, as a phenomenon moves over
time, the scan areas at different heartbeats may be different
which depends on the moving speed of a phenomenon and
how its shape is expected to change over time. Let A(g, t)
denote the scan area of goal t at heartbeat t∈ [Ts(g), Te(g)]
and such information can be gained by prediction [9]. A goal
may be updated later due to imprecise prediction. An area A
(or part of it) may fall within the coverage of a radar r, i.e.,
Ψ(A, r)=true.

• Utility calculation function Ug(s
Ts(g)→Te(g)
R ) which defines

how well the goal is satisfied based on radars R’s scan ac-
tions sTs(g)→Te(g)R from heartbeat Ts(g) to Te(g).

In summary, goals specify 1) in what manner different kinds of
weather phenomena should be scanned by radars and 2) how well
different user groups are satisfied given radars’ scan strategies. A
goal generation rule specifies when the rule is triggered to generate
a new goal and how to set the properties of the new goal. A simple
example of goal generation rules is that each radar needs to do a
360◦ scan every 5 minutes (heartbeats).

Note that each MC&C generates goals individually. It’s possible
that two MC&Cs generate goals for the same phenomena which is
located on the overlapping area of the two MC&Cs. In such cas-
es, coordination mechanisms (Section 5) are used to resolve such
conflicts. When a goal is generated to find the details of a known
phenomenon, the goal will also specify its “regions” in the future
based on the prediction about the phenomenon’s moving speed and
change of its shape. Therefore, an MC&C may also update the
properties of an existing goal based on its new observations. This
update is important as prediction made at goal generation time may
not be accurate enough.

3.2 Goal Satisfaction
Let the set of MC&Cs be M=

{
M1, . . . ,M|M|

}
and the set

of radars be
{R1, . . . ,R|M|

}
, where Ri is the set of radars con-

trolled by MC&C Mi andRi∩Rj =∅. Each radar has its coverage
area and the coverage area of an MC&C includes the coverage areas
of all its radars. MC&C Mi is a neighbor of Mj if their coverage
areas overlap. Let NMi denote the set of neighbor MC&Cs of
Mi. Let Gti be the set of goals generated for Mi at the beginning of
heartbeat t, i.e., for any g∈Gti , Ts(g)= t. Accordingly, goals gen-
erated by all MC&Cs at heartbeat t is Gt=∪Mi∈MGti . Let Gt→t′i be
the set of goals generated for MC&C Mi from heartbeat t to heart-
beat t′, i.e., Gt→t′i =∪t≤t′′≤t′Gt′′i . A goal g is active at time t if
t∈ [Ts(g), Te(g)]. LetAGti be the set of active goals of MC&CMi

at heartbeat t, i.e., AGti = {g|g∈G0→t
i , Te(g) ≤ t}. Accordingly,

active goals for all MC&Cs at heartbeat t is AGt = ∪Mi∈MAGti .
Out of the set of goals in AGti , some are boundary goals BGti . A
goal g∈AGti is a boundary goal if there exits a radar r′ belonging
to another MC&C and one of goal g’s scan area from time t could
be partially covered by r′, i.e., Ψ(A(g, t′), r′) = true for some
r′∈Rj and t ≤ t′≤Te(g).

We assume that the set of end-users are K. Let wk(g) be the
weight associated with user k ∈ K for goal g. The user weight
wk(g) reflects 1) the relative priority of user k with respect to other
users and 2) the importance of goal g from user k’s perspective.
The values of wk(g) are set by high-level system user policies. A
radar’s scan action (strategy) can be defined to be the start and end

angles of the sector to be scanned by an individual radar for a fixed
interval of time (a heartbeat). Utility evaluation of a goal depends
on both scan quality and weight. Quality measures how well an
area is scanned, with quality depending on the amount of time a
radar spends sampling a voxel in space, the degree to which an
area is scanned in its (spatial) entirety, and the number of radars
observing an area.

