
Belief/Goal Sharing BDI Modules

(Extended Abstract)
Michal Cap1,2∗, Mehdi Dastani1 and Maaike Harbers1

1Intelligent Systems Group, Faculty of Science, Utrecht University, Utrecht, Netherlands
{mehdi,maaike}@cs.uu.nl

2ATG, Dept. of Cybernetics, FEE, Czech Technical University, Prague, Czech Republic
cap@agents.felk.cvut.cz

ABSTRACT
This paper proposes a modularisation framework for BDI
based agent programming languages developed from a soft-
ware engineering perspective. Like other proposals, BDI
modules are seen as encapsulations of cognitive components.
However, unlike other approaches, modules are here instan-
tiated and manipulated in a similar fashion as objects in
object orientation. In particular, an agent’s mental state
is formed dynamically by instantiating and activating BDI
modules. The agent deliberates on its active module in-
stances, which interact by sharing their beliefs and goals.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Intelligent agents, languages and structures

General Terms
Theory, Design, Languages

Keywords
Agent programming languages, BDI, Modularity

1. INTRODUCTION
The agent oriented programming paradigm promotes a so-

cietal view of computation, where solutions are achieved by
cooperation of autonomous entities - agents. This paper fo-
cuses on a family of agent programming languages based on
the Belief-Desire-Intention (BDI) theory [3]. BDI languages
(e.g. [2]) offer constructs inspired by mental notions such
as beliefs, goals and plans to implement agent behaviour.
As in other programming paradigms, the ability to decom-
pose BDI programs to separate, to some extent independent

∗The research was done at Utrecht University. The first au-
thor is now affiliated with CTU Prague and supported by the
Grant Agency of the Czech Technical University in Prague,
grant no. SGS10/189/OHK3/2T/13 and by the Czech Min-
istry of Education grant no. MSM6840770038.

Cite as: Belief/Goal Sharing BDI Modules (Extended Abstract), Michal
Cap, Mehdi Dastani and Maaike Harbers, Proc. of 10th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS
2011), Tumer, Yolum, Sonenberg and Stone (eds.), May, 2–6, 2011,
Taipei, Taiwan, pp. 1201-1202.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

modules, is crucial for the development of complex software
systems. Yet, a widely accepted concept of modularisation
for BDI programming languages is still missing.

We propose a modularisation framework for logic-based
BDI languages to overcome some of the limitations of ex-
isting frameworks and unify commonly accepted character-
istics of various existing approaches [4, 7–9] into one single
framework. The proposed framework extends earlier work
by Dastani et al [5, 6].

2. BDI MODULARISATION
Our proposed modularisation framework for the BDI pro-

gramming languages has the following characteristics. 1) A
module is an encapsulation of beliefs, goals, plans and rea-
soning rules that together specify a functionality, a capa-
bility, a role, or a behaviour. 2) An agent’s mental state is
modelled as a tree of module instances, in which a link is cre-
ated when one module instance activates another. Using this
mechanism, a set of dependent module instances can be de-
activated and reactivated by means of a single action. 3) An
agent’s module instances are executed in parallel. This al-
lows the agent to play several roles or use several capabilities
at the same time. 4) Module instances can be created and
released, and added to or removed from an agent’s mental
state at run-time. This can be used, e.g., to dynamically en-
act and deact roles. 5) Inactive and active module instances
are distinguished. An inactive module instance is generally
used as a named container for beliefs and goals, while an
active module instance is typically used for encapsulation of
behavioural rules (specifying plans to achieve goals and re-
spond to events). 6) Each module instance is associated with
an interface determining its interaction with other module
instances, i.e. the beliefs and goals that are shared with
other module instances. This way, a module’s public inter-
face is separated from its private internals. 7) An agent’s
module instances can be clustered into separate belief/goal
sharing scopes. Modules in different scopes do not interact
which allows an agent to maintain mutually inconsistent be-
lief bases, e.g. to model different possible worlds or profiles
of other agents.

From a methodological point of view, we can identify
the following characteristics. 1) The framework is easy to
grasp for programmers acquainted with object orientation
because module instances are manipulated similarly to ob-
jects. 2) Programmers have explicit control over the life
cycle of a module, i.e. they can indicate when to create/in-

1201



stantiate modules, how to operate on them, and when to
release them. 3) The module interface can be used to deter-
mine the intended use of a module. By convention, the use of
particular interface should be documented by a semi-formal
comment (similar to JavaDoc comments) above the respec-
tive interface entry. 4) Active module instances interact by
sharing some of their beliefs and goals which promotes loose
coupling. A module instance can easily be replaced (even
at runtime) as long as the new module uses the same beliefs
and goals for interaction with the agent’s other modules.

