
Decomposing constraint systems: Equivalences and
computational properties

Wiebe van der Hoek
Dept. of Computer Science

University of Liverpool,
United Kingdom

wiebe@csc.liv.ac.uk

Cees Witteveen
Dept. of Software Technology
Delft University of Technology,

The Netherlands
C.Witteveen@tudelft.nl

Michael Wooldridge
Dept. of Computer Science

University of Liverpool,
United Kingdom

mjw@liverpool.ac.uk

ABSTRACT
Distributed systems can often be modeled as a collection of
distributed (system) variables whose values are constrained
by a set of constraints. In distributed multi-agent systems,
the set of variables occurring at a site (subsystem) is usually
viewed as controllable by a local agent. This agent assigns
values to the variables, and the aim is to provide distributed
methods enabling a set of agents to come up with a global
assignment (solution) that satisfies all the constraints. Al-
ternatively, the system might be understood as a distributed
database. Here, the focus is on ensuring consistency of the
global system if local constraints (the distributed parts of the
database) change. In this setting, the aim is to determine
whether the existence of a global solution can be guaranteed.
In other settings (e.g., P2P systems, sensor networks), the
values of the variables might be completely out of control of
the individual systems, and the constraints only characterize
globally normal states or behavior of the system. In order to
detect anomalies, one specifies distributed methods that can
efficiently indicate violations of such constraints. The aim of
this paper is to show that the following three main problems
identified in these research areas are in fact identical: (i) the
problem of ensuring that independent agents come up with
a global solution; (ii) the problem of ensuring that global
consistency is maintained if local constraint stores change;
and (iii) the problem of ensuring that global violations can
be detected by local nodes. This claim is made precise by
developing a decomposition framework for distributed con-
straint systems and then extracting preservation properties
that must satisfied in order to solve the above mentioned
problems. Although satisfying the preservation properties
seems to require different decomposition modes, our results
demonstrate that in fact these decomposition properties are
equivalent, thereby showing that the three main problems
identified above are identical. We then show that the com-
plexity of finding such decompositions is polynomially re-
lated to finding solutions for the original constraint system,
which explains the popularity of decomposition applied to
tractable constraint systems. Finally, we address the prob-
lem of finding optimal decompositions and show that even
for tractable constraint systems, this problem is hard.

Cite as: Decomposing constraint systems, Wiebe van der Hoek, Cees
Witteveen and Michael Wooldridge, Proc. of 10th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2011),
Tumer, Yolum, Sonenberg and Stone (eds.), May, 2–6, 2011, Taipei, Tai-
wan, pp. 149-156.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
Systems; I.2.4 [Knowledge representation formalisms
and methods]

General Terms
Theory

Keywords
distributed constraint systems, decomposition, complexity

1. INTRODUCTION
Distributed systems can frequently be modelled as a col-
lection of distributed (system) variables X, whose values
are constrained by a set of constraints. Usually, one distin-
guishes a set of sites, each of which contains a disjoint subset
of variables Xi ⊆ X. Each site is responsible for those con-
straints relating to the variables that occur in its variable set
Xi (its set of local constraints). Sites must interact with re-
spect to the set of global constraints1, which relates variables
of different components Xi. The way such a model of a dis-
tributed system is used largely depends on the application
domain. We can identify at least three different application
domains: multi-agent systems, distributed databases, and
P2P systems.

In multi-agent systems, one typically assumes that there
is a set of agents, with each agent Ai controlling the vari-
ables in Xi. It is the common task of all the agents to
assign suitable values to their variables such that all con-
straints are satisfied. Since each agent tries to assign values
to the variables independently from the others, only the con-
straints whose variables occur in the agent’s control set are
guaranteed to be satisfied. The main research problem is
then to provide (distributive) methods enabling the agents
to come up with a global assignment (solution) satisfying all
constraints – both local and global.

In other domains, such as databases, such a distributed
constraint system is conceived as a model of a distributed
database. Here, the focus is not on finding solutions for
a fixed set of constraints, but to ensure consistency of the

1Although the term“global constraints” in the CP-literature
refers to constraints encapsulating sets of other constraints,
in the context of distributed constraint processing we use
this term only to distinguish them from local constraints.
That is, global constraints are those constraints whose vari-
ables occur in more than one control set.

149

global system in the event that local constraints (the dis-
tributed components of the database) change. Such a notion
of consistency is expressed by global integrity constraints
that need to be respected whatever changes take place at
local sites. Hence, here the issue is not giving values to vari-
ables such that all constraints are satisfied, but to ensure
that there exists at least one possibility for such a globally
satisfying assignment.

While in the above mentioned areas the focus is on finding
a solution or guaranteeing the existence of at least one solu-
tion, in areas such as peer-to-peer (P2P) systems and sensor
networks, modeling by distributed constraint systems is of-
ten focused on the detection of constraint violations. Here,
the set of constraints is used to characterize acceptable states
or behavior of the global system, and violations of such con-
straints indicate potentially problematic anomalies (e.g., a
DDoS attack). In order to detect such anomalies, one spec-
ifies a set of distributed methods that aim to establish vio-
lations of such constraints as efficiently as possible.

Although these problems arise in different areas they all
have a common aspect. From an abstract point of view,
one might consider the set of agents (sites, local databases)
with their constraints as a decomposition of the original con-
straint system induced by a partitioning of the variables.
In all three areas mentioned above, the problem is how we
might ensure this decomposition to have some preservation
properties with respect to the underlying global system.

From a multi-agent systems point of view, in distributed
constraint systems one often considers the local agent as
autonomous. Here, decomposition has to ensure that the lo-
cal constraints can be solved completely independently from
the others, after which the local solutions can always be
merged to yield a solution to the complete system. Hence,
in multi-agent systems research the focus of decomposition
has been on a solution preserving property: in obtaining a
global solution, local solutions should always be preserved
in order to ensure independent local problem solving. For
example, in [10] decomposition2 has been applied to ensure
that independently chosen schedules for subnetworks of a
Simple Temporal Network (STN) can always be merged to a
joint schedule of the total network. In [11] a decomposition
technique is presented to ensure decentralized cooperative
control of multi-agent systems where satisfaction of all (dis-
tributed) subtasks of a joint task implies the fulfillment of
the complete task as well.

