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ABSTRACT
Scheduling agents can use the Multiagent Simple Temporal
Problem (MaSTP) formulation to efficiently find and repre-
sent the complete set of alternative consistent joint schedules
in a distributed and privacy-maintaining manner. However,
continually revising this set of consistent joint schedules as
new constraints arise may not be a viable option in environ-
ments where communication is uncertain, costly, or otherwise
problematic. As an alternative, agents can find and repre-
sent a temporal decoupling in terms of locally independent
sets of consistent schedules that, when combined, form a set
of consistent joint schedules. Unlike current algorithms for
calculating a temporal decoupling that require centralization
of the problem representation, in this paper we present a
new, provably correct, distributed algorithm for calculating
a temporal decoupling. We prove that this algorithm has
the same theoretical computational complexity as current
state-of-the-art MaSTP solution algorithms, and empirically
demonstrate that it is more efficient in practice. We also
introduce and perform an empirical cost/benefit analysis
of new techniques and heuristics for selecting a maximally
flexible temporal decoupling.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence

General Terms
Algorithms, Experimentation, Theory

Keywords
Multiagent Scheduling, Temporal Decoupling Problem

1. INTRODUCTION
A scheduling agent is often responsible for independently

managing the scheduling constraints of its user, while also
ensuring that its user’s schedule coordinates with the sched-
ules of other agents’ users. In many scheduling environments,
agents must also react to new constraints that arise over
time, either due to volitional decisions by the agents (or their
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users) or due to the dynamics of the environment. Agent
coordination is further challenged by desires for privacy and
uncertain, costly, or otherwise problematic communication.
Fortunately, scheduling agents can use the Multiagent Simple
Temporal Problem (MaSTP) formulation to, in a distributed
and efficient manner, find and represent sets of alternative
consistent joint schedules to these types of complex, multia-
gent scheduling problems [3, 2].

As an example of this type of problem, suppose three
student colleagues, Ann, Bill, and Chris, have each selected
a tentative morning schedule (from 8:00 to noon) and have
each tasked a personal computational scheduling agent with
maintaining his/her schedule. Ann will have a 60 minute
run with Bill before spending 90 to 120 minutes on a group
project (after picking up deliverables that Chris will leave
in the lab); Bill will have a 60 minute run with Ann before
spending 60 to 180 minutes working on homework; and finally,
Chris will work on the group project for 90-120 minutes and
drop it off in the lab before attending a lecture from 10:00
to 12:00. This example is displayed graphically as a distance
graph (explained in Section 2.1) in Figure 1(a).

One approach for solving this problem is to represent the
set of all possible joint schedules that satisfy the constraints,
as displayed in Figure 1(b). In this approach, if a new, non-
volitional constraint arrives (e.g., Chris’ bus is late), the
agents can easily recover by simply eliminating inconsistent
joint schedules from consideration. However, doing so may
still require communication (e.g., Chris’ agent should com-
municate that her late start will impact when Ann can start,
and so on). In fact, this communication must continue (e.g.,
until Chris actually completes the project, Ann does not
know when she can start), otherwise agents could make in-
consistent, concurrent decisions. For example, if Ann decides
she wants to run at 8:00, while Bill simultaneously decides he
wants to run at 9:00 (both allowable possibilities), Ann and
Bill’s agents will inadvertently introduce an inconsistency.
An alternative to this approach, displayed graphically in
Figure 1(d), is for agents to simply select one joint schedule
from the set of possible solutions. However, as soon as a new,
non-volitional constraint arrives (e.g., Chris’ bus arrives late
by even a single minute), this exact, joint solution may no
longer be valid. This, in turn, can require agents to regener-
ate a new solution every time a new constraint arrives, unless
that new constraint is consistent with the selected schedule.
Due to either a lack of robustness or lack of independence,
neither of these two approaches is likely to perform well in
time-critical, highly-dynamic environments.

Fortunately, there is a third approach that balances the
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(a) Original Example MaSTP. 

(b)  Decomposable(PPC) Version. 
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(c)  Decoupled Version. 

(d)  Fully Assigned Version. 

Chris 

10: 00,10: 00  

Ann Bill 

𝐿𝑆𝑇
𝐶  

90,120  

120,120  

60,60  

90,120  

60,60  

60,135  

12: 00,12: 00  10: 00,10: 30  10: 30,12: 00  

𝐿𝐸𝑇
𝐶  𝐺𝑃𝑆𝑇

𝐴  𝐺𝑃𝐸𝑇
𝐴  

9: 45,11: 00  10: 45,12: 00  

𝐻𝑊𝐸𝑇
𝐵  

8: 00,8: 30  9: 30,10: 00  8: 45,8: 45  9: 45,9: 45  8: 45,8: 45  9: 45,9: 45  

𝐺𝑃𝑆𝑇
𝐶  𝐺𝑃𝐸𝑇

𝐶  𝑅𝑆𝑇
𝐴  𝑅𝐸𝑇

𝐴  𝑅𝑆𝑇
𝐵  𝑅𝐸𝑇

𝐵  

𝐻𝑊𝑆𝑇
𝐵  

60,105  

Figure 1: The distance graph corresponding to the
(a) original, (b) decomposable, (c) decoupled, and
(d) fully assigned, versions of our example MaSTP.