3. BELIEF/GOAL SHARING
The mechanism of belief/goal sharing, which realizes the

run-time interaction between active module instances, is a
distinguishing feature of our approach. Each module in-
stance has an interface which is defined as a set of interface
entries. An interface entry is an atomic formula used as a
template that matches concrete beliefs and goals. All beliefs
and goals of a module instance matched by its interface are
exported and become global beliefs and goals of a sharing
scope, and vice versa, all global beliefs and goals of a sharing
scope matched by the module’s interface are imported and
treated identically to its own beliefs and goals.

A module interface serves several functions. First, it spec-
ifies the language that is to be used to interact with the
module. All beliefs and goals interfaced by the module in-
stance will be expressed in the module interface language.
Second, a module interface defines which of its local beliefs
and goals are interfaced and will thus be constitute beliefs
and goals of its sharing scope. Third, a module interface de-
fines which of the global beliefs and goals will be accessible
for the module instance. And last, a module interface may
be used to limit the visibility of the internals of a module in-
stance. Any belief or goal that cannot be expressed in terms
of the module interface language stays private and cannot
be accessed from outside the module instance.

We introduce a simple example to demonstrate one of the
typical interaction patterns exploiting the belief/goal shar-
ing mechanism — the delegation of a goal pursuit. Suppose
we are specifying a worker agent who operates in a grid-like
environment. The agent consists of the main worker mod-
ule instance and a moving module instance providing the
agent a capability to move in the environment. The agent’s
module tree is depicted in Figure 1.

worker

Interface = {at(X,Y)}

��
moving

Interface = {at(X,Y)}

Figure 1: Modules of the Worker Agent

A goal pursuit is delegated when a module instance is
incapable to achieve that goal itself, but another module in-
stance in the same sharing scope is capable to achieve it.
The first module instance can monitor the pursuit of the
goal by a query on the corresponding belief. In our example,
the working module instance may desire to be at position
(5,7) , i.e. it adopts the goal at(5,7), although it has no
actual means to achieve the goal itself. However, since the
atom at(X,Y) is declared as an interface entry in the worker

module specification, the goal at(5,7) will be exported and
becomes a global goal of the agent. The moving module
specification also declares the atom at(X,Y) in its interface,
and therefore imports the global goal. Subsequently, it gen-
erates a plan to perform actions in the external environment
towards the achievement of the goal. Eventually, the mov-

ing module instance will have sensed that the agent is at the
target position and updates its belief base with a new po-
sition belief at(5,7). Using the belief sharing mechanism,
the belief gets propagated back to the worker module. Fur-
thermore, due to the rationality principle1 the goal at(5,7)
is automatically dropped.

4. CONCLUSION
We have designed a belief/goal sharing modularisation

framework suitable for BDI-based agent programming lan-
guages with declarative goals. It shares some of its charac-
teristics with the other approaches and adds several novel
features. The concept of belief/goal sharing was outlined us-
ing a simple example. We have used the open source codes of
2APL to incorporate the proposed constructs into this pro-
gramming language and implemented an interpreter able to
execute such modular programs [1].

5. REFERENCES
[1] http://apapl.sourceforge.net/.

[2] R. Bordini, M. Dastani, J. Dix, and A. E. F.
Seghrouchni. Multi-Agent Programming: Languages,
Platforms and Applications. International book series
on Multiagent Systems, Artificial Societies, and
Simulated Organizations. Springer, 2005.

[3] M. E. Bratman. Intention, Plans, and Practical Reason.
Harvard University Press, Cambridge, MA, 1987.

[4] L. Braubach, A. Pokahr, and W. Lamersdorf.
Extending the capability concept for flexible BDI agent
modularization. In Proceedings of PROMAS 2005
Workshop. Springer Verlag, 2006.

[5] M. Dastani. 2APL: a practical agent programming
language. Autonomous Agents and Multi-Agent
Systems, 16(3):214–248, 2008.

[6] M. Dastani, C. P. Mol, and B. R. Steunebrink.
Modularity in BDI-based agent programming
languages. In Proceedings of the 2009 IEEE/WIC/ACM
International Joint Conference on Web Intelligence and
Intelligent Agent Technology, 2009.

[7] K. Hindriks. Modules as policy-based intentions:
Modular agent programming in GOAL. In Proceedings
of PROMAS ’07 Workshop, number 4908 in LNAI.
Springer, 2008.

[8] P. Novák and J. Dix. Modular BDI architecture. In
AAMAS ’06: Proceedings of the fifth international joint
conference on Autonomous agents and multiagent
systems. ACM, 2006.

[9] M. B. van Riemsdijk, M. Dastani, J.-J. C. Meyer, and
F. S. de Boer. Goal-oriented modularity in agent
programming. In AAMAS ’06: Proceedings of the fifth
international joint conference on Autonomous agents
and multiagent systems. ACM, 2006.

1The rationality principle states that an agent should not
desire a worlstate which is believed to hold. Some BDI lan-
guages (e.g. 2APL) enforce this principle by automatically
dropping goals that are believed to hold.

1202