In the database community, one wants to ensure that
whenever each local database is consistent, the consistency
of the global database is implied, whatever changes occur
locally. The method applied here is to provide localized ver-
sions of global integrity constraints that ensure that, what-
ever local information satisfying these constraints is added
to the (distributed) database, the global consistency of the
total database will be preserved [2, 9, 4]. Hence the database
community is interested in consistency preserving decompo-
sitions3.

2In this paper, Hunsberger has adopted the term temporal
decoupling for decomposition in STNs.
3Quite closely related to the database community, in the
sensor network community, one distinguishes the localization
problem, where a distributed constraint is reformulated into
local constraints for mobile entities and is adjusted dynam-
ically [12, 15]. The satisfaction of the distributed constraint
is guaranteed whenever all the local constraints are satisfied.

The P2P community aims at the efficient detection of con-
straint violations. Here, normal operations are specified by
a global constraint CS . For reasons of efficiency, one prefers
not to monitor all sites to establish violations of these con-
straints. Therefore, localizations of such constraints are pro-
vided to each node, such that it has its own violation detec-
tion mechanism [1]. A global violation detection mechanism
is triggered only if some local node detects a violation, thus
saving communication between the nodes. So, in the P2P
community, one is interested in safety preserving decompo-
sitions of integrity constraints, ensuring that whenever all
local states indicate safeness (no violation detection occurs)
of their local states, the global state is safe (that is, the
global integrity constraints are all respected), too.

In summary, it seems that we can study all three problems
in a common decomposition framework, where the only dif-
ference between these problems is in their preservation prop-
erties. In fact, as, we pointed out, there has been extensive
research in these three areas, focusing on either the solution
preserving, the consistency preserving, or the safety preserv-
ing aspect of decompositions in distributed constraint sys-
tems. However, to the best of our knowledge, there have
been no attempts to establish their equivalence. In short,
the aim of the present paper is to address this issue and to
investigate some computational aspects of such decomposi-
tions.

We begin in Section 2 by presenting a formal framework
for investigating these properties, and present the technical
preliminaries used in the remainder of the paper. In Sec-
tion 3, we investigate the relationships between the proper-
ties we identified, i.e., we consider whether the properties
are independent from each other, whether they imply each
other, or whether they are they completely identical. In
Section 4, we address some computational aspects of these
preservation properties — for example, how difficult is it
to find a {solution, consistency, violation}-preserving de-
composition. We will establish some tight computational
connections between these problems and the general prob-
lem of finding a solution to a constraint system. Then, in
Section 5, we will address the problem of information loss
inherent in solving a decomposed problem as opposed to
solving the problem at a global level. We will indicate that
in general the problem of establishing the exact information
loss is intractable. Finally, in Section 6, we state some final
conclusions to place this work into a broader perspective.

2. PRELIMINARIES
In this section we briefly define constraint systems, distributed
constraint systems, and decompositions of distributed con-
straint systems.

2.1 (Distributed) Constraint Systems
A constraint system is a tuple S = 〈X,D,C〉 where X is
a (finite) set of variables, D is a set of (value) domains Di
for every variable xi ∈ X, and C is a set of constraints
over X. We assume constraints c ∈ C to be specified as
formulas of some language. We will not require any specific
language for constraints c ∈ C, but it is useful to assume
some fundamental properties. Specifically, we will assume
the language contains constants for elements in the domains
Di, the usual Boolean connectives (¬,∨,∧), and equality.
We also require that it is possible to determine whether a
solution satisfies a constraint in polynomial time. Formally,

150

a solution σ of the system S = 〈X,D,C〉 is an assignment
σ = {xi ← di}ni=1 to all variables in X such that di ∈ Di,
and each constraint c ∈ C is satisfied. We sometimes write
σ |= C to mean that σ is a solution to C. Given a subset
Xi ⊆ X, we let σXi denote the restriction of σ to the subset
Xi. Where no confusion is possible, we will use σi as a
shorthand for σXi . The set of all assignments σ is denoted by
Σ. Likewise, the set of all assignments for a subset Xi ⊆ X
is denoted by ΣXi or Σi.

The set of solutions σ to system S = 〈X,D,C〉 will be
denoted by Sol(S). S is called consistent if Sol(S) 6= ∅. For
every c ∈ C, let Var(c) denote the set of variables mentioned
in c. For a set of constraints C, we let

Var(C) =
⋃
c∈C

Var(c).

Given S = 〈X,D,C〉, we obviously require Var(C) ⊆ X.
If D is a set of value domains Di for variables xi ∈ X and
X ′ ⊂ X then DX′ is the set of value domains Di of the
variables xi ∈ X ′. Likewise, given a set of constraints C
and a set of variables X ′, we let CX′ denote the subset
{c ∈ C | Var(c) ⊆ X ′} of constraints over X ′.

In this paper we consider constraint systems S that are
distributed [19]; that is, there is a set of N agents Ai, each
being able to make assignments to, or to add constraints over
a subset Xi of the set X of variables. Here, we assume that
agents do not share control over the variables, and that every
variable is controlled by an agent. Hence, the collection
{Xi}Ni=1 constitutes a partitioning of X, i.e.:

• ⋃Ni=1Xi = X; and

• for all 1 ≤ i < j ≤ N , Xi ∩Xj = ∅.
To indicate that a constraint system S = 〈X,D,C〉 is dis-
tributed by a partitioning {Xi}Ni=1 of X, we write S =
〈{Xi}Ni=1, D,C〉 and call it a distributed constraint system.
We are particularly interested in those distributed systems
S = 〈{Xi}Ni=1, D,C〉 where each agent Ai, controlling the
set Xi, only processes a set of constraints over Xi, and does
not take into account other constraints. That effectively im-
plies that in such a case, instead of one constraint system
S and a partition {Xi}Ni=1, we have a set of independent
constraint systems Si = 〈Xi, Di, C′i〉, where each C′i is a set
of constraints over Xi, i.e., V ar(C′i) ⊆ Xi. We call the re-
sulting set S ′ = {Si = 〈Xi, Di, C′i〉}Ni=1 of such subsystems
a decomposed constraint system4. We say that σ is a solu-
tion of S ′ if, for each i, σi is a solution of Si = 〈Xi, Di, C′i〉.
The decomposition S ′ is said to be consistent if