Quality function: The quality Q(A, sr) of scanning an area A
using scan action sr by a single radar r can be defined as

Q(A, sr)=Fc(c(A, sr))×
[
βFd(d(r, A)) + (1− β)Fw(

wd(sr)

360
)
]

where wd(sr) is the size of sector sr , a(r,A) is the minimal angle
that would allow r to coverA, c(A, sr)= wd(sr)

a(r,A)
is the coverage of

A by sr , h(r, A) is the distance from r to geometric center of A,
hmax(r) is the range of radar r, d(r,A) = h(r,A)

hmax(r)
is the normal-

ized distance from r toA, and β is a tunable parameter. Fc captures
the effect on quality due to the percentage of the area covered. Fw
captures the effect of radar rotation speed on quality. Fd captures
the effects of the distance from the radar to the geometrical center
of the phenomenon area.

A scan area may be scanned by more than one radar in the same
heartbeat. Q(A, stR) is the maximum quality obtained for scan area
A over a set of radars R and their scan actions stR at time t. If the
phenomenon corresponding to the scan areaA is a pinpointing phe-
nomenon, Q(A, stRi) is defined as Q(A, stR) =

∑
r∈RQ(A, str)

where str is the scan action for radar r at time t. Otherwise,Q(A, stR)
=maxr∈RQ(A, str).

We can get user k’s utility Ug(k, stR) of satisfying the goal g
given the scan actions stR by combining the weight component and
the quality component. Formally

Ug
(
k, s

t
R
)

=

{
δ(t−Ts(g))wk(g)Q(A(g, t), stR) if Ts(g) ≤ t ≤ Te(g)
0 otherwise

where δ∈ (0.1] is a discount factor reflecting a user’s eagerness of
scanning a phenomenon earlier.

Let Ug(k, st→t
′

R ) be user k’s utility of satisfying goal g based on
a series of scan actions st→t

′
R = {stR, . . . , st

′
R} from t to t′. There

are multiple ways of defining Ug(k, st→t
′

R ), e.g., maxt≤q≤t′ Ug(k,
sqR), maxt≤q<t′(Ug(k, s

q
R)+Ug(k, s

q+1
R )), maxt≤p<q≤t′(Ug(k,

spR) +Ug(k, s
q+1
R )), or

∑
t≤q≤t′ Ug(k, s

q
R). Given actions st→t

′
R ,

the aggregate utility Ug(st→t
′

R ) for satisfying a goal g is the sum∑
k∈K Ug(k, s

t→t′
R ) of utilities of all users.

3.3 Formulation of the Optimization Problem
The objective of the optimization is to satisfy the set of goals
G0,G1, . . . ,G∞. At heartbeat t, MC&Cs need to determine opti-
mal radar scanning actions at t and later heartbeats for active goals
AGt. However, limited computational resources preclude that we
could compute the optimal actions from now to the infinite future.
Instead, we adopt the receding horizon control principle by focus-
ing on the optimal actions st→t+l−1

R in heartbeats of length l:

arg max
s
t→t+l−1
R

∑
g∈AGt

Ug(s
0→t−1
R ∪ st→t+l−1

R )

This formulation is in some sense “myopic” as, in fact, MC&Cs
need to consider what’s going to happen in the future while decid-
ing “optimal” actions at heartbeat t. As it is not possible to obtain
perfect information about future states, a guaranteed optimal so-
lution is not possible to obtain (even neglecting the computational
intractability nature of the problem at hand). Although the opti-
mization process at heartbeat t will output a schedule over multiple
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heartbeats, only the scan strategies at time t will be executed by
radars. At time t + 1, each MC&C updates its goal sets, possibly
generates new goals, and runs the optimization algorithm again.

4. LOCAL OPTIMIZATION OF EACH M-
C&C

This section discusses how an MC&C Mi searches scanning ac-
tions for its radarsRi given the set of active goalsAGti at heartbeat
t. The optimization problem of MC&C Mi at time t is to find the
best scan strategy st→t+l−1

Ri for its radars. Formally,

arg max
s
t→t+l−1
Ri

∑
g∈AGt

i

Ug(s
t→t+l−1
Ri ∪ s0→t−1

Ri ∪ s0→t+l−1
R−i )

where s0→t+l−1
R−i are the strategies ofMi’s neighbor MC&Cs, which

can be known to Mi through information exchange - negotiation.
The search depth l should be no larger than maxg∈AGti Te(g) and

setting search depth l involves a number of tradeoffs. With a larger
search depth l, Mi has a larger space to coordinate the scan strate-
gies of its radars. However, as only the scan strategy at time t will
be executed, the optimal strategy st→t+l−1

Ri found at time t may
be not optimal in practice. Furthermore, the computational com-
plexity of searching for optimal strategies increases with the search
depth l. In addition, the prediction of the movement of observed
phenomena could be inaccurate. When search depth l is large, the
propagation of such inaccuracy could lead to poor performance of
the scan strategies.

