
AgentScope: Multi-Agent Systems Development in Focus

Elth Ogston
Delft University of Technology

e.f.y.ogston@tudelft.nl

Frances Brazier
Delft University of Technology
f.m.t.brazier@tudelft.nl

ABSTRACT
Multi-agent systems form the basis of many innovative large-scale
distributed applications. The development of such applications re-
quires a careful balance of a wide range of concerns: a detailed
understanding of the behaviour of the abstract algorithms being
employed, a knowledge of the effects and costs of operating in a
distributed environment, and an expertise in the performance re-
quirements of the application itself. Experimental work plays a key
role in the process of designing such systems. This paper exam-
ines the multi-agent systems development cycle from a distributed
systems perspective. A survey of recent experimental studies finds
that a large proportion of work on the design of multi-agent sys-
tems is focused on the analytical and simulation phases of devel-
opment. This paper advocates an alternative more comprehensive
development cycle, which extends from theoretical studies to sim-
ulations, emulations, demonstrators and finally staged deployment.
AgentScope, a tool that supports the experimental stages of multi-
agents systems development and facilitates long-term dispersed re-
search efforts, is introduced. AgentScope consists of a small set
of interfaces on which experimental work can be built indepen-
dently of a particular type of platform. The aim is to make not only
agent code but also experimental scenarios, and metrics reusable,
both between projects and over simulation, emulation and demon-
stration platforms. An example gossip-based sampling experiment
demonstrates reusability, showing the ease with which an experi-
ment can be defined, modified into a comparison study, and ported
between a simulator and an actual agent-operating system.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems—Distributed Applications

General Terms
Experimentation

Keywords
Multi-Agent Systems Development

1. INTRODUCTION
Agents, unlike passive nodes in traditional computer systems,

analyse and react to their surroundings, autonomously making de-
cisions and adapting to their environment. These properties pose a
unique challenge in the design of distributed systems. Such knowl-
edge intensive activities are predicated on the availability of infor-
Cite as: AgentScope: Multi-Agent Systems Development in Focus, E.
Ogston and F. Brazier, Proc. of 10th Int. Conf. on Autonomous Agents
and Multiagent Systems (AAMAS 2011), Tumer, Yolum, Sonenberg
and Stone (eds.), May, 2–6, 2011, Taipei, Taiwan, pp. 389-396.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

mation. As systems scale up and become more decentralised the
costs of gathering information becomes an important consideration
in an agent’s design. Increases in complexity which are beneficial
in theory may not prove cost effective in application. Or agent al-
gorithms may set requirements that are beyond the resources of an
underlying computing system.

For agent algorithms in which information obtained from the en-
vironment in a large-scale distributed system is crucial, design is
not limited to the theoretical or conceptual stage of development,
but is a continuous process that spans into an experimental imple-
mentation, testing and comparison process. Procedures that pro-
vide information services need to be carefully matched, and per-
haps customised. The performance of an algorithm must be exam-
ined in combination with the services it uses. Possible designs must
be compared in the intended application setting, and improvements
in effectiveness weighed against increased cost.

This process of designing practical multi-agent systems can be
viewed as an incremental development cycle, moving from theo-
retical studies to experimental simulations, emulations, and demon-
strators, and finally to staged deployment. Experimental work plays
an important role in the process. Simulation, emulation and demon-
stration experiments allow key aspects of system behaviour to be
examined in detail in a controlled environment. Correctness and
performance of algorithm implementations can be confirmed, and
alternative algorithms can be carefully compared.

In contrast to this comprehensive view of the development cycle,
a survey of recent papers finds that experimental work on multi-
agent systems is heavily weighted towards the simulation stage.
A large proportion of works appear to be strongly influenced by
methodologies that view system design as occurring primarily in
the theoretical or analytical stage of development.

AgentScope is a tool that supports the experimental stages of
multi-agents systems development and facilitates long-term dis-
persed research efforts. AgentScope defines a set of generic inter-
faces for (1) networked communication between agents, (2) mea-
surement and analysis of agent behaviour, and (3) the setup of
experimental scenarios. The AgentScope interfaces allow proto-
cols and experiments written for one type of platform, for instance
a simulation environment, to be easily ported to other types of
platforms, such as emulation environments, as research progresses
through the development cycle. Real agent environments, such as
the AgentScape middleware platform [15], can also be used, sim-
plifying the transition between the experimental and deployment
stages of the development cycle. AgentScope further enables the
publishing of experiments, making it easier to compare algorithms
with previous work, and reuse experimental scenarios and metrics.

