
Heuristic Multiagent Planning with Self-Interested Agents

(Extended Abstract)
Matt Crosby

School of Informatics
University of Edinburgh

Edinburgh EH8 9AB, UK
M.Crosby@ed.ac.uk

Michael Rovatsos
School of Informatics

University of Edinburgh
Edinburgh EH8 9AB, UK

M.Rovatsos@ed.ac.uk

ABSTRACT
The focus of multiagent planning research has recently turn-
ed towards domains with self-interested agents leading to
the definition of Coalition–Planning Games (CoPGs). In
this paper, we investigate algorithms for solving a restricted
class of “safe” CoPGs, in which no agent can benefit from
making another agent’s plan invalid. We introduce a novel,
generalised solution concept, and show how problems can
be translated so that they can be solved by standard single–
agent planners. However, standard planners cannot solve
problems like this efficiently. We then introduce a new mul-
tiagent planning algorithm and the benefits of our approach
are illustrated empirically in an example logistics domain.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Plan execution, formation, and gen-
eration, Heuristic Methods; I.2.11 [Artificial Intelligence]:
Distributed Artificial Intelligence—Multiagent systems

General Terms
Algorithms, Performance, Experimentation, Theory

Keywords
Multiagent planning, single-agent planning, Coalition-
Planning Games

1. INTRODUCTION
Historically, multiagent planning has assumed coopera-

tive agents, and has mostly ignored issues associated with
strategic behaviour among self-interested agents. Recently
however, this problem has started to attract more interest [1,
5] and Brafman et al [2] have introduced Coalition-Planning
Games (CoPGs), multiagent planning problems with self-
interested but ready to cooperate agents.

We introduce a new solution concept for CoPGs that avoids
some unintuitive properties of the concept existing in the
literature and show that a restricted subset of CoPGs can
be solved using existing planners. However, this approach
fails to make use of the powerful heuristics tools provided by

Cite as: Heuristic Multiagent Planning with Self-Interested Agents (Ex-
tended Abstract), Matt Crosby, Michael Rovatsos, Proc. of 10th Int.
Conf. on Autonomous Agents and Multiagent Systems (AA-
MAS 2011), Tumer, Yolum, Sonenberg and Stone (eds.), May, 2–6, 2011,
Taipei, Taiwan, pp. 1213-1214.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

modern planners. We therefore introduce a novel algorithm
that combines heuristic calculations with the distinction be-
tween an agent’s public and internal actions as introduced
in [1].

2. COPGS
Definition: A Coalition-Planning Game CoPG [2], with

n agents N = {1, . . . , n}, is an extension to a classical
STRIPS planning problem and is represented by a 6-tuple
Π = 〈P,A, I,G, c, r〉. P is a set of grounded atoms and
I ⊆ P represents the initial state of the world, A = {Ai}ni=1

comprises of a set of actions for each agent and G = {Gi}ni=1

contains a goal set for each agent, c : A→ <+ is a cost func-
tion and r : N → <+ is a reward function. Agents are
assumed to be self-interested, but able to form coalitions
(costless binding agreements).

A solution to a planning problem Π is a plan π = {a1, . . . ,
an}, an ordered sequence of actions that can be executed in
sequence.1 The utility of an agent’s plan is defined as:

ui(π) =


r(i)−Pa∈{a∈π:a∈Ai} c(a) if π achieves Gi
−Pa∈{a∈π:a∈Ai} c(a) otherwise

Let uS(π) represent the vector of utilities for agents in S ⊆
N . Let (πS , πS′) be the joint plan constructed by combining
the plans πS and πS′ for disjoint subsets S, S′ ⊆ N . We
say a vector u > u′ if every element of u is greater than the
equivalent element in u′. For S ⊆ N we call Π|S the CoPG Π
restricted to S defined as: Π|S = 〈P,∪i∈SAi, I,∪i∈SGi, c, r〉
We use sol(Π) to represent the set of plans that are possible
solutions to Π.

3. SOLUTION CONCEPT
Definition: We define a solution π as stable iff there

doesn’t exist a strategy πS for any subset of agents S ⊆
N , S 6= ∅ such that uS(πS , π

∗
N\S) ≥ uS(π) and ∃i ∈ S :

ui(πS , π
∗
N\S) > ui(π). π∗N\S is the stable solution to the

smaller planning game over the set of agents N \ S formed
by fixing S’s strategy to πS . If (πS , π

∗
N\S) is not a valid plan

then we assume uS(πS , π
∗
N\S) = 0.

Note that this reduced planning problem is strictly smaller
than the previous problem so eventually the non-deviating
set will be reduced to ∅ at which point the definition becomes
trivial.

1We consider asynchronous actions here and leave the con-
current action case for another paper.

1213



4. USING SINGLE–AGENT PLANNERS
For a CoPG Π, its related centralised planning problem is

Π′ = 〈P,∪i∈NAi, I,∪i∈NGi〉 where each action in ∪i∈NAi
is given cost c(a). Solving the centralised version of a CoPG
leads to a plan that achieves each agent’s goals. Solving it
optimally produces the social welfare maximising plan, but
not necessarily a stable solution.