⋃
i C

′
i is

consistent.
Whenever {Xi}Ni=1 is a partitioning of X, we will write

σ = σ1 t σ2 t . . . t σN to indicate an assignment σ that is
composed of the disjoint assignments σi for Xi. Likewise,
we will write Sol(S1) t Sol(S2) t . . . t Sol(SN) to indicate
the set of global assignments σ that can be constructed by
simply composing all local solutions of the subsystems Si.
2.2 Decompositions: preservation properties
We now discuss three specifications of the relationship be-
tween a distributed constraint system S and a decomposi-
tion S ′, with respect to the three preservation properties we
informally discussed above.

4For the moment, we do not specify any relationship be-
tween C′i and CXi .

2.2.1 Solution preserving decompositions
A decomposed system can be used to preserve solutions of
a distributed constraint system: to obtain a global solution
σ for the distributed constraint system S one simply merges
the individual solutions σi of the subsystems Si of a decom-
posed system S ′ = {Si = 〈Xi, Di, C′i〉}Ni=1. In that case the
decomposed system is said to be solution preserving if the
merging of each collection of local solutions σi always results
in a global solution σ:

Definition 1. Let S = 〈{Xi}Ni=1, D,C〉 be a distributed
constraint system. Then the decomposed system

S ′ = {Si = 〈Xi, Di, C′i〉}Ni=1

is said to be a solution-preserving decomposition w.r.t. S if
it satisfies the following property:

∅ ⊆ Sol(S1) t Sol(S2) t . . . t Sol(SN) ⊆ Sol(S).

S ′ is said to be strictly solution preserving if the first inclu-
sion is strict whenever Sol(S) 6= ∅.5

Example 1. Let S = 〈{Xi}Ni=1, D,C〉 be a constraint sys-
tem where C = {x1 ∧ x2, x1 ∨ x3, x1 ∨ x4} is a set of
Boolean constraints over X = {x1, x2, x3, x4} and X is par-
titioned as {X1 = {x1, x2}, X2 = {x3, x4}}. The decom-
position {S1,S2} where S1 = 〈{x1, x2}, D1, {x1 ∧ x2}〉 and
S2 = 〈{x3, x4}, D2, ∅〉 is a strictly solution preserving decom-
position of S: S1 has a unique solution Sol(S1) = {{x1 ←
1, x2 ← 1}}, while S2 has a “universal” solution set: Sol(S2) =
{{x3 ← i, x4 ← j} : i, j ∈ {0, 1}}. Every solution in
Sol(S1)tSol(S2) is a solution to S, because x1 as well as x2

is assigned to 1 in any merge, thereby satisfying C. Hence,
{S1,S2} is strictly solution preserving.

Note that, in general, not every solution σ ∈ Sol(S) will be
obtainable by simply merging local solutions σi.

2.2.2 Consistency preserving decompositions
In distributed database applications, one typically distin-
guishes local constraints from global (integrity) constraints.
Usually, in such applications, agents are free to add con-
straints to their set of local constraints as long as the re-
sulting set remains consistent. The problem then is to en-
sure that local consistency ensures global consistency. This
global consistency has to be ensured by the set of integrity
constraints. In order to prevent communication overload be-
tween the distributed sites, one often tries to distribute these
integrity constraints over the sites in such a way that sat-
isfaction of all the local versions of the constraints implies
the satisfaction of the global constraints. To simplify the
discussion, we focus on the case where each site is allowed
to add constraints to their local store. Consistency preser-
vation then means that the total set of original constraints
plus locally added constraints is consistent, whenever the
added information does not cause any local inconsistency.
We need the following definition.

Definition 2. Let S = 〈{Xi}Ni=1, D,C〉 be a distributed
constraint system. An extension of S = 〈{Xi}Ni=1, D,C〉 is
a constraint system SE = 〈{Xi}Ni=1, D,C

′〉 where C ⊆ C′.
5This last condition is needed to take care for inconsistent
constraint systems.

151

An extension SE captures the idea of a constraint system
S to which a set constraints has been added. Suppose that
we have a decomposed system S ′ = {Si = 〈Xi, Di, C′i〉}Ni=1

and suppose that to each local system Si a set C′′i \ C′i
of constraints is added such that for each Si we obtain
an extension SEi . Then consistency preservation requires
that local consistency implies global consistency. That is,
if the locally added information C′′i \ C′i does not render
any resulting extension SEi inconsistent, the total informa-
tion (C′′1 \ C′1) ∪ . . . ∪ (C′′N \ C′N) added to the distributed
system should not render the total system inconsistent, i.e.,
SE = 〈X,D,C ∪ (C′′1 \ C′1) ∪ . . . ∪ (C′′N \ C′N)〉 should be
consistent as well.

Definition 3 (consistency preserving extensions).
Let S = 〈{Xi}Ni=1, D,C〉 be a distributed constraint system.
A decomposition

S ′ = {Si = 〈Xi, Di, C′i〉}Ni=1

is called consistency preserving w.r.t. S if the following con-
dition holds: whenever, for all i = 1, 2, . . . , N , the extensions

SEi = 〈Xi, Di, C′′i 〉
of Si are consistent, the global extension

SE = 〈X,D,C ∪ (C′′1 \ C′1) ∪ . . . ∪ (C′′N \ C′N)〉
is consistent as well. S ′ is said to be strictly consistency
preserving if, moreover, it holds that every Si is consistent
whenever S is consistent.