Since the strategy space of each radar is continuous, we first dis-
cretize the radar’s strategy space such that the start and end angles
of each strategy can only be in {0, 5, 10, . . . , 360}.1 Then for each
goal g∈AGti and each radar r∈Ri such that Ψ(A(g, t′), r)=true
at t≤ t′ ≤ Te(g), generate the minimum sector that can cover the
region A(g, t′) and add the sector to the candidate strategy set St′r
of radar r. If St′r contains more than λ strategies, combine two
randomly selected strategies into one strategy and this process con-
tinues until |St′r | = λ. The maximum size of Mi’s strategy space
is |Ri|λl . For ease of analysis, we assume that each strategy in St′r
has an ID ranging from 0 to |St′r |−1. Similarly, we give each radar
r ∈ Ri an ID ranging from 0 to |Ri| − 1.

The complexity of the optimization problem precludes an M-
C&C from using an exhaustive search to find its optimal solution.
Alternatively, we use a genetic algorithm (GA) to search the (near-
ly) best solution. The GA generates a sequence of populations as
the outcome of a search method. The individuals of the population
are scan strategies over multiple heartbeats. Each strategy com-
bination can be represented as a matrix of size |Ri| × l in which
column j represents radars’ scanning strategies at heartbeat t + j
and row i represents radar i’s scanning strategies from heartbeat
t to heartbeat t + l − 1. Let the matrix for a strategy combina-
tion be X . Then xi,j represents radar i’s scanning strategies from
heartbeat t+ j and it follows that xi,j ∈ [0, |St+ji | − 1].

An individual’s fitness value is determined by the utility of al-
l the goals AGti while all radars take strategies of the individual.
The evolution starts from a population of randomly generated in-
dividuals. In each generation, operators selection, crossover (re-
combining existing genetic materials in new ways) and mutation
(introducing new genetic materials by random modifications) are
used to form a new population. The new population is then used
in the next iteration of the algorithm. The algorithm terminates
when the local optimization deadline τ (e.g., 5 seconds) has been
1This does not have a substantial impact on the system since we
always scan a little wider than the edges of a phenomena anyway.

Algorithm 1: The Negotiation Algorithm for MC&C Mi

Let Θ ∈ {wstrategy,wproposal} represent the status of MC&CMi.
Let function GetTime() return the current time.
Let Ωstr /Ωmove be the queue to store other MC&Cs’ strategy
update/proposals.
Initialization:

a). Send goal setAGti to its neighbor MC&Cs (Ωstr = NMi);
b). Run the genetic algorithm and get optimal scanning strategies sRi ;
c). Send sRi to all neighbor MC&Cs;
d). Set Θ = wstrategy and nowt = GetTime();

while optimization deadline has not expired do
if Θ=wstrategy and Ωstr 6= ∅ then

if (GetTime()− nowt) > ξ or Ωstr = NMi then
Run the genetic algorithm and get new optimal strategies s′Ri ;
if MC&CMi can gain positive marginal utility by using s′Ri
then

Send s′Ri with its marginal utility to all neighbor MC&Cs;
Set Θ = wproposal, Ωmove = ∅,
nowt = GetTime();

else if Θ=wproposal and (GetTime()− nowt) > ξ then
if The marginal utility of MC&CMi by using s′Ri is higher than its
neighbor MC&Cs’ marginal utility then

Set sRi = s′Ri , Ωstr = ∅;
Send s′Ri to all neighbor MC&CsNMi;

Set Θ = wstrategy, nowt = GetTime();

reached, or the population is stable (e.g., 95% of the individuals
have the same highest fitness value). When the genetic algorithm
terminates, the chromosome that has the highest fitness is extracted
and the decoded strategies are the best strategies for the MC&C.