robustness of Figure 1(b) with the independence of Figure
1(d). Agents can find and maintain a temporal decoupling,
which is composed of independent sets of locally consistent
schedules that, when combined, form a set of consistent joint
schedules [4]. An example of a temporal decoupling is dis-
played in Figure 1(c), where, for example, Chris’ agent has
agreed to complete the group project by 10:00 and Ann’s
agent has agreed to wait to begin work until after 10:00.
Not only are agents’ schedules no longer interdependent, but
agents also still maintain sets of locally consistent schedules.
Now when Chris’ bus is late by a minute, Chris’ agent can
“absorb” this new constraint by independently updating its
local set of schedules, without requiring any communication
with any other agent. The advantage of this approach is that
once agents establish a temporal decoupling, there is no need
for further communication unless (or until) a new (series
of) non-volitional constraint(s) render the chosen decoupling
inconsistent. It is only if and when a temporal decoupling
does become inconsistent (e.g., Chris’ bus is more than a
half hour late, violating her commitment to finish the project
by 10:00) that agents must calculate a new temporal decou-
pling (perhaps establishing a new hand-off deadline of 10:15),
and then once again independently react to newly-arriving
constraints, repeating the process as necessary.

Unfortunately, the current temporal decoupling algorithms
[4, 7] require centralizing the problem representation at some

“coordinator” who sets the decoupling constraints for all. The
computational, communication, and privacy costs associated
with centralization may be unacceptable in multiagent plan-
ning and scheduling applications, such as military, health
care, or disaster relief, where agents specify problems in a
distributed fashion, expect some degree of privacy, and must
provide unilateral, time-critical, and coordinated scheduling
assistance. In this paper, we contribute new, distributed
algorithms for calculating a temporal decoupling, prove the
correctness, privacy implications, and runtime properties of
these algorithms, and perform an empirical comparison that
shows that these algorithms calculate a temporal decoupling
that approaches the best centralized methods in terms of
flexibility, but with less computational effort than current
MaSTP solution algorithms.

2. PRELIMINARIES
In this section we provide definitions necessary for under-

standing our contributions, using and extending terminology
from the literature.

2.1 Simple Temporal Problem
As defined in [3], the Simple Temporal Problem (STP),
S = 〈V,C〉, consists of a set of timepoint variables, V , and
a set of temporal difference constraints, C. Each timepoint
variable represents an event, and has an implicit, continuous
numeric domain. Each temporal difference constraint cij
is of the form vj − vi ≤ bij , where vi and vj are distinct
timepoints, and bij ∈ R is a real number bound on the
difference between vj and vi. To exploit extant graphical
algorithms and efficiently reason over the constraints of an
STP, each STP is associated with a weighted, directed graph,
G = 〈V,E〉, called a distance graph. The set of vertices
V is as defined before (each timepoint variable acts as a
vertex in the distance graph) and E is a set of directed edges,
where, for each constraint cij of the form vj − vi ≤ bij , we
construct a directed edge, eij from vi to vj with an initial
weight wij = bij . As a graphical short-hand, each edge from
vi to vj is assumed to be bi-directional, compactly capturing
both edge weights with a single label, [−wji, wij ], where
vj−vi ∈ [−wji, wij ] and wij is initialized to∞ if there exists
no corresponding constraint cij in P . All times (e.g. ‘clock’
times) can be expressed relative to a special zero timepoint
variable, z ∈ V , that represents the “start of time”. Bounds
on the difference between vi and z are expressed graphically
as “unary” constraints specified over a timepoint variable
vi. Moreover, wzi and wiz then represent the earliest and
latest times, respectively, that can be assigned to vi, and
thus implicitly define vi’s domain. In this paper, we will
assume that z is always included in V and that, during the
construction of G, an edge ezi is added from z to every other
timepoint variable vi ∈ V .

An STP is consistent if there exist no negative cycles in
the corresponding distance graph. A consistent STP contains
at least one solution , which is an assignment of specific time
values to timepoint variables that respects all constraints
to form a schedule. A decomposable STP represents the
entire set of solutions by establishing the tightest bounds on
timepoint variables such that: (1) no solutions are eliminated
and (2) any assignment of a specific time to a timepoint vari-
able that respects these bounds can be extended to a solution
with a backtrack-free search using constraint propagation.
Full-Path Consistency (FPC) works by establishing de-
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composability of an STP instance in O(|V |3) by applying an
all-pairs-shortest-path algorithm, such as Floyd-Warshall, to
the distance graph to find the tightest possible path between
every pair of timepoints, vi and vj , forming a fully-connected
graph, where ∀i, j, k, wij ≤ wik +wkj . The resulting graph is
then checked for consistency by validating that there are no
negative cycles, that is, ∀i 6= j, ensuring wij + wji ≥ 0 [3].

An alternative for checking STP consistency is to es-
tablish Directed Path Consistency (DPC) [3] on its dis-
tance graph. DPC triangulates the distance graph by vis-
iting each timepoint, vk, in some elimination order , o =
(v1, v2, . . . , vn), tightening (and when necessary, adding) edges
between each pair of its not yet eliminated neighboring time-
points, vi, vj (connected to vk via an edge), using the rule
wij ← min(wij , wik +wkj), and then “eliminating” that time-
point from further consideration. The quantity ω∗o is the
induced graph width relative to o, and is defined as the maxi-
mum, over all vk, of the size of vk’s set of not yet eliminated
neighbors at the time of its elimination. The edges added
during this process, along with the existing edges, form a
triangulated (also called chordal) graph — a graph whose
largest non-bisected cycle is of size three. The complexity of
DPC is O(|V | · ω∗2o ), but instead of establishing decompos-
ability, it establishes the property a solution can be recovered
from a DPC distance graph in a backtrack-free manner if
variables are assigned in reverse elimination order. Partial
Path Consistency (PPC) [1] is sufficient for establishing de-
composability on an STP instance by calculating the tightest
possible path for only the subset of edges that exists within a
triangulated distance graph. As a result, PPC may establish
decomposability much faster than FPC algorithms in prac-
tice (O(|V | · ω∗2o ) ⊆ O(|V |3)) [8, 6]. The PPC representation
of our example is displayed in Figure 1(b).