Example 2. Consider the distributed constraint system
specified in Example 1 and its decomposition S ′ = {S1,S2}.
We show that S ′ is also a strictly consistency preserving
decomposition w.r.t. S = 〈{Xi}Ni=1, D,C〉: Every constraint
over Xi added to the local constraint systems Si that keeps
it consistent, will imply the existence of a non-empty set
of solutions for Si. Since S1 has a unique solution, every
consistent extension SE1 must have the same unique solution
σ1 = {x1 ← 1, x2 ← 1}. Whatever solution σ2 is chosen
for a consistent SE2)), it is always a solution to S2, too. But
then, using the solution preservation property, σ = σ1tσ2 |=
C. Moreover, σ1 |= C′′1 and σ2 |= C′′2 , therefore

σ |= C ∪ (C′′1 \ C′1) ∪ (C′′2 \ C′2).

Hence, SE is consistent and the decomposition is strictly
consistency preserving.

2.2.3 Safety preserving decompositions
In areas such as P2P systems and sensor networks, one uses
global constraints on the values by variables indicating vital
system properties or to characterize the normal behavior of
a system. As long as these global constraints are satisfied,
no active control of the system is necessary. Only if vio-
lations of these global constraints occur, actions have to be
performed to restore a normal state. In order to avoid exces-
sive communication between the sites, one prefers to detect
such anomalies in a distributed way. That is, the global
constraints need to be localized in such a way that each
site can establish independently from the others whether or
not its local set of constraints is violated. Such a detection
mechanism should be safe in the sense that whenever there
is a global violation, at least one site should have detected
it. But this, by contraposition, immediately implies that

safeness also can be expressed as a preservation property:
whenever each local site concludes that its local set of con-
straints is safe, the global set of constraints should be safe,
too.

Definition 4 (safety preserving decompositions).
Let S = 〈{Xi}Ni=1, D,C〉 be a distributed constraint system.
A decomposition S ′ = {Si = 〈Xi, Di, C′i〉}Ni=1 is called safety
preserving w.r.t. S if the following condition holds: when-
ever there exists a global system state (assignment) σ such
that for all i = 1, 2, . . . , N , Si is locally safe, i.e., σi |= C′i,
then the global system is safe, too, i.e., σ |= C.

Example 3. Take S = 〈{Xi}Ni=1, D,C〉 of Example 1.
The decomposition S ′ = {S1,S2} is obviously safety preserv-
ing w.r.t. S = 〈{Xi}Ni=1, D,C〉: whenever there is a state σ
such that σ1 |= (x1 ∧ x2) and σ2 |= true, we must have that
σ |= (x1 ∧ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x4).

3. DECOMPOSITION PROPERTIES: RELA-
TIONSHIPS

Given the three preservation properties we distinguished in
decompositions of constraint systems, the first question we
should answer is how they are related: Are they indepen-
dent? Is one subsumed by the other? Or are they in fact
equivalent? We start with the easiest one. As the reader
might have noticed, there is an obvious relationship between
solution preserving decompositions and safety preserving de-
compositions: A decomposition S ′ = {Si = 〈Xi, Di, C′i〉}Ni=1

is solution preserving exactly when it is safety preserving
with respect to a given distributed system S = 〈{Xi}Ni=1, D,C〉:

Proposition 1. Let S = 〈{Xi}Ni=1, D,C〉 be a distributed
constraint system. Then S ′ = {Si = 〈Xi, Di, C′i〉}Ni=1 is so-
lution preserving w.r.t. S iff S ′ is also safety preserving
w.r.t. S.

Proof. Notice that a decomposition S ′ that is safety pre-
serving exactly if for all σ = σ1 t . . . t σN ∈ Σ it holds that
∀i = 1, . . . , N σi ∈ Sol(Si) implies σ ∈ Sol(S).

Hence, S ′ is safety preserving iff

∅ 6= Sol(S1) t Sol(S2) t . . . t Sol(SN) ⊆ Sol(S)

iff S ′ is solution preserving.

With respect to consistency preserving and solution pre-
serving decompositions, intuitively, it should be easy to show
that solution preservation subsumes consistency preserva-
tion: if it is ensured that updates to a local constraint
store ensure locally consistent stores, there exist local so-
lutions σi for every updated local store. In particular, these
solutions are solutions for the initial versions of the local
stores. Hence, by solution preservation, merging these solu-
tions constitutes a solution σ for the global (initial) store.
But then it is easy to show that σ satisfies all the local up-
dates as well. Hence, the global constraint store plus the
added constraints is a consistent set as well. More precisely:

Proposition 2. Let S = 〈{Xi}Ni=1, D,C〉 be a distributed
constraint system. If S ′ = {Si = 〈Xi, Di, C′i〉}Ni=1 is solution
preserving w.r.t. S, then S ′ is also consistency preserving
w.r.t. S.

152

Proof. Assume S ′ to be solution preserving w.r.t. S. For
i = 1, 2, . . . , N , consider arbitrary (consistent) extensions
SEi = 〈Xi, Di, C′′i 〉 of the local subsystems Si = 〈Xi, Di, C′i〉.
For each subsystem SEi , select an arbitrary assignment σi ∈
Sol(SEi).

Since C′′i ⊇ C′i, it follows that

∅ 6= Sol(SEi) ⊆ Sol(Si).
Hence, by solution preservation, the assignment σ = σ1 t
. . . t σN will satisfy S. Therefore,

σ |= C (1)

By definition of σi, σi |= C′′i \ C′i. Moreover, every C′′i \ C′i
is a set of variable disjoint constraints over Xi. Hence, it
follows that

σ |= (C′′1 \ C′1) ∪ (C′′2 \ C′2) ∪ . . . (C′′N \ C′N) (2)

Hence, by equation (1) and (2),

σ |= C ∪ (C′′1 \ C′1) ∪ (C′′2 \ C′2) ∪ . . . (C′′N \ C′N)

and therefore, σ ∈ Sol(SE). So, Sol(SE) 6= ∅ and, conse-
quently, S ′ is consistency preserving with respect to S =
〈{Xi}Ni=1, D,C〉.

