
Metric Learning for Reinforcement Learning Agents

Matthew E. Taylor, Brian Kulis, and Fei Sha
Lafayette College, taylorm@lafayette.edu

University of California, Berkeley, kulis@eecs.berkeley.edu
University of Southern California, feisha@usc.edu

ABSTRACT
A key component of any reinforcement learning algorithm is the
underlying representation used by the agent. While reinforcement
learning (RL) agents have typically relied on hand-coded state rep-
resentations, there has been a growing interest inlearning this rep-
resentation. While inputs to an agent are typically fixed (i.e., state
variables represent sensors on a robot), it is desirable to automati-
cally determine the optimal relative scaling of such inputs, as well
as to diminish the impact of irrelevant features. This work intro-
duces HOLLER, a novel distance metric learning algorithm, and
combines it with an existing instance-based RL algorithm toachieve
precisely these goals. The algorithms’ success is highlighted via
empirical measurements on a set of six tasks within the mountain
car domain.

Categories and Subject Descriptors
I.2.6 [Learning]: Miscellaneous

General Terms
Algorithms, Performance

Keywords
Reinforcement Learning, Distance Metric Learning, Autonomous
Feature Selection, Learning State Representations

1. INTRODUCTION
In Reinforcement Learning(RL) problems, an agent must learn

to select sequences of actions to maximize a reward signal. The
agent’s decision process is state-dependent — the effects of an ac-
tion will depend on the agent’s location in an environment. The
agent’s state representation is a critical component in a success-
ful agent, but state representations are typically designed by a hu-
man domain expert. The goal of this paper is to introduce a robust
method to allow more autonomy in designing state representation,
allowing the agent to scale dimensions of the state representation,
as well as to potentially ignore irrelevant dimensions.

There has been some exciting recent work on learning to con-
struct or scale state variables (c.f., proto-value functions [10]) but
such methods typically assume a model of the task is known. Other

Cite as: Metric Learning for Reinforcement Learning Agents, Matthew
E. Taylor, Brian Kulis, and Fei Sha,Proc. of 10th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2011), Tumer,
Yolum, Sonenberg and Stone (eds.), May, 2–6, 2011, Taipei, Taiwan, pp.
777-784.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

work focuses on the placement and tuning of individual basisfunc-
tions (c.f., learning where to place kernels [2]). In contrast, this
work assumes that 1) the agent must efficiently sample the state
space and construct its representation on-line and 2) the agent should
learn a metric that should generalize across the entire state space,
not just the region explored.

Rather than constructing new state variables, we assume that the
state variables provided to the agent are sufficient to learnthe cur-
rent task, but that we do not know their relative weighting. For
example, consider a robot that has a laser range finder that reads
distances in meters and a sonar that reads distances in feet.It is
likely that the two state variables will need to be scaled differently
to accurately integrate their information. Likewise, if anagent is
provided both its speed in meters/second and its acceleration in
meters/second2, the relative importance of these two variables on
its estimate of location will need to be treated very differently.

Traditionally, state variables are scaled by normalizing all state
variables to have the same range (e.g.,[−1, 1]). For instance, con-
sider the CMAC [1] function approximator, a type of tile coding
used successfully in the mountain car domain [14]. CMACs can
take an arbitrary groups of continuous state variables and lay in-
finite, axis-parallel tilings over them; a continuous statespace is
discretized while maintaining the capability to generalize via mul-
tiple overlapping tilings. However, the number of tiles andwidth
of the tilings are hardcoded by a domain expert, which necessitates
knowing both the ranges (to normalize) and relative importance of
the different state variables (to determine the spacing andnumber
of tiles per dimension).

This work shows that it is possible to usedistance metric learn-
ing, a popular supervised learning technique, to scale and select
state variables automatically from data gathered via agentexperi-
ence. Experiments show that our theoretically grounded on-line
metric learning can result in significantly improved learning in a
set of RL tasks situated in the mountain car domain. Our hope is
that this work will encourage additional research into the integra-
tion of metric learning and RL, as well as to provide a powerful
tool to help automatically determine effective state representations.

2. BACKGROUND
This section first introduces Reinforcement Learning, the setting

for the paper. Next, Fitted R-MAX is discussed, an instance-based
RL algorithm that will be used in this paper’s experiments. Last,
an introduction to distance metric learning provides background to
understand HOLLER, our novel learning algorithm.

2.1 Reinforcement Learning
Reinforcement learning problems are typically framed asMarkov

decision processes(MDPs) defined by the 4-tuple{S, A, T, R}.

777

An agent perceives the currentstateof the worlds ∈ S (possibly
with noise). Tasks are often episodic: the agent executes actions in
the environment until it reaches a terminal or goal state, atwhich
point the agent is returned to a starting state. The setA describes
theactionsavailable to the agent, although not every action may be
possible in every state. Thetransition function, T : S × A 7→ S,
takes a state and an action as input and returns the state of the envi-
ronment after the action is performed. The agent’s goal is tomaxi-
mize its reward, a scalar value defined by thereward function.

A learner chooses which action to take in a state via a policy,
π : S 7→ A. π is modified by the learner over time to improve
performance, defined as the expected (discounted) total reward. In-
stead of learningπ directly, many RL algorithms instead approx-
imate the action-value function,Q : S × A 7→ R, which maps
state-action pairs to the expected real-valued return [16]. In tasks
with small, discrete state spaces,Q andπ can be fully represented
in a table. As the state space grows, using a table becomes imprac-
tical, or impossible if the state space is continuous. Agents in such
tasks typically factor the state usingstate variables(or features),
so thats = 〈x1, x2, . . . , xn〉. In such cases, RL methods usefunc-
tion approximators, such as artificial neural networks or tile coding,
where parameterized functions representingπ or Q are tuned via
supervised learning methods. The parameterization and bias of the
function approximator define the state space abstraction, allowing
observed data to update a region of state-action values rather than
a single state/action value.