The aim of the AgentScope project is to allow researchers to
view experimental work from a more ambitious perspective than

389

the testing of hypotheses for a single publication or project. Agent-
Scope views experiments not as a one-off effort by a single re-
searcher but as long-term work by many researchers. AgentScope
gives support for measurement, analysis and scenario development
equal priority to support for algorithm development. AgentScope
promotes the creation of code whose use is not restricted to study-
ing only the aspects of behaviour currently of interest, but that can
be carried through a series of experiments, and be used throughout
the development cycle.

This paper discusses the experimental stages of multi-agent sys-
tems development (Section 2), extending the argument for a com-
prehensive agents development cycle put forward in [11]. It fur-
ther surveys existing experimental work (Section 3), and presents
the AgentScope interfaces (Section 4). An example in Sections 5
and 6 demonstrates the ease with which experiments can be de-
veloped, extended and ported between different types of platforms
using AgentScope. Sections 7 and 8 present conclusions and sum-
marise ongoing and future work.

2. MULTI-AGENT SYSTEMS DEVELOPMENT
AgentScope considers experiments not as one off efforts by a sin-

gle researcher but as part of long-term work by many researchers.
From this point of view an experiment is a small step in a larger
application development cycle. In multi-agent systems complex
communication processes underlie important high-level procedures
such as coordination, negotiation, collaboration, and coalition for-
mation, to name a few. The deployment of such procedures in ap-
plications is more complex still. Ideas developed in theory rarely
translate directly to deployment. Instead an intricate development
process must often be followed to bridge the gap between theory
and application.

In AgentScope, rather than placing agents and their overall be-
haviour foremost, the core abstraction is a protocol; a distributed
set of components that collectively provide a specific distributed
service. Agents are made up of a set of protocols that support their
core behaviour. This change in focus views a multi-agent system
not only from an agent’s perspective, but also as a distributed sys-
tem. Protocols map the abstract services employed by an agent to
concrete implementations of distributed algorithms.

The development path between abstract agent design and full
scale application deployment is divided into phases, a simulation
stage, an emulation stage and a demonstration stage. Experiments
in each stage single out the behaviour of specific protocols and test
how well protocols combine to provide full agent functionality.

2.1 Protocols
A protocol supports a distributed application by providing a ba-

sic abstract service. For instance sampling, aggregation, dissemi-
nation, resource allocation, clustering, directories, and search are
common distributed tasks that can be viewed as services used by
higher-level applications. While each of these tasks is a relatively
simple concept, the many factors that must be considered in a dis-
tributed environment often result in intricate communication and
coordination patterns. Implementations require careful attention to
detail and testing. Separating such tasks out simplifies testing, im-
proves code reusability, and allows implementation details to be
hidden to a great extent from the application that uses them.

Protocols consist of two parts: the abstract algorithm that is used
to achieve the desired function, and the implementation of that al-
gorithm. Algorithms can be, and often are, studied separately from
an implementation. However, in an application context the two
parts are best studied in combination. Implementation details can
have a major impact on applicability. Assumptions made about the

underlying system can lead to performance under different environ-
mental conditions varying widely from that expected. Theoretical
analysis often makes use of abstract concepts that may not have
straightforward manifestations: the uniformity of random samples,
the existence of clustering criteria, the presence of common pa-
rameters agreed among autonomous entities, for instance. Prac-
tical implementations often contain non-deterministic or heuristic
behaviour that does not lend itself well to theoretical analysis.

2.2 Experimental Stages of Development
Protocol development commonly goes through three experimen-

tal phases between theory and end application: 1. simulation, 2.
emulation, 3. use in application demonstrators. Each phase focuses
on testing and improving a different aspect of a protocol implemen-
tation. Simulations test the functionality of a protocol to show that
the basic algorithmic design is correct and complete. Emulations
test functionality and performance in a distributed setting. Demon-
strators test if the performance characteristics of a protocol, and
assumptions about the system it relies on, match the application
or class of applications in which it will eventually be used. The
main practical difference between the phases is the degree to which
aspects of the eventual application environment are replaced by ab-
stract or simplified models.