Although consistency preservation might seem to be a
weaker property, somewhat surprisingly, the converse is also
true: consistency preservation implies solution preservation.
The intuition behind this result is that every solution to a
constraint system can be encoded as a special update of the
constraint store. The resulting constraint store will have
this solution as its unique solution. By consistency preserva-
tion, the resulting global constraint store will be consistent.
Hence, this decomposition will also be solution preserving,
since the merge of all local solutions will be the unique so-
lution of the resulting system. More formally:

Proposition 3. Let S = 〈{Xi}Ni=1, D,C〉 be a distributed
constraint system. If S ′ = {Si = 〈Xi, Di, C′i〉}Ni=1 is consis-
tency preserving w.r.t. S = 〈{Xi}Ni=1, D,C〉, then S ′ is also
solution preserving w.r.t. S = 〈{Xi}Ni=1, D,C〉.

Proof. Assume S ′ = {Si = 〈Xi, Di, C′i〉}Ni=1 to be con-
sistency preserving w.r.t. S = 〈{Xi}Ni=1, D,C〉. By assump-
tion, for every subsystem Si and every extension SEi =
〈Xi, Di, C′′i 〉 of Si, it must hold that, whenever the extended
local systems SEi are consistent, then the global extended
system

SE = 〈X,D,C ∪ (C′′1 − C′1) ∪ . . . ∪ (C′′N − C′N 〉
is also consistent.

For each i = 1, . . . , N , let σi be an arbitrary solution to
Si = 〈Xi, Di, C′i〉. Since {Xi}Ni=1 is a partition, the assign-
ment σ = σ1 t . . . t σN is well-defined. We have to show
that σ ∈ Sol(S).
For i = 1, . . . , N , consider the extensions SEi = 〈Xi, Di, C′′i 〉,
where

C′′i = C′i ∪ {x = σ(x) : x ∈ Xi}.
That is, each C′i is extended with a set of unary constraints
encoding the assignment x← σ(x) for every variable x ∈ Xi.
Then, for every i = 1, 2, . . . , N , SEi is consistent and each σi
is the unique solution of SEi .
By consistency preservation, the extension

SE = 〈X,D,C ∪ (C′′1 \ C′1) ∪ . . . ∪ (C′′N \ C′N)〉

is consistent, too. Hence Sol(SE) 6= ∅. Now observe that

C ∪ (C′′1 \ C′1) ∪ . . . ∪ (C′′N \ C′N) = C ∪ {x = σ(x) : x ∈ X}
Hence, it follows that σ is the unique solution of SE and

therefore, σ |= C. Hence σ ∈ Sol(S) and the decomposition
S ′ is also solution preserving.

As an easy consequence of these propositions we have the
following result:

Theorem 1. Let S = 〈{Xi}Ni=1, D,C〉 be a distributed
constraint system. Then S ′ = {Si = 〈Xi, Di, C′i〉}Ni=1 is so-
lution preserving w.r.t. S iff S ′ is safety preserving w.r.t. S
iff S ′ is consistency preserving w.r.t. S ′.

It is not difficult to show that these equivalences also hold
for the strictly preserving versions. This immediately im-
plies that all results that have been obtained for consistency
preserving decompositions such as occur in [4, 12] can be
used for solution preserving approaches to decomposition as
well.

4. FINDING SOLUTION PRESERVING DE-
COMPOSITIONS

The equivalence between the three preservation properties
of decompositions does not tell us how we could obtain such
decompositions. In this section, we will discuss the problem
of finding suitable decompositions. Given the above proven
equivalences, in this section we concentrate on the solution
preservation property of decompositions.

First, we prove the equivalence between our notion of solu-
tion preserving decompositions and the notion of safe decom-
positions as introduced by [4] for the purpose of consistency
preserving decompositions. Then, using the definition of safe
decompositions we show that deciding whether a decompo-
sition S ′ is solution preserving w.r.t. S = 〈{Xi}Ni=1, D,C〉 in
general is a coNP-complete problem.

Next, we prove that finding such a decomposition S ′ is as
hard (neglecting polynomial differences) as finding a solution
for the original system S.6

We start by defining the notion of a safe decomposition:

Definition 5 ([4]). Given a distributed constraint sys-
tem S = 〈{Xi}Ni=1, D,C〉, the decomposition

S ′ = {Si = 〈Xi, Di, C′i〉}Ni=1

is said to be a safe decomposition w.r.t. S if

N⋃
i=1

C′i |= C.

Note that this property is also sometimes known as the cov-
ering property [1] and should not be confused with the safety
preservation property we discussed in the previous section.

Proposition 4. The decomposed system

S ′ = {Si = 〈Xi, Di, C′i〉}Ni=1

is safe w.r.t. S = 〈{Xi}Ni=1, D,C〉 iff S ′ is solution preserv-
ing w.r.t. S.
6Here, we assume that the class of allowable constraints al-
ways comprises the class of unary equality constraints of the
form x = d where d ∈ Dom(x).

153

Proof Sketch. Assume that S ′ is solution preserving
w.r.t. S. Then Sol(S1) t . . . t Sol(SN) ⊆ Sol(S). Take an
arbitrary assignment σ satisfying

⋃n
i=1 C

′
i. Then σ can be

written as σ = σ1 t σ2 t . . . t σN , where σi |= C′i since
{Xi}Ni=1 is a partitioning. Therefore, for i = 1, 2, . . . , N ,
σi ∈ Sol(Si). By solution preservation we have σ ∈ Sol(S).
Therefore, σ |= C and the decomposition is safe w.r.t. S.

Conversely, assume the decomposition S ′ to be safe w.r.t.
S = 〈{Xi}Ni=1, D,C〉. Then

⋃n
i=1 C

′
i |= C. So every assign-

ment σ : X → D satisfying
⋃n
i=1 C

′
i will also satisfy C. Each

such a solution σ can be written as σ = σ1 t σ2 t . . . t σN
where each σi : Xi → Di satisfies C′i. Hence,

Sol(S1) t . . . t Sol(SN) ⊆ Sol(S)

and S ′ is solution preserving w.r.t. S = 〈{Xi}Ni=1, D,C〉.