2.2 Fitted R-Max
The experiments in this paper focus on integrating a learned

distance metric with Fitted R-MAX , an instance-based RL algo-
rithm [7]. Fitted R-MAX approximates the action-value function,
Q, for large or infinite state spaces by constructing an MDP over
a small (finite) sample of statesX ⊂ S. For each sample state
x ∈ X and actiona ∈ A, Fitted R-MAX estimates the dynamics of
the transition function,T (x, a), using all available data for action
a. The data from multiple nearby states will need to be integrated
and generalized as it is unlikely that points in a continuousstate
space will be sampled enough to approximate all action transitions.
A probability over predicted successor states inS, T (x, a), is first
approximated. The distribution of successor states is thenapproxi-
mated with a distribution of states inX, resulting in a MDP defined
over a finite size (X) that is formed based on data from the envi-
ronment (S). Q is then approximated via dynamic programming.

For the purposes of the current work, the most important feature
of Fitted R-MAX is that whenT andR are estimated for a pointx,
data from nearby points are averaged together, weighted by their
relative distances. That is, recorded instances that are (spatially)
closer tox are assumed to be more predictive than instances further
away. Rather than assuming that the similarity between points in
the state space is Euclidean, this work learns a distance metric for
Fitted R-MAX to use. A full description of Fitted R-MAX and its
implementation can be found elsewhere [7].

2.3 Distance Metric Learning
Distance metric learning is a core machine learning problemthat

attempts to learn an appropriate distance function for a given task.
Because distances or similarities are used in a variety of tasks —
including clustering, similarity searches, and many classification
algorithms — there has been significant interest in the design of al-
gorithms for tuning distance functions. Typically these algorithms
are at least partially supervised; in addition to the data, the algo-
rithm receives constraints for the desired distance metric. Exam-
ples include constraints of the form “pointsx andy should have

a small/large distance” or “pointsv andw should have a smaller
distance than pointsv andx.”

Metric learning algorithms typically attempt to constructa trans-
formation of the data (either linear or non-linear) such that the
constraints are satisfied after applying a standard distance function
such as the Euclidean distance to the transformed data. The most
popular approach is to learn a linear transformation of the data;
these methods are often calledMahalanobis metric learningmeth-
ods, and is the approach we employ in this work (c.f., [4, 5, 6,19,
22]). These methods are desirable in that they show good general-
ization performance on a variety of problems, including in vision,
text, and music domains (c.f., [3, 15]).

Recently, there has been interest in applying metric learning over
large-scale data, or in cases when the standard methods thatprocess
a large set of constraints in a batch mode are inadequate. Such
onlinealgorithms instead process a single constraint at a time, and
are designed to give comparable performance as compared to their
offline counterparts. There has been recent theoretical progress in
proving regret bounds for online learning methods, which provide
worst-case guarantees on the performance of an online algorithm
as compared to any corresponding offline algorithm [13, 23].We
pursue an online approach in this paper to avoid the computational
cost of repeatedly applying offline learning methods to our data.

3. LEARNING THE DISTANCE METRIC
Algorithm 1 summarizes the process of learning and using a dis-

tance metric in an RL agent. There are three main steps which will
be detailed in the following sections:

1. Collect data while the agent explores the environment.

2. Decide which states are “more similar,” based on the related-
ness of agent transitions.

3. Use state relatedness to calculate a distance metric: states
which have similar transitions should be closer than states
which have dissimilar transitions.

3.1 Collecting Data
Algorithm 1 is the top-level algorithm. It first initializesan agent

(lines 1–4) and then has it interact with its environment fora single
episode (lines 5–11), collecting data to be used for distance metric
learning. Lines 12–31 consider triples of vectors, where a vector is
defined by a pair of states which the agent has moved between (i.e.,
the difference betweens′ ands). Lines 18 and 19 consider sets vec-
tors recorded at similar times (e.g., +/-NumPtsactions).We restrict
the vectors to be temporally similar under the assumption that tran-
sitions which occur in rapid succession are likely to be moresimilar
than transitions that happen at very different times. This assump-
tion is domain dependent, but will often be true, particularly when
NumPtsis set so that these vectors are also close spatially. How-
ever, even in “well behaved” domains there will be regions ofthe
state space where this assumption will be violated (e.g., anagent
may often move without obstruction, but be constrained whenad-
jacent to a wall).

We only consider sets of three vectors〈v, w, x〉 which have the
same action (line 22), as transitions for different actionsmay be
dissimilar. The similarities between vectorsv andw, and between
vectorsv andx are calculated on lines 23 and 24, as discussed in
the following section. Lines 27 and 30 add the triple to the set of
current constraints, which are in the form “v is more similar tox
thanv is tow.” Finally, after all the data from an episode has been
processed, the distance metric is updated with the set of constants.

