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ABSTRACT
In this paper, we propose a new approach to using probabilistic hi-
erarchical task networks (HTNs) as an effective method for agents
to plan in conditions in which their problem-solving knowledge is
uncertain, and the environment is non-deterministic. In such situ-
ations it is natural to model the environment as a Markov decision
process (MDP). We show that using Earley graphs, it is possible to
bridge the gap between HTNs and MDPs. We prove that the size
of the Earley graph created for given HTNs is bounded by the total
number of tasks in the HTNs and show that from the Earley graph
we can then construct a plan for a given task that has the maximum
expected value when it is executed in an MDP environment.
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1. INTRODUCTION
Although the complexities of planning in the real-world are bet-

ter captured by stochastic formalisms such as Markov Decision
Processes (MDPs), domain specification using these formalisms is
a very complex task for all but trivial scenarios. By contrast, clas-
sical planning formalisms are more intuitive to non-experts where
one particular formalism, Hierarchical Task Networks (HTNs) be-
ing the formalism of choice for planning in deterministic domains.
In this paper, we propose a method to bridge the gap between HTNs
and MDPs by performing maximum expected utility (MEU) plan-
ning on an HTN domain specified in terms of a hierarchy of tasks
induced by a library of methods. To accomplish this, we look at
the HTN methods as if they were the rules of a context-free gram-
mar and apply our own modified version of an Earley parser [3] to
generate a data structure known as Earley state chart [4]. Earley
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parsing is a dynamic programming technique widely used in the
efficient processing of natural language that has been adapted to
parse sentences probabilistically in order to cope with the ambigu-
ity inherent to human languages. The semantic representation in
the Earley state chart naturally leads to a probabilistic semantics,
as well as algorithms for probabilistic context free grammar pars-
ing. This class of algorithm performs a parallel top-down search
over all possible grammar parses for a given input sentence, and its
complexity is bounded by O(N3) on the number of input words [3].

Our adaptation of Earley parsing for probabilistic HTN planning
was inspired by earlier efforts relating task decomposition to gram-
mar parsing [1].In constructing our modified Earley graph, we take
into consideration the preconditions of tasks and the effects of ac-
tions to make sure that the generated plans follow the constraints
imposed by the HTN domain specification. While earlier work re-
lates planning and parsing only for deterministic domains, we ex-
tend this concept into probabilistic domains by annotating probabil-
ities in the HTN methods, allowing us to calculate the probabilities
of generating plans in the domain. Furthermore, we allow a user to
specify rewards for specific states in the HTN specification in the
same way as goal states are specified in classical planning, allow-
ing us to use the Earley graph to calculate the expected utilities of
these plans, and ultimately allowing us to perform MEU planning
conforming with HTN constraints.

2. FROM METHODS TO EARLEY GRAPHS
The core of our approach consists of adapting the Earley pars-

ing approach of [4] to accommodate the components of states (of
preconditions and effects), and task decompositions. The approach
keeps track of the decomposition procedure for the set of all possi-
ble execution trajectories using the methods from an HTN domain.
This is done by modifying the concept of Earley states to include
the information of states and actions in addition to the task decom-
positions. To avoid the naming conflict with the state space of a
planning domain, we call these modified states Earley nodes.

DEFINITION 1. Let m = 〈t,H〉 be an HTN method, t be a task
and H = 〈T,C〉 be an HTN with tasks T and constraints C. From
m we generate |T| Earley nodes. Each Earley Node EN is of the
form ENm,ti = 〈m, ti〉 where ti ∈ network(m). For notational con-
venience, we denote m by method(ENm,ti ), ti by current(ENm,ti ),
and task(m) by root(ENm,ti ).

DEFINITION 2. An Earley graph for a method library M is a
graph G = 〈N , E〉 where

• N = {EN} is a set of Earley nodes; and

1143



• E is the set of Earley links of three types:
– A predicting link 〈ENm,ti ,ENm′,t′start

〉 where task(m′) =

ti and t′start = start(m′) is the starting task of m′ which
precedes all the other tasks in m′. ENm′,t′start

is called a
predicting node.

– A scanning link 〈ENm,a,ENm,ti〉 where a is a primitive
task in m, and ti = next(m, a) is a task immediate suc-
ceeding a in m. ENm,a is called a scanning node.

– A completing link 〈ENm′,t′end
,ENm,ti〉where t′end = end(m′)

is the ending task of m′, and ti = next(m, task(m′)) is
an immediate task succeeding task(m′) in m. ENm′,t′end
is called a completing node.