Using this notion of a safe decomposition, we can show
that the problem of deciding whether a decomposition S ′ is
safe w.r.t. S = 〈{Xi}Ni=1, D,C〉 is a coNP-complete problem:

Proposition 5. Let S = 〈{Xi}Ni=1, D,C〉 be a distributed
constraint system and S ′ = {Si = 〈Xi, Di, C′i〉}Ni=1 be a de-
composition. Then the problem to decide whether S ′ is safe
w.r.t. S is coNP-complete.

Proof. To show that the problem is in coNP, just guess
an assignment satisfying

∧N
i=1 C

′
i, but falsifying C. This

shows the complement is in NP. coNP-hardness immediately
follows from a reduction from the coNP-complete logical
consequence problem: Given two propositional formulas
φ and ψ, does it hold that φ |= ψ. To see this, given ar-
bitrary φ and ψ, let X1 be the non-empty set of proposi-
tional atoms occurring in φ and ψ. Let X2 = {y} where
y does not occur in X2. Consider the constraint system
S = 〈X,D,C〉 where X = X1 ∪ X2, D is a set of Boolean
domains and C = {φ, ψ ∨ y,¬y}. Let S1 = 〈X1, DX1 , {φ}〉
and S2 = 〈X2, DX2 , {¬y}〉. Then S ′ = {S1,S2} is a safe de-
composition w.r.t. (S, {X1, X2}) iff (φ∧¬y) |= {φ, ψ∨y,¬y}
iff φ |= {φ, ψ} iff φ |= ψ.

So, unless P=NP, it is hard to decide whether a decom-
position is solution preserving. We can, however, obtain a
more detailed result by relating the difficulty of finding a
strictly solution preserving decomposition for a constraint
system S belonging to a class of constraint systems to the
difficulty of finding a solution to S:

Proposition 6. Let C be an arbitrary class of constraint
systems allowing at least equality constraints. Then there ex-
ists a polynomial algorithm to find a solution for constraint
systems S in C iff there exists a polynomial algorithm that,
given a constraint system S ∈ C and an arbitrary partition
{Xi}Ni=1 of X, finds a strictly solution preserving decompo-
sition w.r.t. S = 〈{Xi}Ni=1, D,C〉.

Proof. Suppose that there exists a polynomial algorithm
A to find a solution for constraint systems in C. We show
how to construct a polynomial algorithm for finding a de-
composition for an arbitrary partition of such a constraint
system. Let S ∈ C be constraint system and {Xi}Ni=1 an
arbitrary partitioning of X. To obtain a decomposition
S ′ = {Si = 〈Xi, Di, C′i〉}Ni=1 of S, first, using A, we com-
pute a solution σ of S. For every Xi, let

Cσi = {x = d | x← d ∈ σ, x ∈ Xi}

be a set of unary constraints for variables in Xi directly ob-
tained from σ. Then the subsystems Si = (Xi, Di, C

′
i) are

simply obtained by setting C′i = CXi ∪Cσi . Note that each
of these subsystems Si has a unique solution σi = {x ←
d ∈ s | x ∈ Xi} and the merging of these solutions σi
equals σ, i.e., a solution to the original system S. Clearly,
S ′ = {Si = 〈Xi, Di, C′i〉}Ni=1 is a solution preserving decom-
position for S that can be obtained in polynomial time.

Conversely, suppose we can find a strictly solution preserv-
ing decomposition S ′ = {Si = 〈Xi, Di, C′i〉}Ni=1 for a con-
straint system S ∈ C w.r.t. any partitioning {Xi}Ni=1 in
polynomial time. We show how to obtain a solution σ
of S in polynomial time.7 Since the decomposition S ′ =
{Si = 〈Xi, Di, C′i〉}Ni=1 can be obtained for any partitioning
of X, we choose the partitioning {Xi}Ni=1 where Xi = {xi}
for i = 1, 2, . . . , N . Since the decomposition can be obtained

in polynomial time, it follows that
∣∣∣⋃Ni=1 C

′
i

∣∣∣ is polynomially

bounded in the size of the input S. Hence, the resulting
decomposed subsystems Si each consist of a polynomially
bounded set of unary constraints. It is well known that
such constraint systems are solvable in polynomial time [6].
Therefore, in polynomial time for each subsystem Si an ar-
bitrary value di ∈ Di for xi can be obtained, satisfying all
constraints. Let σi = {xi ← di} denote the solution ob-
tained for Si. Since S ′ = {Si = 〈Xi, Di, C′i〉}Ni=1 is a solution
preserving decomposition, the merging σ = σ1tσ2t . . .tσN
must be a solution of S as well. Therefore, σ is a solution
of S, too. Hence, given a polynomial algorithm for achiev-
ing a solution preserving decomposition, we can construct a
solution σ ∈ Sol(S) in polynomial time.

Using this result and Theorem 1, we now may conclude:

Theorem 2. Finding a strictly {consistency, solution, safety}-
preserving decomposition S ′ for a distributed constraint sys-
tem S is, neglecting polynomial-time differences, as hard as
finding a solution for S.

It is well-known that for general constraint systems, find-
ing a solution is NP-hard [7]. This theorem explains why
sometimes finding decompositions for a constraint system is
easy: one should restrict one’s attention to tractable con-
straint systems as STNs [10] or linear arithmetic constraints
[4].

5. OPTIMAL SOLUTION PRESERVING DE-
COMPOSITIONS

Finding an arbitrary solution preserving decomposition for
a given distributed constraint system might not always be
sufficient. One important property we also should pay at-
tention to is the amount of information that is preserved in
determining a (solution preserving) decomposition. For ex-
ample, taking a safety preserving decomposition, one would
like to minimize false alarms, i.e., one would minimize those
events where a local constraint is violated, but the global
integrity constraint would still be satisfied.

Hence, the information loss due to the decomposition S =
{Si = 〈Xi, Di, Ci〉}Ni=1 can be defined as
Sol(S) \ (Sol(S1) t . . . t Sol(SN)): the set of solutions of
the original system that cannot be obtained by merging the
local solutions using the decomposition.

7The case where S is inconsistent is easy and omitted, here.