On lines 33 and 34, the algorithm can decide if more data needs
to be collected. For instance, if anyWa has changed significantly

778

Algorithm 1 Main Algorithm (η)
1: π ← random policy
2: # initialize the dist. metric for each action
3: ∀a ∈ A, Wa ← Identity matrix (i.e., Euclidean distance)
4: i← 0
5: s← initial state # Begin an episode
6: repeat
7: Executea = π(s)
8: Observer ands′

9: Save tupleVi ← (s, a, s′)
10: s← s′

11: i← i + 1
12: until s is a terminal state # the episode ends
13: for j ∈ {0, . . . , i− 1} do
14: # get vector for transition between statesj ands′j
15: v ← Vj .s

′ − Vj .s #the vector froms to s′

16: a← Vj .a # the action in question
17: Ca ← ∅ # Set of constraints used to updateWa

18: for k ∈ {j − NumPts, . . . , j + NumPts} do
19: for l ∈ {j − NumPts, . . . , j + NumPts} do
20: w ← Vk.s′ − Vk.s # transitionk vector
21: x← Vl.s

′ − Vl.s # transitionl vector
22: if (a = Vk.a = Vl.a) and(v, w, x are distinct) then
23: rew ← CALCRELATEDNESS(Wa, v, w)
24: rex ← CALCRELATEDNESS(Wa, v, x)
25: if rew > rex then
26: # Relatedness(v,w)> Relatedness(v,x)
27: Ca ← Ca ∪ 〈v, w, x〉
28: else
29: # Relatedness(v,x)> Relatedness(v,w)
30: Ca ← Ca ∪ 〈v, x,w〉
31: # update the distance metric
32: Wa ← HOLLER(Wa, Ca, η)
33: if more data needed for distance learningthen
34: goto line 4
35: Learn a policy using an RL algorithm andW

during the last updated from the constraints, it is possiblethat more
data is needed forWa to converge. In this paper we instead run
the algorithm with different numbers of data collection episodes to
show how gathering additional data improves the estimate ofWa

and, therefore, the speed of learning (line 35).
In general, collecting data from the environment can be inter-

leaved with distance metric learning and with learning an action-
value function. Algorithm 1 simplifies this approach. Rather than
updating the distance metric on every time step, it is updated at the
end of every episode. This is primarily an implementation detail to
reduce the number of times the distance metric learning code(im-
plemented in MATLAB) was called by the simulator (implemented
in C).

3.2 Transition Similarity
Algorithm 1 reasons about pairs of vectors, where these vectors

describe transitions in the state space:s → s′. Algorithm 2 calcu-
lates the similarity of two vectors, given the current distance metric,
where the relatedness of two vectors is at most 1.0 (if they are iden-
tical in direction and magnitude). This similarity will be used in the
next section to calculate the distance metric under the assumption
that states that have similar transitions (for the same action) should
be closer in the state space than states that have dissimilartransi-
tions.

Algorithm 2 CALCRELATEDNESS(W,x, y)

1: ‖x‖ ←
√

xT Wx

2: ‖y‖ ←
p

yT Wy

3: m← min(‖x‖,‖y‖)
max(‖x‖,‖y‖)

4: c = xT Wy
‖x‖‖y‖

5: return c ·m

Algorithm 3 HOLLER(W,C, η)

1: for each constraint〈v, w, x〉 ∈ C do
2: Wnext←minimum over allWnext of:

Dℓd(Wnext, W)+η ·max(dWnext(v, w)−dWnext(v, x)+1, 0)

3: W ← Wnext

3.3 The HOLLER Algorithm
HOLLER (Hinge loss Online Logdet LEarner for Relative dis-

tances), as presented in Algorithm 3, is used to learn a distance
metricdW from a list of constraintsC and a learning rateη. Re-
call that each constraint〈v, w, x〉 indicates thatv should be closer
to w thanv is to x. The metric learning algorithm follows a stan-
dard online updating scheme: each constraint is visited once and
the metric is updated after seeing each constraint. As in most on-
line algorithms, we trade off conservativeness with correctiveness
when updating the metric. That is, we balance 1) keeping the metric
from changing too much from update to update, with 2) updating
the metric to satisfy the constraint. This tradeoff is controlled by
the learning rateη, and each update to the metric solves an opti-
mization problem that encodes this balance appropriately.

More specifically, we aim to learn a Mahalanobis distance func-
tion, which is parameterized by a positive semi-definite matrix W ,
and is given bydW (v, w) = (v − w)T W (v − w). Learning the
distance function corresponds to learning the matrixW . Note that
sinceW is positive semi-definite,W = GT G for some matrix
G, and it is straightforward to show that the Mahalanobis distance
functiondW is simply the squared Euclidean distance after apply-
ing the transformationG to the data points. When updatingW to
Wnext, we measure our conservativeness using the LogDet diver-
gence,

Dℓd(Wnext, W) = tr(WnextW
−1)− log det(WnextW

−1)− n,

where tr refers to the matrix trace andn is the number of rows
or columns ofW . This divergence measure is natural since posi-
tive semi-definiteness ofW is automatically maintained, and it has
several properties such as scale-invariance which are desirable for
metric learning problems. Further, the LogDet divergence has been
used extensively in the context of metric learning (e.g., [4, 6]). For
correctiveness, we attempt to enforce the constraintdW (v, w) ≤
dW (v, x) − 1, or equivalently,dW (v, w) − dW (v, x) + 1 ≤ 0,
as is standard for relative-distance metric learning algorithms [19].
This constraint ensures that the distance betweenv andw should be
much smaller than the distance betweenv andx. Given these two
components, we attempt to find the updated distance parameterized
by Wnext that minimizes the sum of the LogDet divergence between
Wnext andW (conservativeness) plus the error ofWnext not satis-
fying the current constraint using the hinge loss (correctiveness),
where the sum is balanced by the learning rateη. In particular, we
look for a matrixWnext that minimizes

Dℓd(Wnext, W) + η · ℓ(dWnext, v, w, x), (1)
whereℓ(dW , v, w, x) = max((dW (v, w) − dW (v, x) + 1, 0) is