When each MC&C runs the local optimization algorithm sepa-
rately resulting in a scan strategy based on its local (partial) view
of the physical space, efficiency loss may occur. One such source
of quality degradation is the loss of the ability to cooperatively s-
can pinpointing phenomena on boundaries, which can be solved by
coordinating scans between MC&Cs and sharing resulting raw da-
ta. Another source of lessened quality are redundant scans which
can be alleviated by allowing MC&Cs to share abstract level infor-
mation regarding goals located in boundaries. The limitations of
the fully distributed optimization lead us to study the coordination
problem of distributed MC&Cs.

5. NEGOTIATION BASED COORDINATION
This section extends the negotiation model in [3] to accommo-

date 1) user’s complex preferences over multiple heartbeats and 2)
the need of concurrency during negotiation. In [3], all the MC&Cs
ignore end users’ preferences over multiple heartbeats and are only
maximizing the social welfare of a “single” heartbeat. According-
ly, the model in [3] may lead to poor performance due to its lack
of reasoning ahead. In [3], MC&Cs conduct synchronous negotia-
tion. That is, after an MC&C makes proposals to its neighbors, it
will respond to its neighbors only after it has received all responses
from its neighbors. While the synchronous protocol can guarantee
that the social welfare will improve after each round of negotiation,
it may be unreasonable for an MC&C to wait for responses from
its neighbors given the real time constraints and bounded computa-
tional resources.

Algorithm. 1 shows how the distributed negotiation is conducted
between MC&Cs at heartbeat t. For a boundary phenomenon, it is
possible that one MC&C observes it while another MC&C fails to
discover it. Before MC&Cs begin the main stages of negotiation,
each MC&C communicates with its neighbors MC&Cs to make
sure its boundary goals are also in the goal sets of other MC&Cs.
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initialize

optimize

wstrategy

wproposal

end

update

Figure 1: Finite state machine for distributed negotiation
Then each MC&C runs its local optimization algorithm (Section 4)
to generate its initial strategy over multiple heartbeats. Next each
MC&C shares its initial configuration with its neighbor MC&Cs.
Then the main stages of negotiation starts. The negotiation stops
when the heartbeat deadline (60 seconds) approaches.

Since an MC&C’s optimal strategy depends on its neighbor M-
C&Cs’ scan strategies. After one neighbor MC&C changes it-
s strategy, Mi’s optimal strategy sRi may be not optimal any-
more. Thus, Mi can run its local optimization algorithm again
to find its new optimal scan strategy s′Ri . Mi’s marginal utility
UMi(s

′
Ri , sRi) when switching to strategy s′Ri is

∑
g∈AGti Ug(s

′
Ri∪

s0→t−1
Ri ∪ s0→t+l−1

R−i )−∑g∈AGti Ug(sRi ∪ s
0→t−1
Ri ∪ s0→t+l−1

R−i ).
If UMi(s

′
Ri , sRi) > 0, Mi may choose to use strategy s′Ri .

Since it is possible that other MC&Cs change their strategies si-
multaneously,Mi’s new strategy s′Ri may be not optimal any more
since the optimality of s′Ri is based on the assumption that Mi’s
neighbor MC&Cs don’t change their strategies. To overcome the
efficiency loss due to concurrency, a synchronization mechanism
is used: An MC&C first proposes a strategy move by reporting it-
s new strategy as well as its marginal utility to its neighbors, and
then it changes its strategy if and only if its marginal utility is higher
than the marginal utilities of its neighbor MC&Cs whose proposed
moves are in conflict with the MC&C’s proposed move. Since M-
C&Cs operate in real-time, it is possible thatMi fails to receive the
proposal from one of its neighbor MC&Cs or it has to wait for a
long time before receiving all proposals. To improve concurrency,
we introduce a waiting deadline ξ > 0. MC&C Mi will decide
whether to make a move after the waiting deadline expires.

Assume that Mi received a message from Mj indicating that
Mj will change its strategy from sRj to s′Rj . Mj’s move s′Rj is
in conflict with Mi’s move s′Ri if both moves will change the u-
tility of some active goals G ⊆ AGti . Let NMi(s

′
Ri) be the set

of neighbor MC&Cs whose proposed moves are in conflict with
the Mi’s proposed move s′Ri . If the marginal utility increase of
Mi’s proposal is higher than the marginal utility of any MC&C in
NMi(s

′
Ri), MC&C Mi will change its strategy to s′Ri . The com-

plexity of this conflict check for each MC&C is O(|M|). Note
that it is also possible that the utility of a goal set will increase
when multiple MC&Cs change their strategies simultaneously, no
matter whether their moves are in conflict with each other. Since an
MC&C’s changing its strategy will affect the utilities of its neigh-
bor MC&Cs, an MC&C’s making the optimal decision of whether
to switch to its new strategy s′Ri may depend on other MC&Cs’
choice of whether to change to their strategies.