2.2 Multiagent Simple Temporal Problem
The Multiagent Simple Temporal Problem (MaSTP) is

informally composed of n local STP subproblems, one for
each of n agents, and a set of constraints CX that estab-
lish relationships between the local subproblems of different
agents. Our definition of the MaSTP improves on our original
MaSTP specification [2]. An agent i’s local STP subproblem
is defined as SiL =

〈
V iL, C

i
L

〉
1, where:

• V iL is defined as agent i’s set of local variables, which
is composed of all timepoints assignable by agent i and
also includes agent i’s reference to z;

• CiL is defined as agent i’s set of intra-agent or local
constraints, where a local constraint, cij ∈ CiL is
defined as a bound on the difference between two local
variables, vj − vi ≤ bij , where vi, vj ∈ V iL.

In Figure 1(a), the boxes labeled Chris, Ann, and Bill repre-
sent each person’s respective local STP subproblem from our
running example. Notice, the sets V iL partition the set of all
non-reference timepoint variables and the sets CiL partition
the set of all local constraints.

Moreover, CX is the set of inter-agent or eXternal con-
straints, where an external constraint is defined as a bound
on the difference between two variables that are local to
different agents, vi ∈ V iL and vj ∈ V jL , where i 6= j. Further,
VX is defined as the set of external timepoint variables,

1Throughout this paper we will use superscripts to index
agents and subscripts to index variables and edges.

where a timepoint is external if it is involved in at least one
external constraint. In Figure 1(a), external constraints and
variables are denoted with dashed edges. It then follows that:

• CiX is agent i’s set of external constraints that each
involve exactly one of agent i’s assignable timepoints;

• V iX is the set of timepoint variables known to agent i
due their involvement in some constraint from CiX , but
that are local to some other agent j 6= i.

More formally, then, an MaSTP, M, is defined as the
STP M = 〈VM, CM〉 where VM =

{⋃
i V

i
L

}
and CM ={

CX ∪⋃i CiL}. Note, the definition of the corresponding
distance graph is defined as before, where the definition
of agent i’s local and external edges, EiL and EiX , follows
analogously from the definition of CiL and CiX , respectively.

2.3 Multiagent Temporal Decoupling Problem
Given the previous definitions, we adapt the definition of

temporal decoupling in [4] to apply to the MaSTP. Agents’
local STP subproblems {S1

L,S2
L, . . . ,SnL} form a temporal

decoupling of an MaSTP M if:

• {S1
L, S

2
L, . . . , S

n
L} are consistent STPs; and

• Merging any locally consistent solutions to the prob-
lems in {S1

L,S2
L, . . . ,SnL} yields a solution to M.

Alternatively, when {S1
L,S2

L, . . . ,SnL} form a temporal de-
coupling of M, {S1

L,S2
L, . . . ,SnL} are said to be temporally

independent . The Multiagent Temporal Decoupling Prob-
lem (MaTDP), then, is defined as, for each agent i, finding
a set of constraints Ci∆ such that if SiL+∆ =

〈
V iL, C

i
N ∪ Ci∆

〉
,

then {S1
L+∆,S2

L+∆, . . . ,SnL+∆} is a temporal decoupling of
MaSTP M. Figure 1(c) represents a temporal decoupling
of our example, where new unary decoupling constraints, in
essence, replace all external edges (shown faded). A min-
imal decoupling is one where, if the bound of any decou-
pling constraint c ∈ Ci∆ for some agent i is relaxed, then
{S1

L+∆,S2
L+∆, . . . ,SnL+∆} is no longer a decoupling (e.g., Fig-

ure 1(c) is an example of a minimal decoupling whereas the
decoupling in (d) is not minimal). The original TDP al-
gorithm [4] executes on a centralized representation of the
MaSTP and iterates between proposing new constraints to
decouple agent subproblems with respect to a particular ex-
ternal constraint (until all external constraints have been
decoupled) and reestablishing FPC on the corresponding
global distance graph, so that subsequently proposed decou-
pling constraints are guaranteed to be consistent.

3. ALGORITHMS
In this section, we introduce new distributed algorithms for

calculating a temporal decoupling and prove their correctness,
computational complexity, and privacy properties.

3.1 A Distributed MaTDP Algorithm
The goal of our Multiagent Temporal Decoupling Problem

(MaTDP) algorithm, presented as Algorithm 1, is to find a
set of decoupling constraints C∆ that render the external
constraints CX moot. Agents accomplish this goal by co-
ordinating both to establish DPC and also to consistently
assign external variables in reverse elimination order. First,
we use D∆P3C-1 (an efficient, distributed DPC algorithm
corresponding to lines 1-22 of the D∆P3C algorithm pre-
sented in [2]) to triangulate and propagate the constraints,
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Algorithm 1 Multiagent Temporal Decoupling Problem
(MaTDP) Algorithm

Input: Gi, agent i’s known portion of the distance graph correspond-
ing an MaSTP instance M.