779

thehinge lossfor the constraintdW (v, w) ≤ dW (v, x) − 1. The
solution of the minimization problem to computeWnextcan be com-
puted in closed-form in a manner similar to the online metriclearn-
ing algorithm of [6]. In particular, a pleasant and surprising aspect
of the update for our algorithm is that the solution toWnext can
be computed as a rank-two update to the matrixW ; this can be
shown by taking the gradient of (1), setting it to zero, and solving
for Wnext. Details of the update can be found in our publicly avail-
able MATLAB code, which show how to handle the gradient at the
“hinge” location.1

One key advantage of the above online algorithm is that one
can prove online regret bounds for this algorithm with appropri-
ate learning rate selection that guarantee that the metric produced
by the online algorithm performs similarly to the output of the
best possible offline metric learning algorithm (i.e., an algorithm
that performs updates of the metric in a batch mode using all con-
straints). Briefly, one defines the total loss of an online algorithm
as the sum of the losses over allT timesteps/constraints. Denote
the sequence ofW matrices constructed by the online algorithm as
W1, ..., WT , and similarly denote the sequence ofv, w, andx vec-
tors from each constraint asv1, .., vT , w1, .., wT , andx1, ..., xT .
Then we can define the total loss as

TX
t=1

ℓ(Wt, vt, wt, xt).

Analyses of online learning algorithms focus on theregret, which
is the difference between the total loss of the online learning algo-
rithm with the total loss of the best possible offline algorithm:

Reg =

TX
t=1

ℓ(Wt, vt, wt, xt)− argminW∗

TX
t=1

ℓ(W∗, vt, wt, xt).

The goal is to bound the regret as a function ofT , the total num-
ber of constraints processed. Our approach, which combinesthe
hinge loss with a convex regularizer, can be viewed as a special case
of the online learning framework discussed in Shalev-Shwartz and
Singer [13] (see Section 6, equation 38). In particular, with the ap-
propriate selection of learning rates as discussed in Shalev-Shwartz
and Singer, we can achieve regret that is bounded byO(

√
T). Fi-

nally, note that, while the proposed algorithm shares similarities to
existing methods (c.f., [6, 9]) and has been studied theoretically in
the context of a large class of online learning methods, we are not
aware of metric learning work based on LogDet conservativeness
and the standard hinge loss over relative distance constraints.

4. EMPIRICAL VALIDATION
This section introduces a set of six experiments showcasingthe

benefits of combining HOLLER with Fitted R-MAX .

4.1 2D Mountain Car Domain
This section introduces our experimental domain, a generalized

version of the well-studied mountain car task [14]. Mountain car is
particularly appropriate for this work as it is a simple domain with
continuous state space and can be easily parameterized to highlight
the strengths of HOLLER.

In mountain car, the agent must generalize across continuous
state variables in order to drive an underpowered car up a moun-
tain to a goal state. To make the problem more challenging than
the original formulation, the agent begins at rest at the bottom of
the hill.2 The reward for each time step is−1. The episode ends,

1Seecs.lafayette.edu/~taylorm/MetricLearn
2The mountain car task is typically deterministic: to introduce ran-
domness among trials, the initial position of the car in eachtrial’s

and the agent is reset to the start state, after 500 time stepsor if it
reaches the goal state.

In practice, one of the most difficult challenges for the agent is
to find the goal state the first time. After the goal state has been
seen at least once, RL algorithms are typically able to quickly learn
to consistently find the goal (albeit with different numbersof steps,
which determines reward). Effective exploration and generalization
is thus critical for agents to quickly find high-performing policies.

In the standard two dimensional mountain car task, two contin-
uous variables fully describe the agent’s state. The horizontal po-
sition (x) and velocity (̇x) are restricted to the ranges[−1.2, 0.6]
and [−0.07, 0.07] respectively. The state variables are automati-
cally scaled (linearly) to[−1, 1], as consistent with past work in
this domain [7, 14, 18]. If the agent reachesx = −1.2, (ẋ) is
set to zero, simulating an inelastic collision. On every time step
the agent selects from three actions, {Left, Neutral, Right},
which change the velocity by -0.001, 0, and 0.001, respectively.
Additionally, gravity is simulated by adding−0.025(cos(3x)) to
ẋ, which depends on the local slope of the mountain. The goal
states are those wherex ≥ 0.5. Our implementation mimics the
publicly available version of this task.3

4.2 Experimental Procedure
In order to learn in the 2D Mountain Car Domain, we first tune

the Fitted R-MAX learning parameters on the standard 2D task with-
out metric learning, and then tune the HOLLER learning parameters
on the standard 2D task. The primary consequence of this approach
is that the Fitted R-MAX parameters have not been tuned to take
advantage of the state variables after metric learning: results we
present are therefore biased against HOLLER. Additionally, neither
the Fitted R-MAX nor HOLLER parameters are tuned for the vari-
ants of the 2D mountain car problem, enabling a fair comparison
on the more complex task variants (discussed in Section 4.3).

1: The Standard 2D Mountain Car task is run where agents use
Fitted R-MAX with a variety of parameters. The parameters tuned
wereminFraction, which determines if the agent is allowed to end
its nearest neighbor approximation early,modelBreadth, which sets
how fine a uniform grid is used to generalize the state space, and
resolutionFactor, which determines the size of the regularly spaced
grid used to approximate saved instances. We found that values of
minFraction= 0.01,modelBreadth= 0.03, andresolutionFactor=
5 produced high-valued policies with few samples and allowed for
very fast experiments (in terms of wall clock time). These param-
eter settings are similar to those used in past experiments in this
domain and are explained in detail elsewhere [7, 17].