154

Therefore, given a distributed constraint system
S = 〈{Xi}Ni=1, D,C〉, we would like to call a solution pre-
serving decomposition S ′ = {Si = 〈Xi, Di, C′i〉}Ni=1 an opti-
mal decomposition if it minimizes |Sol(S) \ Sol(S ′)| where
Sol(S ′) = Sol(S1) t . . . t Sol(SN) is the set of solutions
obtainable from the decomposed system.8

This optimality problem can be easily shown to be in-
tractable, even if the underlying constraint system contains
two variables and one (binary) constraint9, and finding a
solution preserving decomposition is trivial:

Proposition 7. Let S = 〈{Xi}Ni=1, D,C〉 be a distributed
constraint system where |X| = 2 and C contains only one
binary constraint. Then the problem to find an optimal so-
lution preserving decomposition S ′ = {Si = 〈Xi, Di, C′i〉}Ni=1

w.r.t. S, {Xi}Ni=1) is an NP-hard problem.

Proof. (Sketch) Consider the complete bipartite sub-
graph problem: Given a bipartite graph G = (V1 ∪ V2, E)
and a positive integer K, does there exists a complete bi-
partite subgraph (bi-clique) of order K in G? This problem
can be easily shown to be NP-complete by a reduction from
the standard clique problem.

Let G = (V1 ∪ V2, E) be an instance of the NP-hard max-
imum complete bipartite subgraph problem. We create
an instance of the optimal decomposition problem as follows:
Let S = (X,D,C) be a constraint system and let {X1, X2}
be a partitioning of X = {x1, x2}, where X1 = {x1} and
X2 = {x2} and the domain of x1 is D1 = V1 and the do-
main of x2 is D2 = V2. C contains only one constraint RE
which consists of exactly those tuples that occur in E, that
is (v1, v2) ∈ RE iff {v1, v2} ∈ E.

Finding a solution preserving optimal decomposition
S ′ = {Si = 〈Xi, Di, C′i〉}Ni=1 for (S, {X1, X2}) would imply
that we have to find two subsystems S1 = ({x1}, {V1}, C1)
and S2 = ({x2}, {V2}, C2), such that C1×C2 is a cardinality
maximal subset of the tuples of RE . Note that both C1 and
C2 contain unary relations R1 and R2 respectively, where
R1 = V ′1 ⊆ V1 and R2 = V ′2 ⊆ V2, respectively. Then
C1 × C2 is a cardinality maximal subset of the tuples of
RE iff (V ′1 ∪ V ′2 , V ′1 × V ′2) is a cardinality maximal complete
bipartite subgraph of G.

Note that this result shows that finding optimal solution
preserving decompositions can be hard even in cases find-
ing a solution preserving decomposition is easy. Hence the
intimate complexity connection between finding optimal so-
lution preserving decompositions and finding solutions for
the underlying constraint system has been lost.

6. CONCLUSIONS & FUTURE WORK
This paper considered decompositions of distributed con-
straint problems and studied the relationship between two
well-known properties of such decompositions: solution preser-
vation and consistency preservation. While in database ap-
plications one is interested in finding consistency preserving
decompositions that allow for local updating, in multi-agent

8Here, we concentrate on the case that these solution sets
are finite, e.g., by requiring the domains Di to be finite.
Note that the problem then is in P#P and hardness for this
class is still open.
9A binary constraint is a constraint in which only two vari-
ables do occur

systems applications, one looks for solution preserving de-
compositions that allow for easy composition of local solu-
tions. In this paper, we showed formally that these preser-
vation notions in decomposition are equivalent. Concentrat-
ing on solution preserving decompositions, we proved that
there exists an intimate connection between finding solu-
tion preserving decompositions for a given constraint sys-
tem S and finding solutions for S: they are computationally
equally hard, neglecting polynomial differences. Finally, we
discussed finding optimal decompositions and showed that
this problem is NP-hard even for partitions having only two
blocks. Moreover, the connections between finding optimal
decompositions for a constraint system and finding solutions
for it are lost.

We would like to point out the following implications:
First of all, Hunsberger [10] showed the tractability of the
decomposition method in the special case of Simple Tem-
poral Networks (STNs); in particular he showed that there
exists a polynomial algorithm for finding solution preserving
decompositions. This result should not come as a surprise
given the results we have shown above and the fact that
finding a solution for STNs is solvable in polynomial time.
Secondly, in [4] it is shown that a safe decomposition can
be easily found in case the constraints are linear arithmetic
constraints. Again, this result is a consequence of the rela-
tionship between finding decompositions of a system S and
finding solutions for it. Therefore, viewed in this broader
perspective, these two results can be seen as consequences
of more general results.

With respect to decomposition in distributed scheduling
problems, solution preserving decomposition methods of the
type we have discussed can be applied to enable autonomous
distributed scheduling without the necessity to coordinate
the integration of the solutions and to solve conflicts be-
tween the individual schedules. Our results also show that if
these decompositions are strictly solution preserving, such a
decomposition would also allow for adding local constraints
while maintaining local consistency without endangering the
feasibility of the joint schedule.

Furthermore, we should point out that the work on plan
coordination by design [16, 5] is closely related to the cur-
rent decomposition approach. This work on plan coordina-
tion allows a set of partially ordered tasks to be distributed
among a set of agents in such a way that each of the agents
is able to compose its own plan for the set of tasks assigned
to it while guaranteeing that merging these independently
constructed plans always will result in a feasible joint plan.
This preservation property can be conceived as an acyclicity
preservation property, since it guarantees that the joint plan
always is acyclic whenever the local plans are. Instead of al-
lowing all possible additions of constraints by the individual
planning agents, the only constraints an agent is allowed to
add are precedence order constraints between tasks assigned
to the agent.

Note that there are other views on decomposition in con-
straint systems, as expressed by structural decomposition
methods [8, 17, 6, 14] and by the distributed constraint op-
timization (DCOP) approach [19, 13]. In the structural de-
composition view (i) the structure of the problem (i.e., the
set of constraints) dictates the way in which the subprob-
lems are generated and (ii) in general, the decomposition
will not allow the subproblems to be independently solv-
able. In the DCOP approach, the partitioning of the vari-

155

ables is given, but, in general, the result of decomposition
is not a set of independently solvable subproblems. Our ap-
proach differs from these approaches in the sense that, using
the autonomous agent perspective, unlike the structural de-
composition approach, we are interested in decomposition
methods that take a given partitioning of the variables into
account. Secondly, unlike the DCOP and structural decom-
position approach, we require a complete decomposition of
the original problem instance, that is, we would like to find
a set of subproblems that can be solved concurrently and
independently to obtain a complete solution to the original
instance.