Output: Ci∆, agent i’s decoupling constraints, and Gi, agent i’s PPC

distance graph w.r.t. Ci∆.

1: Gi, oiL, oX = (v1, v2, . . . vn)←D∆P3C-1(Gi)
2: Return INCONSISTENT if D∆P3C-1 does
3: Ci∆ = ∅
4: for k = n . . . 1 such that vk ∈ V iL do

5: wDPCzk ← wzk, wDPCkz ← wkz
6: for j = n . . . k + 1 such that ∃ejk ∈ EiL ∪ EiX do

7: if ejk ∈ EiX then
8: wzj , wjz ← Block until receive updates from (Agent(vj))
9: end if
10: wzk ← min(wzk, wzj + wjk)
11: wkz ← min(wkz, wkj + wjz)
12: end for
13: Assign vk // tighten wzk,wkz to ensure wzk + wkz = 0

14: Send wzk, wkz to each Agent(vj) s.t. j < k, ejk ∈ EiX
15: Ci∆ ← Ci∆ ∪ {(z − vk ∈ [−wzk, wkz ])}
16: end for
17: if(RELAX)then Gi, Ci∆ ← MaTDR(Gi, wDPC)

18: return P3C-2(GiL+∆, o
i
L), Ci∆

where external timepoints VX are eliminated last. Figure
2(a) shows VX after all other local variables have been elim-
inated. Notice that local constraints are reflected in the
tighter domains. The external variables are eliminated in
order, from left to right (oX = (GPCET , R

A
ST , GP

A
ST , R

B
ST )),

which introduces the new edges, shown with dotted lines,
and their weights. If D∆P3C-1 propagates to an inconsistent
graph, then our algorithm returns INCONSISTENT.

Otherwise, we initialize an empty C∆ and then step through
vertices in inverse elimination order, starting with RBST . We
skip over the inner loop (lines 6-12) because there are no
vertices later in oX than RBST . In line 13, we use a heuristic
that decouples by “assigning” the timepoint to the midway
point between its upper and lower bounds. In this case we
add the constraint that RBST happens at 8:45 to C∆ (line 15).
In line 14, this is sent to Ann’s agent, because RBST shares
external edges with Ann’s timepoints. The next vertex is
GPAST . Note, Ann’s agent would consider processing this
variable right away, but the inner loop (lines 6-12) forces
Ann’s agent to wait for the message from Bill’s agent. When
it gets there, Ann’s agent updates its edge weights accord-
ingly (lines 10-11). In this case, given that GPAST is at least
60 minutes after RBST , GPAST ’s domain is tightened to [9:45,
10:30]. Then in line 13, Ann’s agent chooses the decoupling
point by splitting the difference, thus adding the constraint
that GAST occurs at 10:08. This same process is repeated
until all timepoints in VX have been assigned; the result is
shown in Figure 2.

As mentioned, our default heuristic is to assign vk to the
midpoint of its path consistent domain (which corresponds to
using the rules wzk ← wzk − 1

2
(wzk + wkz);wkz ← −wzk for

line 13). In general, however, assigning variables is more con-
straining than necessary. Fortunately, agents can optionally
call a relaxation algorithm (introduced in Section 3.2) that
replaces C∆ with a set of minimal decoupling constraints.
Later in this paper, we will explore and evaluate other assign-
ment heuristics for line 13 (other than our default midpoint
assignment procedure) that, when combined with the relax-
ation algorithm, could lead to less constraining decoupling
constraints.
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Figure 2: Applying the MaTDP algorithm to the
example scheduling problem.

To avoid inconsistency due to concurrency, before calculat-
ing decoupling constraints for vk, an agent blocks in line 8
until it receives the fresh, newly computed weights wzj , wjz
from vj ’s agent (Agent(vj), as sent in line 14) for each ex-
ternal edge ejk ∈ EiX where j > k. While this implies some
sequentialization, it also allows for concurrency whenever
variables do not share an external edge. For example, in Fig-
ure 2(b), because GPCET and RAST do not share an edge, after
Ann’s agent has assigned GPAST , both Ann and Chris’ agents
can concurrently and independently update and assign RAST
and GPCET respectively. Finally, each agent establishes PPC
in response to its new decoupling constraints, by executing
P3C-2 (which refers to the second phase of the single-agent
P3C algorithm presented in [6] as Algorithm 3).

Theorem 1. The MaTDP algorithm has an overall time
complexity of O(|V |ω∗2o ) and requires O(|EX |) messages.

Proof. The MaTDP algorithm calculates DPC and PPC
in O(|V |ω∗2o ) time. Unary, decoupling constraints are cal-
culated for each of |VX | external variables vk ∈ VX (lines
4-16), after iterating over each of vk’s O(ω∗o) neighbors (lines
6-12). Thus decoupling requires O(|V |ω∗o) ⊆ O(|V |ω∗2o ) time,
and so MaTDP has an overall time complexity of O(|V |ω∗2o ).
The MaTDP algorithm sends exactly one message for each
external constraint in line 14, for a total of O(|EX |) mes-
sages.

Theorem 2. The MaTDP algorithm is sound.