In order for HOLLER to learn a distance metric, it must have
data recorded from the task. To record this data, we allowed the
agent to explore the task (with a fully random policy) for differ-
ent numbers of episodes. The more episodes used for learningthe
metric, the more likely it will be accurate. However, the episodes
spent collecting data will count against the agent’s performance (as
discussed further in Section 4.3). After trying 6 differentvalues,
we decided to experiment with 1, 5, and 10 episodes of data for
HOLLER, affecting Algorithm 1, lines 33 and 34.

2: Given the data collected, HOLLER is then used to learn a dis-
tance metric. We experimented with 10 values ofη (a parameter
for Algorithm 1) from 0.0001–0.5 and found that 0.01 and 0.05
produced the best behavior on the 2D Mountain Car task for 1, 5,
and 10 episodes. The performance of 0.01 and 0.05 were not dis-

start state is perturbed by a random number in[−0.005, 0.005], as
was done previously in this domain [17].
3See http://library.rl-community.org/wiki/
Mountain_Car_(Java)

780

tinguishable, suggesting that HOLLER’s performance is not overly
dependent on this parameter. Experiments in the following sections
useη = 0.05. We also tested four values ofNumPts, the parame-
ter that determines how many temporally similar states to compare,
and found that a value of 10 produced slightly better resultsthan 1,
5, or 20.

3: Although HOLLER is designed to be an on-line algorithm, it
can be run multiple times over the same constraints if the data is
not immediately discarded (Algorithm 1, line 32). In our experi-
ments we tried iterating over the collected data for 1, 2, 3, 5, and
10 times. For 1, 5, and 10 episodes, iterating over the data twice
produced slightly better results than the other parameters, but the
differences between the final performance (as measured in the fol-
lowing sections) were small. In our experiments, we run iterate
over the collected data twice.

4: Having determined all the necessary parameters, HOLLER can
be used to learn a distance metric. Initially we learned a single dis-
tance metric per action. However, in the Mountain Car domain,
the action outcomes are similar enough that the learned distance
metrics for the different actions were indistinguishable.Therefore,
the experiments below focus on learning a single distance metric,
WNeutral (using only instances where the agent randomly executed
theNeutral action) and using that metric for allWa when learn-
ing an action-value function.

5: To evaluate HOLLER, we then learn the 2D Mountain Car
task using Fitted R-MAX , with and without the learned distance
metrics. The effect of the distance metric is compared in thefol-
lowing sections by evaluating the final and total rewards using both
the Euclidean distance and using the learnedWa.

4.3 2D Mountain Car Results
First, consider the distance metric,W , learned by HOLLER from

10 episodes worth of data. Examining the 10 trials, we find that

W =

"
0.119 ± 0.012 −0.006± 0.003

−0.006± 0.003 0.096 ± 0.008

#
,

where the± terms show the standard error. The values on the diag-
onal show thatx, the first state variable, is slightly more important
thanẋ, the second state variable. The off-diagonal values are very
small, showing that linear combinations of the two state variables
are not critical in this domain. However, it is impossible tosay
whether this distance metric is “correct” – instead, the utility of
this metric is in the observed performance of the RL agent.

Figure 1(a) shows learning curves for learning the 2D Mountain
Car task with Fitted R-MAX , both with (for 1, 5, or 10 episodes
of data) and without (No Metric Learning) HOLLER. The x-axis
shows the episode and the y-axis shows the average reward forthat
episode number. Error bars show the standard error over 10 in-
dependent trials. All experiments are averaged over 10 trials and
all experiments in this section are ended after 100 episodes. The
three trials that use HOLLER after collecting data for 1, 5, and 10
episodes learn to reach the goal very quickly, quickly outperform-
ing learning with the no distance metric. However, this analysis
does not account for the number of episodes spent collectingdata
(Algorithm 1, lines 5–11).

Figure 1(b) explicitly shows the time spent collecting datafor
HOLLER; for instance, when collecting data for 10 episodes, the
learning curve begins on episode 10, as episodes 0-9 are assumed
to have reward -500. To make the graph more readable, a 5-episode
sliding window is used and error bars are not shown. Additionally,
the performance of Sarsa (a popular model-free learning algorithm)
with CMAC function approximation is compared by using the same
parameters as those in the literature [7, 14, 17]), showing that Sarsa

agents take longer to discover the goal state, but that eventually
achieve a slightly higher reward.

One reasonable dimension along which to evaluate the effective-
ness of HOLLER would be the average reward at a set amount of
data (e.g., after 100 episodes). However, such a metric ignores the
“speed” of learning — Sarsa has a higher performance at episode
100 but suffers from a slow start. Analyzing the cumulative rewards
also shows that using Fitted R-MAX with HOLLER learning from 1
episode of data outperforms the other learning methods.

In the standard 2D Mountain Car problem, HOLLER with 1, 5,
and 10 episodes of data outperforms Fitted R-MAX without HOLLER

in terms of the final average reward and the cumulative reward. Ad-
ditionally, the difference in cumulative rewards is statistically sig-
nificant. While Sarsa outperforms Fitted R-MAX on this test both
in terms of final and cumulative reward, previous work has shown
that it is difficult for Sarsa to scale to higher-dimensionalversions
of this problem [18]. Experiments showing the superiority of Fitted
R-MAX are replicated later in Section 4.4. A summary of this and
other experiments can be found in Table 1.

4.3.1 Variant 1: Inflated State Variable
As a second task, we consider the more general case where the

range of the second state variable is not known. The state variable
ẋ still ranges from [-0.007, 0.007], but we assume that in order to
ensure that all data is scaled so that all state variable ranges are
within the expected range of [-1, 1],̇x is divided by 0.7 (rather
than 0.007), causing the observed range to become [-0.01, 0.01].
Such non-optimal scaling could occur if the human designer did
not know the true variable range and was being careful. Alterna-
tively, the range could be automatically determined through sam-
pling the minimum and maximum values, but two noisy readings
(one high and one low) could throw off the scaling. As seen in the
previous subsection, thex andẋ state variables are both important
for accurately predicting the transition function and we would ex-
pect that Fitted R-MAX , using parameters set for the standard 2D
mountain car task, will not perform as well as when it is coupled
with a learned distance metric.