We add the numerical state variables (i-cost) represent-
ing the cost of the joint plan so far for agent i for each i ∈ N
and update action effects with appropriate functions. Given
a CoPG Π, let Π′ be the centralised transformation of the
problem. Also let Π′|i be the single-agent transformation of
problem Π|i, i.e. agent i’s local planning problem involving
only its own action and goal sets. We can apply the following
algorithm to attempt to find a stable solution to Π:

input CoPG Π over agents N
for all i ∈ N

for all a ∈ Ai
append increase((i-cost), c(a)) to add(a)

π = the solution to (Π′|i)
append (i-cost) ≤ c(π) to Gi
append (i-cost) = 0 to I

construct Π′ from Π
output the solution to Π′.

5. SAFE–COPGS
The above algorithm does not guarantee outputting a sta-

ble solution. However, it is successful on certain empirically
tested domains. The following definition captures the prop-
erty that causes the above algorithm to output stable solu-
tions.

Definition: A CoPG is safe iff for all possible plans π
and ∀S, S′ ⊆ N with S ∩ S′ = ∅, (π∗S , π

∗
S′) is a valid plan.

Theorem: For a safe-CoPG Π, the output of the algo-
rithm above with input Π is stable. (Proof omitted due to
space constraints).

6. A MULTIAGENT ALGORITHM
In heuristic planners like metric-FF [4], heuristic values

are calculated for each possible state by solving a relaxed
version of the planning problem using planning graphs. A
planning graph is a directed layered graph that contains
nodes for actions and states. For each time step there is
a fact layer and an action layer. At layer i the fact layer
consists of all facts that can possibly be reached in i time
steps and the action layer consists of all actions that are
possibly applicable given those facts.

In our proposed algorithm, each agent builds an inter-
nal planning graph that consists only of facts and actions
that can be performed by that agent alone. Each agent
also builds a public planning graph, which includes facts
added by all agents (in practice, only other agent’s public
facts need to be added). The plan that will be extracted
depends on whether agents achieve their goals using their
internal or public planning graph first. Once all goals are
reached, a check is made to ensure that each agent that has
only reached their goal in their public planning graph does
not rely upon actions provided by agents who reached their
goals on their internal planning graph first. If this fails, then
planning graph generation continues until the check passes.

It may happen (even in a safe–CoPG) that one agent
cannot reach its goal while constructing its internal relaxed

planning graph. In this case, the only possible solution is
for the agents to cooperate. If an agent’s goal is unreach-
able in it’s internal planning graph, then the agent that first
achieves its goal in the public graph is forced to cooperate
even if it achieved its goal internally first.

Most of the techniques utilised in metric-FF for efficient
implementation [4] carry over to our algorithm. The main
difference lies in the extraction of a joint plan from the joint
planning graphs of multiple agents. In this case, when an
agent performs an action that has a precondition provided
by another agent, it adds the preconditions as a goal to the
other agent’s goal set.

7. RESULTS
The algorithm was evaluated in a simple grid-world parcel

domain. Agents can move to any adjacent square, pickup
and drop/deliver parcels. All actions have cost 1. The parcel
domain is a safe-CoPG, since it is never beneficial to pickup
another agent’s parcel (the only way to potentially hinder
their plan) unless planning to cooperate. The algorithm was
compared, in terms of CPU time, to a single-agent planner
run over the same problems on the same machine. For each
different grid size, the planner was run on 100 problems and
the average time taken to solve them was recorded.

3x3 4x4 5x5 6x6 7x7
0

2

4

6

8

10

12

14

16

18

20

Size of Problem Area

Ti
m

e 
(s

)

 

 

Single−agent Planner
Multiagent Algorithm

On the largest problems tested, the average time taken
by metric-FF (not shown on the graph) was 311 seconds
while our multiagent algorithm took 2.93 seconds on av-
erage. In all cases that required cooperation, the enforced
hill-climbing search performed by metric-FF failed, which ef-
fectively render its otherwise powerful heuristics useless for
this kind of problem. In all 500 cases tested, the multiagent
algorithm returned a stable solution.

8. REFERENCES
[1] Ronen I. Brafman and Carmel Domshlak. From one to

many: Planning for loosely coupled multi-agent
systems. In ICAPS, pages 28–35, 2008.

[2] Ronen I Brafman, Carmel Domshlak, Yagil Engel, and
Moshe Tennenholtz. Planning games. In IJCAI, pages
73–78, 2009.

[3] Jörg Hoffmann. FF: The fast-forward planning system.
AAAI, 22:57–62, 2001.

[4] Jörg Hoffmann. The metric-ff planning system:
translating ”ignoring delete lists” to numeric state
variables. JAIR, 20(1):291–341, 2003.

[5] Raz Nissim, Ronen I. Brafman, and Carmel Domshlak.
A general, fully distributed multi-agent planning
algorithm. AAMAS, May 2010.

1214