Simulations involve building up a detailed understanding of an
algorithm’s basic functionality. The aim is often to confirm or en-
hance a theoretical analysis. Abstract models of the eventual ap-
plication environment are used to focus in on key theoretical be-
haviours. Full protocol details are often not of interest. Since algo-
rithms are usually previously untested, detailed debugging can be
involved. Simulations are therefore best suited to environments that
run on a single machine, using a simplified model of the eventual
distributed setting. This allows for recording and analysing large
amounts of data, such as the internal state of all agents, and for
stopping the experiment clock to take a single synchronised snap-
shot of the system to test if global invariants are upheld.

Emulations are characterised by the use of a real distributed en-
vironment to confirm protocol functionality when actual communi-
cation characteristics are taken into account. Emulations are con-
cerned with the implications of parallelisation. Simulations often
take into account the location and replication of data and what mes-
sages need to be passed between agents. Emulations further con-
sider timing and synchronisation, bandwidth requirements, the ef-
fect of communication latency and errors, and so forth. While these
concerns can be partly tested in simulations, the use of an actual
network is often simpler than the effort required to model it. The
use of a network analogous to that used by the intended end appli-
cation avoids the need to identify and model every aspect that may
be of importance.

Demonstrators take a step towards testing an algorithm in a real
application setting. Simulations and emulations usually focus on
the full range of algorithm behaviour tested on abstract data sets.
Demonstrators add models of intended uses for large-scale dis-
tributed systems based on expert analysis and real data. They test
if an algorithm is suited for a specific purpose as opposed to testing
its generic behaviour.

3. RELATED WORK
Experimental work is an integral part of many Agents research

projects. In order to obtain a rough picture of the experimental
tools and methods used in recent work a survey was made of the
61 papers presenting original work published in the Journal of Au-
tonomous Agents and Multi-Agent Systems (JAAMAS) in 2009
and 2010 [1]. JAAMAS covers a wide range of topics, 37 of the pa-

390

pers surveyed presented experimental results, of these 18 ran exper-
iments on distributed, potentially large-scale multi-agent systems.
A further examination is made of these 18 papers as they represent
the type of experimental work directly targeted by AgentScope.

The vast majority of work falls in the simulation phase of the
development cycle. None of the 18 papers examined deployed ap-
plications, only two were based on deployed demonstrators. Of the
remaining 16 all ran simulations. None of these simulations could
be characterised as emulations, running on a real network. Though
six papers ran more advanced simulations that modelled messages,
only two of these measured communications costs and only one
of those two stated that it was run in real time rather than being
rounds based. Only three of the simulations used a scenario based
on measurements of actual systems.

It is surprising that so little experimental work falls within the
later stages of the development cycle, especially given that JAA-
MAS papers generally represent the more mature projects within
the field. Given the importance of considering application char-
acteristics it is disappointing that there is little work representing
deployed applications, or scenarios based on expert analysis and
measurements of existing systems. This imbalance may reflect the
influence of development methodologies that focus on the theoret-
ical side of Agents research, considering the bulk of important de-
sign decisions to occur in the early analytical stages of develop-
ment. Methodologies, such as Gaia [16], which place an abstrac-
tion barrier between design and implementation, make an implicit
assumption that implementation and application details will have
little effect on system design.

Reusability is a key factor in supporting the wider spread adop-
tion of a more comprehensive development methodology. The reuse
of agent components, as discussed in [2], lowers the cost of ex-
tending previous work and running comparisons studies. We found
little evidence of the reuse of agent components in the 18 works
surveyed. While all the papers discussed related algorithms, only
half did experimental comparisons. Four of these mentioned either
needing to re-implement previous work or not being able to do a
further comparison because of a lack of code.

Standard experimental platforms further improve reusability. Ex-
amining platform reuse found that of the 18 selected papers, four
used existing published simulators, and two used previously pub-
lished demonstrators. For five papers a custom simulator was de-
veloped, seven papers did not state what simulator was used. A
good variety of simulators are in fact available [4, 6, 10, 13]. The
JamesII project [5] shows a common interface can be used to allow
simulations to be ported between simulators. AgentScope follows
this approach, extending reusability by emphasising the desirabil-
ity of porting experiments between different types of platforms [14]
rather than focusing on simulations.