As shown in Figure 2(a), the episodes spent learning the distance
metric initially hurt the learners: Fitted R-MAX without a distance
metric initially outperform an agent that collected 10 episodes of
data for HOLLER. However, the final average reward and average
cumulative reward is better for all three settings of the HOLLER

agents, although the differences are only statistically significant
about half of the time (see Table 1 for Student’s t-test results).

4.3.2 Variant 2: Sensor and Actuator Noise
To test the efficacy of HOLLER in the presence of noise, we next

consider a variant of mountain car that includes partial observabil-
ity and stochasticity. As before, the position and velocitystate
variables are scaled to the range[−1, 1] and then Gaussian noise
is added to the agent’s observation, drawn randomly on each time
step fromN (0, 0.1). Similarly, on every time step, the agent’s ve-
locity is multiplied by zero-mean noise drawn fromN (0, 0.01).

Figure 2(b) shows that although the noise makes learning more
difficult for all learners (i.e., their reward is lower than agents in
Figure 1(b)), HOLLER is able to learn distance metric functions that
allow the agents to outperform the default scaling. This is apartic-
ularly important test as it shows that HOLLER is robust to noise,
as desired. Using HOLLER produces a higher final and cumulative
reward in all three cases, although only the differences between the
cumulative rewards are statistically significant.

4.3.3 Variant 3: Irregular Action Function
Next, consider the situation where the transition functionis highly

781

-500

-450

-400

-350

-300

-250

-200

-150

-100

 0 20 40 60 80 100

R
ew

ar
d

Episodes

2D Mountain Car

No Metric Learning
1 Episode

5 Episodes
10 Episodes

Sarsa

(a) The episodes used by HOLLER are ignored, with standard error

-500

-450

-400

-350

-300

-250

-200

-150

-100

 0 20 40 60 80 100

R
ew

ar
d

Episodes

2D Mountain Car

No Metric Learning
1 Episode

5 Episodes
10 Episodes

Sarsa

(b) 2D Normal

Figure 1: These figures show the same learning curve data where the x-axis is the episode number and the y-axis shows the reward. In (a), the y-axis
shows the average reward on a given episode (higher is better) with the standard error. (b) also shows the average reward per episode, but accounts
for the episodes spent learning the distance metric and usesa 5-episode sliding window.

dependent on the state, as was done in the 2009 Reinforcement
Learning Competition (c.f.,http://2009.rl-competition.
org/ and [21]). In particular, the actions 0–2 (Left, Neutral,
and Right) were mapped such that the action executed by the
agent depended oṅx anda (the action selected by the agent). The
action executed by the car in the simulator was„

a +

„
ẋ + 0.07

0.14
· 99.0

««
mod 3.

As expected, Figure 3(a) shows that learning a metric significantly
improves learning, both in terms of the final reward and cumulative
reward, as the learned metric can automatically increase the reso-
lution to ẋ, allowing it to better approximate a transition function
significantly more complex than for the standard 2D mountaincar.

4.3.4 Variant 4: A Third, Irrelevant, State Variable
As a final variant for the 2D Mountain Car task, we consider

adding an additional irrelevant state variable. Although the transi-
tion and reward functions still depend only onx and ẋ, the agent
is provided a random number as a third feature on every time step.
This state variable is drawn uniformly in [-0.025, 0.025]. As Fig-
ure 3(b) shows, this additional state variable significantly degrades
the performance of Fitted R-MAX with a Euclidean distance met-
ric as it must now generalize its data over an extra dimension(i.e.,
it suffers from the“curse of dimensionality”). However, HOLLER

allows this third state variable to be de-valued, allowing the agents
learn almost as well as in the standard 2D mountain car task.

HOLLER is not dependent on the number of state variables: al-
though Fitted R-MAX can generally not scale to high-dimensional
spaces, using HOLLER would allow an experimenter to eliminate
irrelevant state variables, potentially enabling this andother meth-
ods to scale to much higher dimensional spaces.

4.4 4D Mountain Car
The 4D Mountain Car task extends the 2D task so that there are

four state variables (x, ẋ, y, ẏ) and the agent selects from five ac-
tions (Neutral, West, East, South, North) [18]. The transi-
tion function is similar to the 2D case, but now takes into account
the extra dimensions. Likewise, the goal region is nowx ≥ 0.5 and
y ≥ 0.5. Our task implementation is based on a publicly available
implementation.4 This task is much more difficult than the 2D task

4http://library.rl-community.org/wiki/
Mountain_Car_3D_(CPP)

because of the increased state space size and additional actions.
After initial experimentation without distance metric learning, we
set the parameters of Fitted R-MAX to be similar to past work [17]
minFraction= 0.3,modelBreadth= 0.3, resolutionFactor= 3, and
agents train for a total of 250 episodes.

As shown in Figure 3(c), the final and cumulative performance
of learners using HOLLER is higher than those that rely on the
Euclidean distance metric. Also, note that Sarsa, using thesame
parameters set in the literature [18], does much wore than Fitted
R-MAX , due to the high-dimensional space. Sarsa agents do not
consistently find the goal state until after 2,000 episodes,requiring
roughly two orders or magnitude more data than the instance-based
learning method (with or without metric learning).

Taken as a whole, and summarized in Table 1, these experiments
show that HOLLER can successfully improve learning performance
on a variety of tasks, both in terms of final and cumulative reward.