A predicting link 〈ENm,ti ,ENm′,t′start
〉 marks a possible decomposi-

tion of a task ti; a completing link 〈ENm′,t′end
,ENm,ti〉 marks a pos-

sible completion of a task in m resulting in the investigation of the
next task ti in m; a scanning link marks an execution of a primitive
task a resulting in the investigation of the next task ti in m.

In an Earley graph, a path from ENm,tstart to ENm,tend corresponds
to a decomposition of task(m) and an execution trajectory of task(m)
according to the methods in the library M if the traversal of the
paths are carefully managed to ensure that 1) the task decomposi-
tions corresponding to the path are valid, and 2) the preconditions
of the methods and primitive tasks in the path are met. The first
condition is to avoid the mismatch of a completing node into a par-
ent method which doesn’t invoke such a method. The Earley graph
enables us to do this kind of dynamic programming with complex-
ity bounded by the size of the Earley graph. After the relaxation,
we can assign probability to the predicting and completing links to
model the uncertainty in which decompositions can be valid.

3. INTEGRATING HTNS AND MDPS
In a classic MDP problem, the solution of an MDPs is a policy,

which indicates the best action to take in each state. Thus, an MDP
policy is a total function mapping states into actions, so a policy π
is represented as a function π : S→ A. Information on the rewards
of states makes it possible to compute the value of a a given state
under a particular policy π – it is the expected value of carrying out
the policy from that state, given some discount factor γ. While in
the literature, other solution concepts have been proposed (such as
decision trees [2]), we focus on the concept of probabilistic hier-
archical planning, therefore we will adopt the task decomposition
solution concept of HTN planning while obtaining the maximum
expected rewards for this task decomposition.

3.1 Semantics of an HTN Earley Graph
The probabilities assigned to the Earley links are about the un-

certainty in decomposing tasks. The predicting link stores the sub-
jective knowledge on how probable it is that a method can be used
to successfully decompose a task, so it is assigned number Pr(m|t).
A scanning link is assigned probability 1 because in terms of task
decomposition, encountering a primitive task in the task network
means that we will move to the next task of the encounter task with
probability 1. Thus, the probability of a path 〈EN0,EN1, . . . ,ENN〉
extracted by our technique is

Pr(〈EN0,EN1, . . . ,ENN〉) = Pr(EN0|EN1)×. . .×Pr(ENn−1|ENn)

This is the probability of a pure task network decomposition which
models the uncertainty of how computer program or a human ex-
pert uses a library of methods to achieve a task corresponding to
root(EN0) assuming that the method choices for any two tasks are
independent.

3.2 Utility of Earley Paths
Given a decomposition-execution path de, the value of this path

is the sum of all the rewards encountered V(de) = Σaj∈deR(sj).
The expected value of a decomposition path is

V(path) = Σde∈DE(path) (V(de) · Pr(de))
Similar to the MDP value computation, the expected value of a path
can be computed iteratively with the Earley graph. Let subpath(s,EN)
be the subpath of path starting from 〈s,EN〉, we define Vpath(s|EN) =
V(subpath(s,EN)) and Vpath(EN) = ΣsVpath(s|EN). Related to a
decomposition path = 〈EN0, . . . ,ENn〉, we define the value of the
fully complete Earley node ENn to be

Vpath(s|ENn) = R(s).
If ENi+1 is a predicting or completing node, we define

Vpath(s|ENi) = Pr(ENi+1|ENi) · V(s|ENi)

If ENi+1 is a scanning node, we define

Vpath(s|ENi) =

Pr(ENi+1|ENi) ·
(

R(s) + Σs′Pr(s′|s, a) Vpath(s′|ENi+1)
)

We can then traverse the Earley graph for paths corresponding to
valid task decompositions with a stack tracking the start and com-
pletion of methods. Using dynamic programming, the traversal can
be focused towards paths with maximum expected utilities.

4. CONCLUSIONS AND FUTURE WORK
Our ultimate goal here is not only to perform probabilistic hierar-

chical planning for an uncertain environment, but also to utilize the
approach for multiagent system control. A system of cooperative
agents could thus communicate to share the same set of task net-
works while working in the same environment with the same char-
acteristics of uncertainty. As every agent can construct the same
Earley graph structure from the task network library, we will be
able to incrementally adapt to the environment and revise their task
decomposition probabilities. Thus, the multiagent system can con-
verge to a set of cooperative behaviors prescribed by the shared
set of task networks. The resulting system allows us to specify its
group behaviors in a way that is close to how humans perform prob-
lem solving while accommodating uncertainty both in the knowl-
edge of problem solving and the in the environment.
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