A third aspect of reusability concerns the development of com-
mon scenarios, metrics and experiments. In the papers surveyed,
scenario and metric reuse was more common than direct reuse of
code: nine papers were based on previously developed scenarios,
and three extended previous scenarios. Twelve papers used previ-
ously published metrics, and one used an extension of a previous
metric. Six papers developed custom scenarios, five of these cre-
ated custom metrics. JamesII [5] includes mechanisms to reuse
experiments. In AgentScope the interfaces for implementing met-
rics and building experimental scenarios are given equal impor-
tance to the interface on which agents are built. The intention is
to encourage the creation of standard testbeds, which make input
from domain experts, and data sets more accessible. The success
of agent competitions gives an indication of the value of this ap-
proach. Three of the four simulators that were explicitly reused

in the papers surveyed were from agents competitions: Robocup
[9], Robocup Rescue [7], and the Trading Agents Competition [8].
It is perhaps significant that these simulators are associated with
full test beds, including scenarios and metrics, and for which code
for previous solutions is available. AgentScope aims to improve
the extendability of this approach by enabling the creation of more
generalised scenario libraries.

4. THE AGENTSCOPE INTERFACES
AgentScope gives support for measurement, analysis and sce-

nario development equal priority to support for algorithm devel-
opment. It defines three interfaces that separate out the core be-
haviours needed to implement distributed protocols and run ex-
periments: (1) Networked Communication (2) Measurement and
Analysis and (3) Experimental Control. The Protocol Network In-
terface provides the methods and classes needed for agent protocol
instances to communicate with each other. Protocol code written on
the Protocol Network Interface can be designed to be used through-
out the whole development cycle. The Measurement and Analysis
Interface defines a generic method of recording protocol behaviour
during an experiment. The specific measurements of interest gener-
ally change between experiments. The Measurement and Analysis
Interface is designed to allow measurement code for a protocol to
be easily swapped out and replaced depending on the experiment
being run. The Experimental Control interface defines a generic
method of setting up experiments so that an experimental scenario
can be easily reused, or ported between platforms.

AgentScope promotes the creation of code whose use is not re-
stricted to studying only the aspects of behaviour currently of in-
terest, but that can be carried through a series of experiments, and
be used throughout the development cycle. AgentScope interfaces
are intentionally minimal. The restrictive interfaces encourage de-
velopers to use methods that are as generic as possible to the many
environments encountered during the development cycle.

AgentScope interfaces are two sided. On one side they provide a
generic set of classes and methods for use by protocol developers.
On the other side they provide a set of classes and methods that a
backend must implement in order to run AgentScope based proto-
cols and experiments. In a backend, a set of “adaptor” classes map
a platform’s functionality to that required by AgentScope. These
adaptor classes can provide additional methods that allow exper-
iments to access functionality that is specific to a particular plat-
form. In the following sections we give details of the protocol de-
veloper side of each interface. In Section 6 we discuss backend
adaptors. The AgentScope interfaces are implemented in Java.

4.1 Protocol Network Interface
The Protocol Network Interface is a stand alone package defin-

ing the basic classes and interfaces that are needed to write proto-
cols. The core abstraction is a “protocol”: an implementation of a
distributed algorithm that provides a particular service to “agents”
located on nodes in a distributed system. Each participating agent
runs an instance of the protocol, and collectively these protocol in-
stances provide the service to their agents. For instance a directory
protocol might maintain a list of active agents, an aggregation pro-
tocol might calculate the sum of a given dynamic variable or a load
balancing protocol might distribute a set of tasks between agents.