Concerning future work, we would like to point out that
in distributed scheduling there are other important preser-
vation properties like makespan or tardiness preservation in
decompositions that can be studied. In [18] we have made a
preliminary investigation into minimal makespan preserving
decompositions of scheduling problems, but a systematic in-
vestigation of the correspondence between these and other
preservation properties is still lacking.

Furthermore, we should investigate the idea of stratified
decomposition in AI applications where first a solution pre-
serving decomposition of the first layer of their constraints
can be provided, the agents submit their own preferred solu-
tions and conditional on these solutions the decomposition
of the next layer is provided, etc. This would allow for some
kind of synchronisations, for example, when exactly one of
two variables needs to be true, but each are owned by differ-
ent agents (this is a very common problem when assigning
duties or tasks to agents).

Finally, there is another interesting extension of the cur-
rent approach quite similar to the work of [3], where decom-
position is restricted to local constraints and variables oc-
curring in the global constraints might be subject to further
negotiation between agents, or subject to a special decom-
position approach after agents have had an opportunity to
express their preferences for the values of these variables. In
such a way we could make a distinction between those parts
of a constraint network that can be solved by the agents
independently from each other and those parts that would
require some additional processing.

7. REFERENCES
[1] S. Agrawal, S. Deb, K. V. M. Naidu, and R. Rastogi.

Efficient detection of distributed constraint violations.
In Proceedings of the 23rd International Conference on
Data Engineering, ICDE 2007, April 15-20, 2007,
Istanbul, Turkey, pages 1320–1324. IEEE, 2007.

[2] A.A. Alwan, H. Ibrahim, and N. Izura Udzir.
Improved integrity constraints checking in distributed
databases by exploiting local checking. Journal of
Computer Science and Technology, 24(4):665–674,
2009.

[3] J.C. Boerkoel and E.H. Durfee. Partitioning the
multiagent simple temporal problem for concurrency
and privacy. In R. I. Brafman, H. Geffner,
J. Hoffmann, and H.A. Kautz, editors, Proceedings of
the 29th International Conference on Automated
Planning and Scheduling, ICAPS 2010, pages 26–33.
AAAI, 2010.

[4] A. Brodsky, L. Kerschberg, and S. Varas. Optimal
constraint decomposition for distributed databases. In
M.J. Maher, editor, Advances in Computer Science -

ASIAN 2004, volume 3321 of Lecture Notes in
Computer Science, pages 301–319. Springer, 2004.

[5] P.C. Buzing, A.W. ter Mors, J.M. Valk, and
C. Witteveen. Coordinating self-interested planning
agents. Autonomous Agents and Multi-Agent Systems,
12(2):199–218, March 2006.

[6] D.A. Cohen, M. Gyssens, and P. Jeavons. A unifying
theory of structural decompostions for the constraint
satisfaction problems. In Complexity of Constraints.
Dagstuhl Seminar Proceedings 06401, 2006.

[7] R. Dechter. Constraint Processing. Morgan Kaufmann
Publishers, 2003.

[8] G. Gottlob, N. Leone, and F. Scarcello. A comparison
of structural CSP decomposition methods. Artificial
Intelligence, 124:2000, 1999.

[9] A. Gupta and J. Widom. Local verification of global
integrity constraints in distributed databases.
SIGMOD Rec., 22(2):49–58, 1993.

[10] L. Hunsberger. Algorithms for a temporal decoupling
problem in multi-agent planning. In Proceedings of the
Eighteenth National Conference on Artificial
Intelligence (AAAI-2002), pages 468–475, 2002.

[11] M. Karimadini and H. Lin. Synchronized Task
Decomposition for Cooperative Multi-agent Systems.
ArXiv e-prints, 0911.0231K, November 2009.

[12] S. Mazumbar and P.K. Chrysantis. Localization of
integrity constraints in mobile databases and
specification in PRO-MOTION. Mobile Networks and
Applications, 9(5):481–490, 2004.

[13] P.J. Modi, W.M. Shen, M. Tambe, and M. Yokoo. An
asynchronous complete method for distributed
constraint optimization. In AAMAS ’03: Proceedings
of the second international joint conference on
Autonomous agents and multiagent systems, pages
161–168, New York, NY, USA, 2003. ACM.

[14] W. Naanaa. A domain decomposition algorithm for
constraint satisfaction. J. Exp. Algorithmics,
13:1.13–1.23, 2009.

[15] M. Pietrzyk, S. Mazumdar, and R. Cline. Dynamic
adjustment of localized constraints. Lecture Notes in
Computer Science, pages 791–801, 1999.

[16] A.W. ter Mors, C. Yadati, C. Witteveen, and
Y. Zhang. Coordination by design and the price of
autonomy. Journal of Autonomous Agents and
Multi-Agent Systems, (on-line version,
http://dx.doi.org/10.1007/s10458-009-9086-9), 2009.

[17] B. W. Wah and Y. Chen. Constraint partitioning in
penalty formulations for solving temporal planning
problems. Artificial Intelligence, 170(3):187–231,
March 2006.

[18] C. Yadati, C. Witteveen, Y. Zhang, M. Wu, and H. La
Poutré. Autonomous scheduling with unbounded and
bounded agents. In Ralph Bergmann, Gabriela
Lindemann, Stefan Kirn, and Michal Pechoucek,
editors, Multiagent System Technologies. 6th German
Conference, MATES 2008, Lecture Notes In Computer
Science, pages 195–206. Springer -Verlag, 2008.

[19] M. Yokoo and K. Hirayama. Distributed breakout
algorithm for solving distributed constraint
satisfaction problems. In Proceedings of the Second
International Conference on Multiagent Systems,
pages 401–408, 1996.

156

