
Interfacing a Cognitive Agent Platform with a Virtual
World: a Case Study using Second Life

(Extended Abstract)

Surangika Ranathunga Stephen Cranefield Martin Purvis

Department of Information Science
University of Otago

Dunedin 9054, New Zealand
{surangika, scranefield, mpurvis}@infoscience.otago.ac.nz

ABSTRACT
Online virtual worlds provide a rich platform for remote human
interaction, and are increasingly being used as a simulation plat-
form for multi-agent systems and as a way for software agents to
interact with humans. It would therefore be beneficial to provide
techniques allowing high-level agent development tools, especially
cognitive agent platforms such as belief-desire-intention (BDI) pro-
gramming frameworks, to be interfaced with virtual worlds. This is
not a trivial task as it involves mapping potentially unreliable sensor
readings from complex virtual environments to a domain-specific
abstract logical model of observed properties and/or events. This
paper investigates this problem in the context of agent interactions
in a multi-agent system simulated in Second Life. We present a
framework which facilitates the connection of any multi-agent plat-
form with Second Life, and demonstrate it in conjunction with the
Jason BDI interpreter.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence ]: Intelligent agents, Mul-
tiagent systems

General Terms
Design, Experimentation

Keywords
Multiagent systems, BDI agents, Jason, Second Life

1. INTRODUCTION
Multi-purpose online virtual worlds provide a sophisticated and

convenient simulation platform for testing multi-agent systems and
other AI concepts, where software-controlled agents can be made
to interact with human-controlled agents. It would therefore be
beneficial to provide techniques allowing high-level agent devel-
opment tools, especially cognitive agent platforms such as belief-
desire-intention (BDI) programming frameworks, to be interfaced
with virtual worlds.
Cite as: Interfacing a Cognitive Agent Platform with a Virtual World:
a Case Study using Second Life (Extended Abstract), S. Ranathunga, S.
Cranefield, M. Purvis,Proc. of 10th Int. Conf. on Autonomous Agents
and Multiagent Systems (AAMAS 2011), Tumer, Yolum, Sonenberg
and Stone (eds.), May, 2–6, 2011, Taipei, Taiwan, pp. 1181-1182.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

When interfacing agent platforms with virtual worlds, there are
two non-trivial challenges to be addressed: how the agent actions
are performed on the virtual environment and how the large vol-
umes of (potentially unreliable) sensor readings from the virtual en-
vironment are mapped to a domain-specific abstract logical model
of observed properties and/or events, to be used by a multi-agent
system.

This paper addresses these challenges in the context of agent in-
teractions in a multi-agent system simulated in the popular multi-
purpose virtual world Second Life1. The main focus of this paper
is on how the potentially unreliable data received by an agent de-
ployed in a Second Life simulation can be processed to create a
domain-specific high-level abstract model to be used by the agent’s
cognitive modules. In order to accomplish this, we have developed
a framework with the use of theLIBOMV client library2, and this
framework facilitates the connection of any multi-agent framework
with Second Life. The main responsibility of the framework is to
accurately extract the sensor readings from Second Life, to identify
the high-level domain specific information embedded in those low-
level data, and finally to convert this information into a form that
can be used by the multi-agent system. Here, the latter two aspects
have not gained much attention in research related to Second Life.

2. SYSTEM DESIGN
Figure 1 shows how the different components of the system are

interfaced with each other. In this paper, we demonstrate our frame-
work in conjunction with the Jason BDI agent development plat-
form [2].

2.1 Interface Between the LIBOMV Client and
the Jason Agent

The interface between the LIBOMV client and the Jason agent
is facilitated using sockets (denoted by ‘S’ in Figure 1). This de-
coupling makes it possible to connect any agent platform with the
LIBOMV clients. The module that contains LIBOMV clients is ca-
pable of handling multiple concurrent LIBOMV clients and socket
connections. Therefore if the corresponding multi-agent system is
able to create concurrently operating agents, this can easily create a
multi-agent simulation inside Second Life. Consequently, the mod-
ule that contains the Jason platform is designed in such a way that
it is capable of handling multiple concurrent instances of socket

1http://secondlife.com
2http://lib.openmetaverse.org/wiki/Main_Page

1181



Jason Platform Second Life Server

Jason 
Agent

Jason 
Agent

Jason 
Enviro
nment

Connection 
Manager

S

S

LIBOMV 
client

LIBOMV 
client

Connection 
Manager

S

S

Avatar

Avatar

Data Processing Module

Data Pre -Processor

Complex Event Detection

Data Post-Processor

Data Processing Module

Data Pre -Processor

Complex Event Detection

Data Post-Processor

Figure 1: Overall System Design

connections connected to the Jason agents.