Protocol instances each have an individual “address”, which al-
lows them to communicate with each other by exchanging “mes-
sages”. They are triggered into action on receipt of a message, in
response to “events” that are set to occur at a particular time (ac-
cording to a local “clock”), or in response to a request made by
their agent. Protocols also have “names” to allow particular in-

391

Table 1: The Protocol Network Interface
METHODS OF PROTOCOL CLASS

Protocol(Agent myAgent, String name)
sendMessage(Message m)
receiveMessage(Message m)
scheduleEventAt(String note, long time)
scheduleEventWithDelay(String name, long timeFromNow)
triggerEvent(Event p)
getAddress() returns Address
getName() returns String
getClock() returns Clock
start()

METHODS OF MESSAGE CLASS
Message(Address to, Address from)
to() returns Address
from() returns Address

METHODS OF EVENT CLASS
Event(Address addr, String name, long time)
getName() returns String
getAddress() returns Address
getTime() returns long

METHODS OF AGENT INTERFACE
addProtocol(Protocol p, String name) returns Address
getProtocol(String name) returns Protocol
sendMessage(Message m)
scheduleEvent(Event p)
getClock() returns Clock

METHODS OF ADDRESS INTERFACE
sameAs(Address a) returns boolean
sameAgent(Address a) returns boolean

METHODS OF CLOCK INTERFACE
currentTime() returns long
unitsPerSecond() returns double

stances of a given protocol to be located when the address of an
agent is known, but not the specific address of the named protocol
on that agent.

The Protocol Network Interface consists of three classes - Pro-
tocol, Message and Event - and three interfaces - Agent, Address
and Clock (Table 1). The classes represent the main objects that a
protocol manipulates, the interfaces represent supporting concepts
from the system the protocol exists within. A protocol implemen-
tation is written by subclassing the Protocol class. Subclasses of
Message and Event are used to represent protocol specific messages
and events. The Agent interface provides methods for sending and
receiving messages and setting and receiving events.

4.2 Measurement and Analysis Interface
The Measurement and Analysis Interface provides classes in which

to define: (1) the data that should be recorded about a protocol’s be-
haviour during an experimental run, and (2) how that data should
be manipulated to provide the final output of the experiment. The
core abstraction is a “logbook” - essentially a blank space in which
a protocol instance records information, along with methods that
define how to process that information. Logbooks are located on
Agents. Each protocol instance can have one or more logbook in-
stances associated with it.

The Measurement and Analysis Interface consists of two classes,
LogBook and its subclass ActiveLogBook, and one interface, Log-
ger (Table 2). A LogBook stores and manipulates the raw data
recorded during an experiment. A Logger interacts with the back-
end to aggregate the recorded data into a final single location. In
order to write an experiment a designer must subclass LogBook to
specify the data of interest, and methods for analysing it.

There are two modes in which a logbook can operate - passive
and active. When a logbook is passive, the protocol code speci-
fies the data to record. When a logbook is active the logbook code

Table 2: The Measurement and Analysis Interface
METHODS OF LOGBOOK CLASS

LogBook(String name)
aggregate(LogBook moreData)
clear() returns LogBook
writeData(File directory)
combineData(File[] inputDirs, File outputDir)
getName() returns String

METHODS OF ACTIVELOGBOOK CLASS
ActiveLogBook(Protocol p, String name)
recordProtocolState()

METHODS OF LOGGER INTERFACE
addLogBook(LogBook l)

specifies the data to record, a protocol need not contain specific log-
ging code or know of the log’s existence. Active logging is better
suited when fully experiment-generic protocol code is desired. Pas-
sive logging is better suited to detailed measurements that involve
recording events as they occur.

The more basic class, LogBook operates in passive mode. In
passive mode, a protocol instance must be informed of the a log-
book’s existence, for example by the logbook instance registering
as a listener to the protocol instance. The protocol code specifies
what information to store. ActiveLogBook subclasses LogBook
to add functionality for recording data independently of a protocol
implementation. In active mode a logbook instance holds a pointer
to a protocol instance. The data to recorded is specified within the
logbook code. When triggered, for instance by a periodic signal
from the logger, the logbook calls methods on the protocol to ex-
tract data.

Logbooks store data in a distributed manner within the agents
which they are monitoring. A backend adaptor implementation of
the Logger interface specifies details of how individual logbooks
are routed by the experimental system to produce the final out-
put of an experiment at a central location. The Logger combines
data from the individual agent logs into a single central logbook
instance. The LogBook.aggregate() method is used to specify how
data from individual logs should be combined. The LogBook.write-
Data() method specifies how the final results for an experiment
should be recorded to a specified a directory, for instance in the
form of graphs of tables. The LogBook.combineData() method fur-
ther specifies how the output produced by the writeData() method
for several different experimental runs can be combined into a sin-
gle set of results.