Proof. Lines 1-2 return INCONSISTENT whenever the
input MaSTPM is not consistent. By contradiction, assume
that there exists some external constraint cxy with bound
bxy that is not satisfied when the decoupling constraints
cxz and czy, calculated by MaTDP with bounds bxz and
bzy respectively, are (that is bxz + bzy > bxy). WLOG, let
x < y in oX . Notice, line 1 (DPC) implies wxy ≤ bxy. Line
11 then implies wxz + wzy ≤ wxy ≤ bxy (since inductively
wyz + wzy = 0). Notice that after line 11, all other possible
updates to wxz that occur before cxz is constructed in line 15
(e.g., in lines 10-11, 13) only tighten (never relax) wxz, and
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so bxz + bzy ≤ wxz + wzy ≤ wxy ≤ bxy. However, this is a
contradiction to our assumption that bxz + bzy > bxy, so the
decomposable distance graph and constraints C∆ calculated
by MaTDP form a temporal decoupling of M.

Theorem 3. The MaTDP algorithm is complete.

Proof (Sketch). The basic intuition for this proof is pro-
vided by the fact that, in some sense, the MaTDP algorithm
is simply a distributed version of the basic backtrack-free
assignment procedure that can be applied to a DPC distance
graph. We show that when we choose bounds for new, unary
decoupling constraints for vk (effectively in line 13), wzk, wkz
are path consistent with respect to all other variables. This
is because not only is the distance graph DPC, but also
the updates in lines 10-11 guarantee that wzk, wkz are path
consistent with respect to vk for all j > k (since each such
path from vj to vk will be represented as an edge ejk in
the distance graph). So the only proactive edge tightening
that occurs, which happens in line 13 and guarantees that
wzk + wkz = 0, is done on path consistent edges and thus
will never introduce a negative cycle (or empty domain).

3.2 A Minimal Temporal Decoupling Relax-
ation Algorithm

The goal of the Multiagent Temporal Decoupling Relax-
ation (MaTDR) algorithm, presented as Algorithm 2, is to
replace the set of decoupling constraints produced by the
MaTDP algorithm, C∆, with a set of minimal decoupling

constraints, C
′
∆. Recall that a minimal decoupling is one

where, if the bound of any decoupling constraint c ∈ Ci∆
for some agent i is relaxed, then {S1

L+∆,S2
L+∆, . . . ,SnL+∆}

is no longer a decoupling. Clearly the temporal decoupling
produced when running MaTDP using the default heuristic
on our example problem, as shown in Figure 2(b), is not min-
imal. The basic idea of the MaTDR algorithm is to revisit
each external timepoint vk and, while holding the domains
of all other external timepoint variables constant, relax the
bounds of vk’s decoupling constraints as much as possible.

The MaTDR works in original oX order, and thus starts
with GPCET . First, Chris’ agent removes GPCET ’s decoupling
constraints and restores GPCET ’s domain to [9:30,10:00] by
updating the corresponding edge weights to their stored,
DPC values (lines 1,3). Notice that lines 3-16 are similar to
backwards execution of lines 6-12 in the MaTDP algorithm,
except that a separate, “shadow” δ bound representation is
used and updated only with respect to the original external
constraint bounds (not edge weights). Also, in lines 17-24, a
decoupling constraint is only constructed when the bound
of the potential new constraint (e.g. δkz) is tighter than
the already implied edge weight (e.g. when δkz < wkz). So
in the case of GPCET , the only constraint involving GPCET
is that it should occur before GPAST . However, GPAST is
currently set to occur at 10:08 (δ=10:08), and since GPCET is
already constrained to occur before 10:00 (w =10:00), δ 6< w,

and so no decoupling constraints are added to the set C
′
∆

for GPCET . The next variable to consider is RAST , whose
domain relaxes back to [8:00,9:30]. However, since RAST
shares a synchronization constraint with RBST , whose current
domain is [8:45,8:45], Ann’s agent will end up re-enforcing the
original decoupling constraints of RAST ∈ [8:45,8:45]. On the
other hand, after Ann’s agent recovers GPAST ’s original DPC
domain of [9:30,10:30], it then needs to ensure that GPAST
will always occur after GPCET ’s new domain of [9:30,10:00]. In

Algorithm 2 Multiagent Temporal Decoupling Relaxation
(MaTDR)

Input: Gi, and the DPC weights, wDPCzk , wDPCkz , for each vk ∈ V iX
Output: C

′i
∆ , agent i’s minimal decoupling constraints, and Gi,

agent i’s PPC distance graph w.r.t. C
′i
∆ .

1: C
′i
∆ ← ∅

2: for k = 1 . . . n such that vk ∈ V iL do

3: wzk ← wDPCzk , wkz ← wDPCkz
4: δzk ← δkz ←∞
5: for j = 1 to n such that ∃ejk ∈ EiL ∪ EX do

6: if ejk ∈ EiX then
7: if j < k then wzj , wjz ← Block receive from Agent(vj)
8: if cjk exists then δzk ←min(δzk, bjk − wjz)
9: if ckj exists then δkz ←min(δkz, bkj − wzj)
10: else if j < k then
11: wzk ← min(wzk, wzj + wjk)
12: wkz ← min(wkz, wkj + wjz)
13: end if
14: end for
15: if δkz < wkz then
16: wkz ← δkz

17: C
′i
∆ ← C

′i
∆ ∪ {(z − vk ≤ δkz)}

18: end if
19: if δzk < wzk then
20: wzk ← δzk

21: C
′i
∆ ← C

′i
∆ ∪ {(vk − z ≤ δzk)}

22: end if
23: Send wzk, wkz to each Agent(vj) s.t. j > k, ejk ∈ EiX
24: end for
25: return Gi, C′i

∆

this case, decoupling from GPCET requires only a lower bound
of 10:00 for GPAST and results in a more flexible domain
of [10:00,10:30]. The minimal decoupling constraints and
corresponding distance graph that MaTDR calculates for
the running example are presented in Figure 2(c) and Figure
1(c).