2.2 Interface Between the LIBOMV Client and
the Second Life Server

Although a LIBOMV client connected to Second Life can ex-
tract data from Second Life in a more robust way than using the
Linden Scripting Language (LSL), it also has several limitations,
which affect the accuracy of the extracted sensory readings. There-
fore we implemented a combined approach to extract data from
Second Life, where a scripted object is attached to the LIBOMV
client. Detection of the avatars and objects to be monitored is done
at the LIBOMV client side. Identification information for these
is then sent to the script. As the script already knows what to be
tracked, an efficient, light-weight function can be used to record
the position and velocity information instead of the normal LSL
sensor functionality. Avatar animation updates are directly cap-
tured by the LIBOMV client to make sure animations with short
durations (eg. crying or blowing a kiss) are not missed out. The
communication messages (chat exchanged in the public chat chan-
nels, instant messages sent to the agent) are also directly captured
by the LIBOMV client.

2.3 Data Processing Module
The data processing module consists of three main components;

the data pre-processor, the complex event detection module and the
data post-processor. The responsibility of the data processing mod-
ule is to map the received sensor readings from complex Second
Life environments to a domain-specific abstract logical model. In
essence, it creates snapshots of the system that include low-level
data (position and animation information of the avatars and ob-
jects) generated in the given Second Life environment in a given
unit of time, along with the identified high-level domain-specific
information and other contextual information.

In accomplishing this, first the data pre-processor amalgamates
the data received from the LSL script and the received updates for
avatar animations and communication messages, and creates snap-
shots of the environment. A snapshot includes the position and ve-
locity information of all the avatars and objects of interest that are
valid at a given instant of time, along with avatar animation infor-
mation. The data pre-processor also deduces the basic high-level

information about the avatars and objects, e.g. whether an avatar
is moving, and if so, in which direction and the movement type
(e.g. walking, running or flying), and whether an avatar is in close
proximity to another avatar or an object of interest. Other contex-
tual information such as the location of the avatar or the role it is
playing can also be attached to this retrieved information as needed.

These low level data are then sent to the complex event detec-
tion module, to identify the high-level domain-specific information
embedded in those low-level data. For this, we use an event stream
processing engine called Esper3.

Finally, the data post-processor converts the processed data into
an abstract model to be passed to the connected multi-agent sys-
tem. The detected low-level and high-level events, along with other
context information are grouped into states (a state corresponds a
snapshot of the Second Life environment at a given instant of time)
which are represented as a set of propositions. These propositions
are sent to the multi-agent system, to be converted to any represen-
tation needed by the multi-agent system. For example, in Jason,
these are converted to percepts, which are recorded as agent be-
liefs.

3. CONCLUSION
In this paper we presented a framework that can be used to de-

ploy multiple concurrent agents in complex Second Life simula-
tions, and demonstrated it with the Jason BDI agent development
platform. The main focus of this paper was on how the potentially
unreliable data received by an agent deployed in a Second Life sim-
ulation should be processed to create a domain-specific high-level
abstract model to be used by the agent’s cognitive modules. Al-
though there have been some practical implementations of agent
societies inside Second Life [1], they have mainly focused on cre-
ating Second life simulations specifically for human-agent interac-
tion, rather than trying to integrate agent platforms with the already
existing Second Life simulations as we have done. Moreover, we
do not see these specific problems have been properly investigated
there. On the other hand, the other theoretical proposals that ad-
dressed this issue have not been implemented yet [3].

We have successfully tested our framework with Jason agents
deployed in the SecondFootball4 simulation in Second Life, and
currently the framework is customized for this simulation. How-
ever in the future, we are planning to make the framework more
generalized. Further details, discussion and a comparison with re-
lated work can be found in the full version of this paper [4].

4. REFERENCES
[1] A. Bogdanovych, S. Simoff, and M. Esteva. Virtual

institutions: Normative environments facilitating imitation
learning in virtual agents. InIntelligent Virtual Agents,
volume 5208 ofLecture Notes in Computer Science, pages
456–464. Springer, Berlin, Heidelberg, 2008.

[2] R. H. Bordini, J. F. Hubner, and M. Wooldridge.
Programming Multi-Agent Systems in AgentSpeak using
Jason. John Wiley & Sons Ltd, England, 2007.

[3] D. J. H. Burden. Deploying embodied AI into virtual worlds.
Knowledge-Based Systems, 22(7):540–544, 2009.

[4] S. Ranathunga, S. Cranefield, and M. Purvis. Interfacing a
cognitive agent platform with Second Life. Discussion Paper
2011/03, Department of Information Science, University of
Otago, 2011.http://eprints.otago.ac.nz/1093/ .

3http://esper.codehaus.org
4http://www.secondfootball.com

1182