The AgentScope toolkit contains a supporting package of classes
for storing, manipulating, and analysing data and drawing graphs
and tables with which logbooks can be implemented. It also con-
tains a set of generic logbooks, for instance for recording, analysing
and graphing series or time sequences of values. Additionally, a
logger implementation that is built entirely on the Protocol Net-
work Interface is provided. In this case the logger is a protocol that
uses messaging to move data, and events to trigger active log func-
tions. For backends that contain specific logging support, such as
synchronised triggers for taking system snapshots, a logger imple-
mentation can be built that makes optimal use of that support.

4.3 Experimental Control Interface
The Experimental Control Interface provides a means of organis-

ing the setup of an experiment in a flexible manner. Both the need
to change experiment configuration and the need to port experi-
ments between backends are taken into consideration. The setup
and running of an experiment is divided into several parts. First,
“experiments” are distinguished from “trials”. An experiment is a
full experimental scenario while trials are single runs of that sce-

392

Table 3: The Experimental Control Interface
METHODS OF ENVIRONMENT INTERFACE

runTrial(int numAgts, Initializer i, LogBook l) returns LogBook
METHODS OF EXPERIMENT INTERFACE

run(File outputDir)
runTrial(Trial t, File outputDir)
combineOutput(File[] inputDirs, File outputDir)

METHODS OF INITIALIZER CLASS
Initializer(Trial trial)
initializeAgent(Agent a, Logger l)
finalizeSetup() returns boolean
getTrial() returns Trial

METHODS OF TRIAL CLASS
Trial(String name, int numAgents, int trialLength)
getNumAgents() returns int
getName() returns String
getTrialLength() returns int

nario. Second, the “core” experimental scenario is separated from
the parts of the experiment that may be configured differently in
different trials.

The division of purpose is represented by the Experimental Con-
trol Interface classes and interfaces: (1) an Experiment provides the
interface through which to run a series of trials, (2) an Environment
captures information about the setup of the backend environment in
which the scenario is to be run, (3) an Intializer stores information
on the setup of agents for a core experimental scenario, and (4) a
Trial stores information on the configuration of a particular trial.
(Table 3)

An Experiment provides an interface for running a trial or series
of trials. Within an Experiment a designer specifies the Environ-
ment or Environments to use, Initializers, a core series of trials to
run, and how the output of a series of trials should be combined to
give the final experimental results. Experiment provides the basic
methods on which user interfaces can be built. The AgentScope
toolkit provides a simple command line UI, a web-based UI and
a generic file manager that provides methods for running complex
series of trials and storing them to a standard directory structure.

An Environment is the part of the adaptor for a given back-
end with which an Experiment interacts. An Experiment runs a
trial on a backend by calling that backend’s Environment.runTrial()
method. The runTrial() method takes an Initializer as input which
defines the generic agent setup. Running an experiment on a new
backend only requires a switching Environments.

An implementation of Initializer specifies how agents should be
set up to run a given scenario, in a backend independent manner. At
the start of an experiment a backend creates empty agents, which
are then passed to the initializer. The initializer adds the required
protocols and logbooks to the agents and sets up the initial connec-
tions between them.

A Trial keeps track of trial specific configuration details. An Ini-
tializer specifies the setup of a generic scenario, it can be given a
Trial instance to query for parameters that may vary between trials.
Trials can for example be used to vary the values of variables, the
number of agents, protocol implementations used, initial connec-
tions between agents, experiment event series, logbooks used, in-
put datasets, etc. An experiment designer can thus define the fixed
and variable parts of an experimental setup through defining a core
Initializer and a Trial or set of Trials specifying what may change
between experiment trials.