The type of update performed on timepoint vk’s actual
domain edge weights, wzk and wkz (line 11-12), and shadow
edge weights, δzk and δkz (line 8-9), differs based on whether
the edge ejk being considered in the inner loop is local
or external respectively. For example, suppose vk has a
domain of [1:00,4:00], vj has a domain of [2:00,2:30] (which
already incorporates its new decoupling constraints, since
vj appears before vk in oX), and ejk has the label [0,60]
(e.g., vk − vj ∈ [0, 60]), which corresponds to bounds of
original constraints. If ejk is an external edge, the “shadow”
domain of vk would be updated by lines 8-9 to be [2:30,3:00].
Otherwise, if ejk is a local edge, then the actual domain
of vk would be instead updated by lines 11-12 and result
in the less restrictive domain [2:00, 3:30]. The difference
between the two updates is that the updates in lines 8-9
guarantee that all possible assignments to the two variables
will be consistent with respect to the external constraint,
whereas the updates in lines 11-12 only guarantee that there
exists some local assignment to the two variables that will
be consistent. Finally, notice that if the domain of vj had
instead been assigned (e.g., to [2:30,2:30]), the updates in
lines 8-9 and lines 11-12 would have resulted in the exact
same update to the domain of vk (e.g., [2:30,3:30]). Due to
its similarity to the MaTDP algorithm, we forgo formally
proving the correctness and computational complexity of the
MaTDR sub-routine.

Theorem 4. The reference constraints calculated by the
MaTDR algorithm form a minimal temporal decoupling of S.

Proof (Sketch). The proof that C
′
∆ form a temporal
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decoupling is roughly analogous to the proof for Theorem
3.1. By contradiction, we show that if the bound bxz of some

decoupling constraint cxz ∈ C′
∆ is relaxed by some small,

positive value εxz > 0, then C
′
∆ is no longer a temporal

decoupling. This is because lines 8-9 imply that there exists
some y such that either, bxz = bxy− bzy, and thus bxz + εxz +
bzy > bxy (and thus no longer a temporal decoupling), or that
bzy = bxy − (bxz + εxz) (and so is either not a decoupling or
requires us to also alter bzy in order to maintain the temporal
decoupling).

3.3 Privacy
The natural distribution of the MaSTP representation

affords a partitioning of the MaSTP into private and shared
components [2]. Agent i’s set of private variables, V iP ,
is the subset of agent i’s local variables that are involved
in no external constraints, V iP = V iL \ VX . Agent i’s set
of private constraints, CiP , is the subset of agent i’s local
constraints CiL that include at least one of its private variables.
Alternatively, the shared STP, SS = 〈VS , CS〉 is composed
of the set of shared variables, VS , where VS = VX∪{z}, and
the set of shared constraints, CS , where shared constraints
are defined exclusively over shared variables and by definition
include all external constraints, CS = CX ∪

{⋃
i C

i
N \ CiP

}
.

In the example displayed in Figure 1, all shared variables and
constraints are represented with dashed lines. SS represents
the maximum portion of the MaSTP that a set of colluding
agents could infer, given only the joint MaSTP specification
[2]. Hence, given the distribution of an MaSTP M, if agent
i executes a multiagent algorithm that does not reveal any
of its private timepoints or constraints, it can be guaranteed
that any agent j 6= i will not be able to infer any private
timepoint in V iP or private constraint in CiP by also executing
the multiagent algorithm — at least not without requiring
conjecture or ulterior (methods of inferring) information on
the part of agent j. Additionally, it is not generally required
that any agent knows or infers the entire shared STP. In our
algorithms, agents attempt to minimize shared knowledge to
increase efficiency.

Corollary 5. The MaTDP and MaTDR algorithms never
reveal any of agent i’s private variables or private constraints
(or edges) and hence maintain privacy over them.

Proof (Sketch). Follows from proof of the properties
of the MaSTP privacy partitioning, Theorem 1 in [2].

Together, the MaTDP and MaTDR algorithms calculate
a minimal temporal decoupling for an MaSTP. In the next
section, we empirically compare the performance of these
algorithms with previous approaches.

4. EMPIRICAL EVALUATION
In the following subsections, we introduce the methodol-

ogy we use to empirically evaluate the performance of our
algorithm’s computational effort and flexibility.

4.1 Methodology
To develop results comparable to those elsewhere in the

literature, we model our experimental setup after [2] and [4],
adapting the random problem generator described in [4] so
that it generates MaSTP instances. Each problem instance
has A agents each with start timepoints and end timepoints

for 10 actions. Each action is constrained to occur within
the time interval [0,600] relative to a global zero reference
timepoint, z. Each activity’s duration is constrained by
a lower bound, lb, chosen uniformly from interval [0,60]
and an upper bound chosen uniformly from the interval
[lb, lb+ 60]. In addition to these constraints, the generator
adds 50 additional local constraints for each agent andN total
external constraints. Each of these additional constraints, eij ,
is constrained by a bound chosen uniformly from the interval
[−Bji, Bij ], where vi and vj are chosen, with replacement,
with uniform probability. To confirm the significance of our
results, we generate and evaluate the expected performance
of our algorithms over 25 independently generated trials for
each parameter setting. Since the novelty of our algorithms
lies within the temporal decoupling aspects of the problem,
we only generate consistent MaSTP problem instances to
compare the computational effort of full applications of the
various decoupling algorithms. We modeled a concurrently
executing multiagent system by systematically sharing a
3 Ghz processor with 4 GB of RAM by interrupting each
agent after it performed a single bound operation (either an
update or evaluation) and a single communication (sending
or receiving one message).