DEFINITION 1. (Move selection) Assume that MC&Cs’ current
strategies are sR1 , . . . , sR|M| , respectively. Assume that MC&Cs
are proposing to use new strategies s′R1 , . . . , s

′
R|M| , respective-

ly. The move selection problem is to find out the set of moves to
maximize the social welfare.

THEOREM 2. The move selection problem isNP-hard.

The theorem’s proof is a straightforward reduction from the max-
imum matching problem (omitted due to space limitations). Con-
sidering the high complexity of finding MC&Cs’ optimal decisions
of changing their strategies and the dynamic feature of the system,
we adopt the above conflict check approach which has a low com-
plexity since each MC&C only needs to consider the marginal util-
ities of its neighbor MC&Cs.

Figure 1 shows an MC&C’s finite state machine for the distribut-
ed negotiation protocol. After receiving data from radars, Mi runs
the local optimization algorithm to find its initial strategy. After
it sends its strategy to its neighbor MC&Cs, Mi is in the state
wstrategy, which implies that Mi is waiting for other MC&Cs
to report their current strategies. After Mi has received strategies
from all its neighbors or its waiting deadline ξ has reached, it com-
putes its new optimal strategy and notifies its neighbor MC&Cs.
Then its state is wproposal which implies that Mi has sent out it-
s move proposal and is waiting for other MC&Cs to report their
move proposals. If Mi’s marginal utility is higher than the oth-
er marginal utilities of conflicting move proposals it has received
within the waiting time, it will change its strategy and notify its
neighbor MC&Cs. Then its status will be changed to wstrategy.
During negotiation, after Mi decides whether to make a move, it
will wait for other MC&Cs’ strategy update. If the optimization
deadline is reached, the state is end and Mi sends out its current
scan commands to all the radars under its control.

There are several important control parameters in our approach
and we set the values for those control parameters through experi-
mental tuning. MC&CMi needs to decide its search depth for local
multi-step optimization. One obvious rule is that the search depth
l should be no larger than maxg∈AGti Te(g). Although an MC&C
has a better chance to coordinate its future actions with a larger
search depth, having a large search depth brings several drawback-
s. First, the MC&C’s strategy space increases exponentially with l.
After generating a strategy over multiple heartbeats at heartbeat t,
the MC&C will run the optimization algorithm again at heartbeat
t + 1. That is, the strategy for future heartbeats generated at time
t may be abandoned later. Furthermore, as each MC&C has im-
perfect knowledge about future events due to inaccurate prediction
and about the strategies of other MC&Cs, the generated “optimal”
strategy over multiple heartbeats may not be optimal in practice.
We used a heuristic to decide the search depth for each MC&C by
considering a goal’s expected existence time. A goal g∈AGti will
exist for Te(g)− t+1 heartbeats starting from heartbeat t. The av-
erage existing time

∑
g∈AGti (Te(g)− t+ 1)/|AGti| of active goals

AGti is chosen as the search depth. Simulation results show that
the heuristic achieved the highest utility compared to other arbi-
trary approaches (e.g., l = 1, l = maxg∈AGti Te(g)) for setting the
search depth.

Two additionally important control parameters for each MC&C
are the time τ to run its local optimization and the waiting time ξ
during negotiation. With longer time, an MC&C can get a solu-
tion closer to the local optimal solution. However, an MC&C may
has a short time for negotiation if it spends too much time in local
optimization. During negotiation, an MC&C needs to decide how
long to wait for the messages from its neighbor MC&Cs. With
the increase of waiting time ξ, the negotiation is more synchronous
since an MC&C will have more knowledge about its neighbor M-
C&Cs before making a decision. We found through experiments
that it’s always better to allocate 6 seconds for each local optimiza-
tion. When τ � 6 seconds, the local optimization solution has
a low quality. If τ � 6 seconds, there is not much time to do
negotiation given 60 seconds heartbeat deadline. Furthermore, we
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found that it’s always better to set ξ ∼ 4 seconds. Therefore, M-
C&Cs may conduct 6 rounds of negotiation and we found that in
most cases, negotiation converges (i.e., no MC&C can find a better
strategy) in about 5 rounds of negotiation.