5. RELATED WORK
The most similar distance metric learning work has been dis-

cussed earlier in Sections 2.3 and 3.3. This section focuseson the
most relevant existing reinforcement learning algorithms.

Graph-based approaches to learning state representations, such
as usingproto-value functions[10], typically focus on using a known
connectivity graph (e.g., a transition function) to learn a(near-) op-
timal set of features. By using the eigenvectors of the connectiv-
ity graph’s Laplacian, very accurate representations of anMDP’s
value function can be learned. However, proto-value function work
does not typically consider the sample complexity of learning such
a connectivity graph — our work is directly concerned with mini-
mizing the amount of environmental samples needed to learn astate
representation and thus attempt to maximize the on-line reward.

The Bellman Error Basis Functions (BEBF) [12] method relies
on iteratively adding basis functions, where each basis function is
constructed to improve the Bellman error over the previous set of
basis functions. BEBF differs from the current work primarily in its
aim — while the BEBF work examines relatively simple RL tasks
with the goal of constructing very accurate value functionsfrom
hundreds of thousands of samples, HOLLER instead aims to con-
struct a distance metric with relatively little data that can be used to
both guide exploration and improve value function estimation.

In a supervised learning setting, unlike in RL, training sets pro-
vide the correct target label, enabling a more straightforward appli-

782

-500

-450

-400

-350

-300

-250

-200

-150

 0 20 40 60 80 100

R
ew

ar
d

Episodes

2D Mountain Car: Scaled Velocity

No Metric Learning
1 Episode

5 Episodes
10 Episodes

(a) 2D, Scaled Velocity

-500

-450

-400

-350

-300

-250

-200

-150

-100

 0 20 40 60 80 100

R
ew

ar
d

Episodes

2D Mountain Car: Sensor and Actuator Noise

No Metric Learning
1 Episode

5 Episodes
10 Episodes

(b) 2D, Sensor and Actuator Noise

Figure 2: A learned distance metric improves both the total and final
reward when the velocity state variable is incorrectly scaled (a) and
when there is noise in both the sensors and actuators (b).

cation of distance metric learning. For instance,Metric Learning
for Kernel Regression[20] (MLKR) is a metric learning method
designed for regression problems.

Three recent papers presented at ECML-10 also tackle similar
problems. Nouri and Littman [11] build upon MLKR to create
theDimension Reduction in Explorationalgorithm. The algorithm
constructs a set of “factorized” MLKR problems (F-MLKR), un-
der the assumption that individual state features for resulting states
are independent of each other, where one MLKR problem is con-
structed per state feature, per action, for a total of||A|| × ||S||
F-MLKR regressors. F-MLKR agents must also be provided the
reward function, unlike in HOLLER, where the reward is learned.
Additionally, agents that use HOLLER benefit from dimensionally
reduction as well as proper scaling of state variables, and can be
combined with existing RL methods.

The second recent paper, Jung and Stone [8], trains multiple
Gaussian processes in batches to approximate the transition func-
tion. The GP-RMAX algorithm requires a deterministic transition
function, must be provided the reward function. In contrastto
both F-MLKR and GP-RMAX, HOLLER learns a distance func-
tion for the entire state space based on few samples, which means
that HOLLER can quickly generalize over the entire state space.

The third paper [2] presents an actor-critic method to determine
where to place basis functions and what parameterization they should

-500

-450

-400

-350

-300

-250

-200

-150

-100

 0 20 40 60 80 100

R
ew

ar
d

Episodes

2D Mountain Car: Modified Actions

No Metric Learning
1 Episode

5 Episodes
10 Episodes

(a) 2D, Custom Action Mapping

-500

-450

-400

-350

-300

-250

-200

-150

-100

 0 20 40 60 80 100

R
ew

ar
d

Episodes

3D Mountain Car: 3rd Feature Random

No Metric Learning
1 Episode

5 Episodes
10 Episodes

(b) 3D, Irrelevant State Variable

-500

-450

-400

-350

-300

-250

-200

 0 50 100 150 200 250

R
ew

ar
d

Episodes

4D Mountain Car

No Metric Learning
1 Episode

5 Episodes
10 Episodes

Sarsa

(c) 4D Mountain Car: Performance

Figure 3: Figures (a) and (b) show howHOLLER produces better
learning in task with a custom action mapping and with an irrelevant
state variable, respectively. In (c), learning curves are averaged over
ten trials with a 10-episodes sliding window.

have, rather than learning a single metric that is useful across the
state space (independent of the function approximator parameteri-
zation). Additionally, we note that the authors test their algorithm
on an easier version of mountain car (where the agent starts at a ran-
dom state rather than the bottom of the hill, making exploration sig-

783

Domain Algorithm Final Ave. Stat. Cumulative Stat.
Reward Sig. Reward Sig.

Fitted R-MAX -126 -17600
2D: HOLLER-1 -118 -13620 X

Standard HOLLER-5 -118 -14783 X
HOLLER-10 -117 -16440 X

Sarsa -106 X -19755 (X)
Fitted R-MAX -268 -28050

2D: HOLLER-1 -227 -25380
Scaled HOLLER-5 -199 X –24740 X

HOLLER-10 -199 X –26000
Fitted R-MAX -157 -23600

2D: HOLLER-1 -136 -16840 X
Noisy HOLLER-5 -141 -17240 X

HOLLER-10 –150 -18733 X
2D: Fitted R-MAX -260 -36190

Convoluted HOLLER-1 -154 X -19990 X
Actions HOLLER-5 -161 X –22660 X

HOLLER-10 -177 X -25460 X
3D: Fitted R-MAX -164 -26360

Irrelevant HOLLER-1 -128 X –14500 X
Feature HOLLER-5 -117 X -14840 X

HOLLER-10 -124 X -17630 X
Fitted R-MAX -291 -36190

4D: HOLLER-1 -225 -19990 X
Standard HOLLER-5 -239 -22663 X

HOLLER-10 -241 -25460 X
Sarsa -500 (X) -50000 (X)