4.2 Evaluation of Computational Effort
In the first set of experiments, we empirically compared:

• MaTDP+R – our MaTDP algorithm with the MaTDR
subroutine,

• Cent. MaTDP+R – a single agent that executes
MaTDP+R on a centralized version of the problem,

• D-P3C – our implementation of the D∆P3C distributed
algorithm for establishing PPC for an MaSTP (but not
a decoupling) [2], and

• TDP — our implementation of the fastest variation
(the RGB variation) of the (centralized) TDP algorithm
as reported in [4].

For the TDP approach, we used the Floyd-Warshall algo-
rithm to initially establish FPC and the incremental update
described in [5] to maintain FPC as new constraint were
posted. We evaluated approaches across two metrics. The
non-concurrent computation (NCC ) metric is the number
computational cycles before all agents in our simulated mul-
tiagent environment have completed their execution of the
algorithm [2]. The other metric we report in this section is
the total number of messages exchanged by agents.

In the first experiment set (Figure 3), A = {1, 2, 4, 8, 16, 32}
and N = 50 · (A− 1). In the second experiment set (Figure
4), A = 25 and N = {0, 50, 100, 200, 400, 800, 1600, 3200}.
The results shown in both figures demonstrate that our
MaTDP+R algorithm clearly dominates the original TDP ap-
proach in terms of execution time, even when the MaTDP+R
algorithm is executed in a centralized fashion. When com-
pared to the centralized version of the MaTDP+R algorithm,
the distributed version has a speedup (centralized compu-
tation/distributed computation) that varies between 19.4
and 24.7. This demonstrates that the structures of the gen-
erated problem instances support parallelism and that the
distributed algorithm can exploit this structure to achieve
significant amounts of parallelism.

Additionally, notice that the MaTDP+R algorithm domi-
nates the D∆P3C algorithm in both computation and number
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Figure 3: Computational effort as A grows.
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Figure 4: Computational effort as N increases.

of messages (which held true in both experiments, although
messages are not displayed in Figure 4 due to space consider-
ations), which means the MaTDP+R algorithm can calculate
a temporal decoupling with less computational effort than
the D∆P3C algorithm can calculate a decomposable, PPC
representation of the MaSTP. This is due to the fact that,
while the MaTDP+R is generally bound by the same run-
time complexity as the D∆P3C, as argued in Theorem 1,
the complexity of the actual decoupling procedure is less
in practice, since the decoupling algorithm only calculates
new bounds for reference edges, instead of calculating new
bounds for every shared edge. This is important because if
agents instead chose to try to maintain the complete set of
consistent joint schedules (as represented by the decompos-
able, PPC output of D∆P3C), agents may likely perform
additional computation and communication every time a
new constraint arises, whereas the agents that calculate a
temporal decoupling can perform all additional computation
locally and independently, unless or until a new constraint
arises that invalidates the temporal decoupling. The fact
that MaTDP+R algorithm dominates the D∆P3C algorithm
also implies that even if the original TDP algorithm were
adapted to exploit the current state-of-the-art distributed
PPC algorithm [2], our algorithm would still dominate the
basic approach in terms of computational effort. Overall, we
confirmed that we could exploit the structure of the MaSTP
to calculate a temporal decoupling not only more efficiently
than previous TDP approaches, but also in a distributed man-
ner, avoiding centralization costs previously required, and
exploiting parallelism to lead to impressive levels of speedup.

We next ask whether the quality of our MaTDP+R algorithm
is competitive.

4.3 Evaluation of Flexibility
As mentioned earlier, one of the key properties of a decom-

posable MaSTP is that it can represent a set of consistent
joint schedules, which in turn can be used as a hedge against
scheduling uncertainty. In the following subsections we de-
scribe a metric for more generally quantifying the robustness
of an MaSTP, and hence a temporal decoupling, in terms of
a flexibility metric and perform an empirical evaluation of
our algorithms with regards to flexibility.

4.3.1 Flexibility Metrics
Hunsberger introduced two metrics, flexibility (F lex) and

conversely rigidity (Rig), that quantify the basic notion
of robustness so that the quality of alternative temporal
decouplings can be compared [4]. He defined the flexibility
between a pair of two timepoints, vi and vj , as the sum
F lex(vi, vj) = Bij+Bji which is always positive for consistent
MaSTPs. The rigidity of a pair of timepoints is defined as
Rig(vi, vj) = 1

1+Flex(vi,vj)
, and the rigidity over an entire

STP is the root mean square (RMS) value over the rigidity
value of all pairs of timepoints:

Rig(S) =

√
2

|V |(|V |+ 1)

∑
i<j

[Rig(vi, vj)]
2.

This implies that Rig(S) ∈ [0, 1], where Rig(S) = 0 when
S has no constraints and Rig(S) = 1 when S has a single
solution [4]. Since Rig(S) requires FPC to calculate, we only
apply this metric as a post-processing evaluation technique
by centralizing and establishing FPC on the temporal decou-
plings returned by our algorithms. There exists a centralized,
polynomial time algorithm for calculating an optimal tempo-
ral decoupling [7], but it requires an evaluation metric that
is a linear function of distance graph edge weights, which the
aggregate rigidity function R(S), unfortunately, is not.