Our negotiation scheme has a number of features: 1) Each M-
C&C exchanges its scan plan (generated by local optimization)
over multiple heartbeats with neighbor MC&Cs. 2) To reduce the
utility loss due to concurrent strategy change, an MC&C changes
its strategy if it has the highest marginal utility than that of its
neighbor MC&Cs. 3) Negotiation is conducted asynchronously to
increase concurrency of MC&Cs’ strategy change. If we synchro-
nize the negotiation protocol by setting a long waiting time, we
can guarantee that the social welfare will monotonically increase
with the ongoing negotiation as in [3]. We make tradeoffs between
speeding up negotiation and guaranteeing monotonic increase of
social welfare by setting the value of waiting deadline ξ by consid-
ering factors such as the communication delay distribution. When
we set a long waiting deadline (i.e., there is no concurrency), the
protocol is similar to the LID-JESP algorithm [7] which makes use
of the distributed breakout algorithm (DBA) algorithm [13].

6. SIMULATION RESULTS
Evaluating the performance of the approach on the real radar sys-

tem is difficult and complex. To better quantify the benefits of our
approach, we turn to simulation results in more controlled settings.

6.1 Simulator
To determine how best to decentralize control, we have creat-

ed an abstract simulation of the actual DCAS system. The sim-
ulator consists of a number of components. Radars are clustered
into partitions, each of which has a single MC&C. Each MC&C
has a feature repository where it stores information regarding phe-
nomena in its spacial region, where each phenomenon represents
a weather event. Goals are generated following goal generation
rules given observed weather phenomena. The optimization func-
tion of each MC&C takes its scan goals and returns scans for each
of its radars. The simulator additionally contains a function which
abstractly simulates the mapping from physical events and scans
of the radars to what the MC&C eventually sees as the result of
those scans. Depending on the elevations scanned, the number of
radars scanning, the type of phenomena, and the speed of scan, it
assigns error values to the attributes of the phenomena within cer-
tain bounds. In this way, the MC&Cs do not see exactly what is
there but rather something slightly off.

The parameters of each phenomenon (e.g., speed, density), each
radar (e.g., radius), and each MC&C (e.g., the number of radars un-
der control) reflect the current design of the real system. Phenom-
ena may be either pinpointing or non-pinpointing. Goal generation
and utility calculation in the simulator are the same as that in the re-
al system. The radars have a range of approximately 30 kilometers
and the optimization has to finish in 60 seconds. The communi-
cation delay between MC&Cs is based on the data gathered from
the real system. The number of radars ranges between [8, 100] and
the number of radars controlled by each MC&C is ranged between
[4, 16]. Each radar can have at most λ = 8 candidate strategies at
any heartbeat which represent a wide range of strategies.

6.2 Benchmark approaches
Our distributed negotiation (DN) model was compared with

four other different approaches. Both the centralized single-step
optimization (CS) approach and centralized multi-step optimiza-
tion (CM) approach assume that there is a super MC&C control-
ling all the MC&Cs and the super MC&C runs the local optimiza-
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Figure 2: Ratio of social welfare and scale of the network.

tion algorithm to find optimal strategies for all MC&Cs’ radars.
The only difference between CS and CM is that CS makes one
heartbeat optimization while CM searches over multiple heart-
beats. For the fully distributed (FD) approach, MC&Cs optimize
the utilities of their separate goal sets and don’t communicate with
each other. FD searches strategies over multiple heartbeats.

6.3 Experimental settings
In our experiments, the simulator will model real phenomena

generation and different approaches may generate different set of
goals given their observations. Each approach will optimize its s-
can strategy based on its own goal set. Thus it is unfair to compare
the performance of different approaches based on their own goal
sets. Instead, we generate an oracle goal set based on the system’s
real phenomena. The social welfare of each approach is evaluat-
ed based on the actions generated by each approach and the set of
oracle goals generated by the system. For an experiment, we run
the system for multiple heartbeats (e.g., 200) and compute the av-
erage social welfare for each heartbeat, e.g., average social welfare
sw(DN) for the approach DN.