Table 1: This table summarizes all experiments, averaging over ten
independent trials. The third column shows the average reward at the
end of the trial (250 episodes for the 4D task, 100 episodes for all oth-
ers). The fourth column has a check if the difference in the final reward
is statistically significantly different from learning wit h Fitted R-MAX

without a learned distance metric, as determined byp < 0.05 on Stu-
dent’s t-test results. The fifth and sixth columns report theaverage cu-
mulative reward and whether the difference in the cumulative rewards
and Fitted R-MAX are statistically significant.

nificantly easier), but their algorithm takes thousands of episodes to
converge.

6. CONCLUSION AND FUTURE WORK
This paper has introduced HOLLER and shown how it can be

combined with an off-the-shelf instance based RL algorithm. Em-
pirically, this novel distance metric learning algorithm significantly
improves learning efficacy in a number of different tasks, includ-
ing noise and irrelevant state variables. One of the key benefits of
HOLLER is that very little data is required to learn an appropriate
state representation and thus the on-line reward can be significantly
improved relative to learning with a Euclidean distance metric.

In the future, we intend to try to fully integrate learningW
and a control policy simultaneously. While such an integration
would not be critical in domains where the distance metric can be
quickly learned, it may prove useful in more complex and higher-
dimensional tasks. We also are interested in attempting to further
improving the efficacy of HOLLER by trying establish appropriate
decay rates forη (rather than using a fixed learning rate), combin-
ing the updates from multiple actions (rather than learningeachWa

in isolation), and trying to tune exploration to learnW as quickly as
possible (rather than relying on random exploration). Lastly, while
this paper has focused on Fitted R-MAX , we expect that HOLLER

would be beneficial to other instance-based RL methods, as well
as model-free methods. For instance, future work could examine
how W could be used by Sarsa to help select, or parameterize, its
function approximator so that the value function can bettermatch
the underlying topology of the state space without relying on hu-
man intuition or simple estimates of state variable ranges.Lastly,

it would be interesting to empirically compare our Mahalanobis
distance approach, with the LogDet loss function, to alternative ap-
proaches.

Acknowledgements
The authors would like to the anonymous reviewers and Tobias
Jung for useful comments and suggestions.

7. REFERENCES
[1] J. S. Albus.Brains, Behavior, and Robotics. Byte Books,

Peterborough, NH, 1981.
[2] D. D. Castro and S. Mannor. Adaptive bases for

reinforcement learning. InECML, 2010.
[3] J. Davis and I. Dhillon. Structured metric learning for

high-dimensional problems. InKDD, 2008.
[4] J. Davis, B. Kulis, P. Jain, S. Sra, and I. Dhillon.

Information-theoretic metric learning. InICML, 2007.
[5] A. Globerson and S. Roweis. Metric learning by collapsing

classes. InNIPS, 2005.
[6] P. Jain, B. Kulis, I. Dhillon, and K. Grauman. Online metric

learning and fast similarity search. InNIPS, 2008.
[7] N. K. Jong and P. Stone. Model-based Function

Approximation for Reinforcement Learning. InAAMAS,
2007.

[8] T. Jung and P. Stone. Gaussian processes for sample efficient
reinforcement learning with RMAX-like exploration. In
ECML, 2010.

[9] B. Kulis and P. Bartlett. Implicit online learning. InICML,
2010.

[10] S. Mahadevan and M. Maggioni. Proto-value functions: A
Laplacian framework for learning representation and control
in Markov decision processes.Journal of Machine Learning
Research, 8:2169–2231, 2007.

[11] A. Nouri and M. L. Littman. Dimension reduction and its
application to model-based exploration in continuous spaces.
In ECML PKDD, 2010.

[12] R. Parr, C. Painter-Wakefield, L. Li, and M. L. Littman.
Analyzing feature generation for value-function
approximation. InICML, 2007.

[13] S. Shalev-Shwartz and Y. Singer. A primal-dual perspective
of online learning algorithms.Machine Learning Journal,
2(69):115–142, 2007.

[14] S. Singh and R. S. Sutton. Reinforcement learning with
replacing eligibility traces.Machine Learning, 22:123–158,
1996.

[15] M. Slaney, K. Weinberger, and W. White. Learning a metric
for music similarity. InISMIR, 2008.

[16] R. S. Sutton and A. G. Barto.Introduction to Reinforcement
Learning. MIT Press, 1998.

[17] M. E. Taylor, N. K. Jong, and P. Stone. Transferring
instances for model-based reinforcement learning. InECML
PKDD, 2008.

[18] M. E. Taylor, G. Kuhlmann, and P. Stone. Autonomous
transfer for reinforcement learning. InAAMAS, 2008.

[19] K. Weinberger, J. Blitzer, and L. Saul. Distance metric
learning for large margin nearest neighbor classification.In
NIPS, 2006.

[20] K. Q. Weinberger and G. Tesauro. Metric learning for kernel
regression. InAI-STATS, 2007.

[21] S. Whiteson, B. Tanner, and A. White. The reinforcement
learning competitions.AI Magazine, 31(2):81–94, 2010.

[22] E. Xing, A. Ng, M. Jordan, and S. Russell. Distance metric
learning, with application to clustering with
side-information. InNIPS, 2002.

[23] M. Zinkevich. Online convex programming and generalized
infinitesimal gradient ascent. InICML, 2003.

784