4.3.2 Evaluation
In our second set of experiments, we compare the rigidity

of the temporal decouplings calculated by:

• Default – a variant MaTDP algorithm that uses the
the described, default heuristic, but without MaTDR,

• Relaxation – the default MaTDP with MaTDR,

• Locality – a variant of the MaTDP algorithm where, in
line 13, agents heuristically bias how much they tighten
wzk relative to wkz using information from applying
the full D∆P3C algorithm in line 1 (no MaTDR),

• All – the MaTDP using both the locality heuristic and
the MaTDR sub-routine,

• Input – the rigidity of the input MaSTP, and

• TDP – our implementation of Hunsberger’s RLF vari-
ation of his TDP algorithm (where r = 0.5 and ε = 1.0
which lead to a computational multiplier of approxi-
mately 9) that was reported to calculate the least rigid
decoupling in [4].

In this experiment, A = 25 and N = {50, 200, 800}. Table 1
displays the rigidity of the temporal decoupling calculated
by each approach. On average, as compared to the Default,
the Relaxation approach decreases rigidity by 51.0% (while
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Table 1: The rigidity values of various approaches.
N=50 N=200 N=800

Input 0.418 0.549 0.729
All 0.508 0.699 0.878

Relaxation 0.496 0.699 0.886
Locality 0.621 0.842 0.988
Default 0.628 0.849 0.988
TDP 0.482 0.668 0.865

increasing computational effort by 30.2%), and the Local-
ity approach decreases rigidity by 2.0% (while increasing
computational effort by 146%). The Relaxation approach,
which improves the output decoupling the most, offers the
best return on investment. The locality heuristic, however,
is very computationally expensive while providing no signifi-
cant improvement in rigidity. We also explored combining
these rigidity decreasing techniques, and while the increase in
computational effort tended to be additive (the All approach
increases effort by 172%), the decrease in rigidity did not. In
fact, no heuristics or other combinations of techniques led to
a statistically significant decrease in rigidity (as compared
to the default, Relaxation approach) in the cases we investi-
gated. The All approach decreased rigidity by only 49.9% in
expectation.

The fact that the Relaxation approach alone decreases
rigidity by more than any other combination of other ap-
proaches can be attributed to both the structure of an MaSTP
and how rigidity is measured. First, the Relaxation improves
the distribution of flexibility to the shared timepoints re-
actively, instead of proactively trying to guess good values.
As the MaTDP algorithm tightens bounds, the general tri-
angulated graph structure formed by the elimination order
“branches out” the impact of this tightening. So if the first
timepoint is assigned, this defers more flexibility to the sub-
sequent timepoints that depend on the bounds of the first
timepoint, of which there could be many. So by being proac-
tive, other heuristics may steal flexibility from a greater
number of timepoints, where as the MaTDR algorithm al-
lows this flexibility to be recovered only after the (possibly
many more) subsequent timepoints have set their bounds to
maximize their local flexibility.

Notice from Table 1 that the TDP approach decreases the
rigidity the most, representing on average a 20.6% decrease
in rigidity as compared to the Relaxation approach. However,
this additional reduction in rigidity comes at a significant
computational cost — the TDP approach incurs, in expecta-
tion, over 10,000 times more computational effort than our
Relaxation approach. While in some scheduling environments
the costs of centralization (e.g. privacy) alone would invali-
date this approach, in others the computational effort may
be prohibitive if constraints arise faster than the centralized
TDP algorithm can calculate a temporal decoupling. Further,
in many scheduling problems, all temporal decouplings may
be inherently rigid if, for example, many of the external con-
straints enforce synchronization (e.g. Ann’s run start time),
which requires fully assigning timepoints in order to decouple.
Overall, the Relaxation approach, in expectation, outputs a
high-quality temporal decoupling, approaching the quality
(within 20.6%) of the state-of-the-art centralized approach
[4], in a distributed, privacy-maintaining manner faster than
the state-of-the-art MaSTP solution algorithms.

5. CONCLUSION
In this paper, we have presented a new, distributed algo-

rithm that solves the MaTDP without incurring the costs
of centralization like previous approaches. We have proven
that the MaTDP algorithm is correct, and demonstrated
both analytically and empirically that it calculates a tempo-
ral decoupling faster than previous approaches, exploiting
sparse structure and parallelism when it exists. Additionally
we have introduced the MaTDR algorithm for relaxing the
bounds of existing decoupling constraints to form a minimal
temporal decoupling, and empirically showed that this algo-
rithm can decrease rigidity by upwards of 50% (within 20.6%
of the state-of-the-art centralized approach) while increasing
computational effort by as little as 20%. Overall, we have
shown that the combination of the MaTDP and MaTDR
algorithms calculates a temporal decoupling faster than state-
of-the-art distributed MaSTP solution algorithms and the
MaTDR algorithm reduces rigidity further than other heuris-
tics we evaluated. In the future, we hope to evaluate the
computational and communication costs of our algorithms in
the context of a dynamic scheduling environment. We hope
to extend the MaTDR algorithm to an anytime approach for
recovering flexibility as new constraints arise and evaluate
the computational effort in comparison with calculating a
new temporal decoupling after an existing temporal decou-
pling becomes inconsistent. Additionally, we hope to develop
additional flexibility metrics that can be evaluated in a dis-
tributed setting for heuristically guiding scheduling agents
in dynamic scheduling environments.
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