An extensive amount of stochastic simulations was carried out
for various resource allocation scenarios subjected to the following
variables: 1) the scale of each MC&C, i.e., how many radars are
controlled by an MC&C; 2) the density of phenomena, i.e., the
frequency of new phenomena entering the radar network; 3) the
speed of phenomena; and 4) the ratio of boundary goals. In the rest
of this section, we report some representee simulation results.

6.4 Observations

6.4.1 Scale of the sensor network
On average, DN achieved a much higher social welfare than al-

l other benchmark approaches. Figure 2 shows the ratios of the
social welfare of approaches FD, CM and DN to that of CS in
networks of different scales in which each MC&C controls 6 radars
([12, 2] implies 12 radars with 2 MC&Cs). We can see that 1) DN
achieved slightly lower social welfare than CM if there are a s-
mall number of radars (e.g., 12) and 2) DN achieved higher social
welfare other approaches if there are more than 12 radars and the
advantage increases with the scale of the network. This result is in-
tuitive since an MC&C’s strategy space increases with the number
of radars. Given the real time constraint, distributed optimization
with coordination may achieve better performance than centralized
optimization. For the two centralized approaches, CM achieved a
higher social welfare than CS since sw(CM)/sw(CS) is higher
than 1.

We can also see that the fully distributed approach FD achieved
much worse performance than other approaches due to lack of coor-
dination. One interesting observation from the experiments is that
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Figure 3: Average social welfare and phenomena density.

FD’s social welfare based on its own goal set is very high. Howev-
er, FD’s social welfare based on the oracle goal set is low, which is
partially due to belief propagation: if an MC&C has wrong belief
about the real phenomena, it may still have wrong (or even worse)
belief after it sends out scanning commands based on its old wrong
belief. Through coordination, MC&Cs will “talk” to each other and
accordingly, they may have a more accurate understanding of real
phenomena.

6.4.2 Density of phenomena and network structure
We found through simulation that the density of phenomena had

a large effect on the performance of different approaches. It is in-
tuitive since, with more phenomena, more goals will be generated
and the search space of the optimization problem increases. We use
the average number η of phenomena per radar at each heartbeat to
measure the density of phenomena. For our domain, an η in the
range of [0.5, 1] (respectively, [1, 3] and [3, 6]) is considered as low
(respectively, moderate and high). It can be found from Figure 3
that the advantage of DN over the other approaches increases with
the increase of the phenomena density. In addition, for different
phenomena densities, CM achieved a higher social welfare than
CS, which had a much better performance than FD.

One important objective of simulation is to investigate how the
performance of DN is affected by the network structure, i.e., the
number of radars controlled by each MC&C. Intuitively, if an M-
C&C has to control a large number of radars, it cannot find a good
solution given its heartbeat deadline. However, if each MC&C has
only a small number of radars, an MC&C can find a local optimal
solution but the global solution based on all MC&Cs’ local optimal
solutions may be much worse than the global optimal solution. Fig-
ure 4 shows how the performance of DN is affected by the number
of radars controlled by each MC&C in a network with 48 radars. It
can be found that 1) when the phenomena density is low, it is better
to allow each MC&C to control relatively more radars (e.g., 12,); 2)
when the phenomena density is medium, it is better to allow each
MC&C to control around 8 radars; and 3) when the phenomena
density is high, it is better to allow each MC&C to control a small
number radars (e.g., 4, 6).

6.4.3 Speed of phenomena and boundary goals
We also observed that the advantage of DN over the other ap-

proaches increases with the increase of the ratio of boundary goals
and moving speed of phenomena (figures omitted due to space lim-
itation). With more boundary goals, coordination between MC&Cs
becomes more important since it may improve the utilities of these
boundary goals by removing redundant scans and having multiple
radars to observe the same phenomenon. If a phenomenon moves
fast, multiple MC&Cs may need to coordinate with each other to
satisfy the goal existing for multiple heartbeats.
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Figure 5: Location of the 4 IP1 radar nodes in Oklahoma.

7. FIELD STUDY
We have implemented our approach on the IP1 Testbed, which

is located in southwestern Oklahoma in the heart of tornado al-
ley. Figure 5 shows the location and coverage area of the testbed.
The testbed consists of four mechanically steered parabolic dish
X-band radars atop small towers. The circles around KSAO, K-
CYR, KLWE, and KRSP show the 30 km coverage area of the IP1
radars. The nearest NEXRAD sites located near the IP1 testbed
are the radars at Twin Lakes (KTLX) and Frederick (KFDR) and
are shown here with 40 km and 60 km range rings. An interested
reader can refer to [5, 15] for the IP1 system architecture.

We evaluated our approach during the 2010 CASA Spring Ex-
periment from April 1st to June 15th. This time period corresponds
to a yearly maximum of severe storms and tornadic weather in our
testbed domain. We reran cases archived during this experiment pe-
riod from severe weather events using our system emulator which
simulates the behavior of the system in a non-closed loop fashion
- that is we can verify the behavior of the scan optimization, but
the supplied radar data is from the canned case, not from an actual
regeneration of data using, for example, a radar simulator. Using
this system emulation approach we verified the scanning behavior
of the goal-based multi-step optimization.

Figure 6 shows one example of the scanning pattern for each
radar from an emulated test case. On the left of Figure 6 shows
the scanning actions of radars using our approach and on the right
of Figure 6 shows radars’ scanning actions using the previous ap-
proach described in [3]. Each radar does a pie shaped sector scan,
the number of arcs on the edge denoting the number of elevation
angles in the scan. It can be found in Figure 6 that the two ap-
proaches very often, but not always generated different scanning
commands for the radars.

To further test goal-based multi-step optimization versus a base-
line functionality of the system we disabled the previous system’s
time-since-last-scanned scan optimization heuristic and reran test
cases where we compared this baseline system versus the fully
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Figure 6: Scanning pattern for each radar. This snapshot was
taken from data on May 19th 2010 22:44:29 (UTC).

functional goal-based multi-step optimization. We observed that
the myopic baseline configuration generally exhibited a much “greed-
ier” approach to scanning - often performing repeated scans of
the same phenomena while ignoring other scan requirements such
as satisfying user needs for regular low-level surveillance scan-
s. These results with real data verified our simulation studies and
showed that 1) goal based problem formulation more precisely mod-
els the needs of multiple end-users and 2) multi-step optimization
together with negotiation based coordination efficiently schedules
radars’ scanning actions over multiple heartbeats.

It has been observed that our approach is significantly better at
meeting the user specified “time-since-last-scan” requirements. In
addition, our new approach avoided redundant scanning importan-
t phenomena and found phenomena failed to be observed by the
old approach. Besides the numerical values that were obtained
through the analysis of the real-time scanning actions generated
by MC&Cs, we also got direct feedback from domain experts in-
forming us that because we were using predictions of the future
locations of phenomena we also were doing a better job of scan-
ning the “leading edges” of storm systems. This is an important
benefit because most of the interesting observables that lead to bet-
ter warning by humans are located in these areas.

8. CONCLUSION
This paper presents a distributed resource allocation model com-

bining heuristic search and asynchronous negotiation. In more de-
tail, our contributions to the state of the art include:

• We introduce the concept “goal” to model end-users’ prefer-
ences over multiple heartbeats and cast the complex sensing
resource allocation problem as a continuous time optimiza-
tion problem. The goal based formulation enhances modular-
ity and improves the adaptivity of our approach to changing
environments and user preferences. Each MC&C utilizes a
genetic algorithm to find its local optimal strategy over multi-
ple heartbeats given its neighbor MC&Cs’ current strategies.
• We extended the distributed negotiation model in [3] by al-

lowing MC&Cs to 1) exchange “plans” over multiple heart-
beats and 2) make tradeoffs regarding local optimization time,
negotiation time, and concurrency.
• We empirically show that our approach achieved better per-

formance than some benchmark approaches.
• We have applied our approach to an operational radar testbed

that is deployed in Oklahoma to observe severe weather events
and it has exhibited much better performance than previous
techniques.

Future research directions include improving the distributed re-
source allocation model. For instance, MC&Cs can make multi-
lateral agreement through mediation that allows neighboring M-

C&Cs to make moves concurrently. It is also possible that the nego-
tiation stops with a local optimal solution and it may be beneficial
to accept some poor agreements to help in the long run. Our on-
going research will also focus on applying this framework to other
large scale real-time optimization problems.
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