5. SAMPLING EXPERIMENT EXAMPLE
Writing an experiment in AgentScope requires developing a pro-

tocol to be tested, logbooks to measure its performance, and an ex-
perimental setup in which to run. This process is demonstrated for

the implementation and testing of a basic sampling protocol, Sim-
pleGossip. A sampling service is a degenerate form of directory
service that when queried returns a randomly chosen address of an
agent in the system. SimpleGossip is an unsophisticated gossip-
based sampling protocol. In gossip-based sampling each agent
maintains a cache of items. Each item stores the address of an
agent. Pairs of agents periodically “gossip” with each other, ex-
changing items from their caches. Repeated gossiping creates a
continuous mixing procedure in which items become spread ran-
domly throughout the agent caches. When an agent needs a ran-
dom address, the sampling protocol returns a random item from its
cache. Ideally the samples returned by a sampling protocol will
follow a uniform random distribution. The exact gossiping proce-
dure, as well as a protocol’s response to node churn, message loss
and other underlying system characteristics determine the degree to
which it meets this requirement. A detailed discussion of gossip-
based sampling is presented in [12].

The following sections provide the bulk of the code needed to
implement and test SimpleGossip using AgentScope and some con-
venience classes from the AgentScope toolkit. First a basic simu-
lation experiment is developed in Sections 5.1-5.3. In Section 5.4
this experiment is extended to a more complex setting involving
node churn, and a comparison to an existing protocol in performed.
In Section 6 a further version of the experiment is run on a full
distributed agent middleware platform, AgentScape [15].

5.1 Protocol Development
The core SimpleGossip protocol, given in the code lines 1-45, is

developed on the Protocol Network Interface. SimpleGossip sub-
classes protocol. Each SimpleGossip instance contains an address-
item cache of size C (line 4). Periodically, with some interval t
seconds (lines 34-37), each instance chooses a gossip partner and
sends it g of the items from its cache (lines 13-16). This agent
responds by returning g items from its own cache (lines 17-23).
Notice that some time can pass between when a request is sent and
the reply is received. No attempt is made to manage the ordering of
gossips. Subsequent incoming gossips can be handled in this inter-
val. Nor does SimpleGossip keep track of the requests it makes, or
notice when a gossip fails and no reply is received. An agent joins
a SimpleGossip protocol by filling its cache with items for its own
address, then initiating a gossip with a bootstrap agent already in
the protocol (lines 25-31).

1 public class SimpleGossip extends Protocol{
2 int t=1; int C=25; int g=3;
3 Address bootstrapAgent;
4 ItemCache theCache;
5 public SimpleGossip(Agent myNode, Address bootstrapAgent){
6 super(myNode, "SimpleGossip");
7 this. bootstrapAgent = bootstrapAgent;
8 theCache = new ItemCache();
9 }

10 public Address getRandomAddress(){
11 return theCache.getRandomItem().getAddress();
12 }
13 protected void initiateGossip(Address partner){
14 Item[] toSend = theCache.removeItems(g);
15 sendMessage(new GossipRequestMessage(partner, getAddress(), toSend));
16 }
17 protected void receiveGossipMessage(GossipMessage m){
18 theCache.addAll(m.getItems());
19 if(m.isRequest()){
20 Item[] toSend = theCache.removeItems(g);
21 sendMessage(new GossipReplyMessage(m.from(), getAddress(), toSend));
22 }
23 }
24 @Override
25 public void start(){
26 theCache.createAndAddOwnItems(C);
27 scheduleEventWithDelay(‘‘GOSSIP’’, t);
28 if (bootstrapAgent != null) {
29 initiateGossip(bootstrapAgent);
30 }
31 }
32 @Override
33 public synchronized void triggerEvent(Event p){
34 if (p.getName().compareTo(‘‘GOSSIP’’) == 0) {
35 scheduleEventWithDelay(‘‘GOSSIP’’, t);

393

36 initiateGossip(getRandomAddress());
37 }
38 }
39 @Override
40 public synchronized void receiveMessage(Message m) {
41 if (m instanceof GossipMessage) {
42 receiveGossipMessage((GossipMessage) m);
43 }
44 }
45 }

5.2 Basic Experimental Setup
In the AgentScope Control Interface an initialiser is used to de-

fine the basic setup of agents in an experimental scenario (lines 46-
61). For the sampling scenario this involves creating a SimpleGos-
sip protocol instance for each agent, and informing each protocol
of the bootstrap agent’s address (line 51).

46 public class SamplingInitializer implements Initializer {
47 private int agentCount = 0;
48 Address bootstrapAgent = null;
49 @Override
50 public void initializeAgent(Agent a, Logger l){
51 SimpleGossip p = new SimpleGossip(a, bootstrapAgent);
52 if(bootstrapAgent == null){
53 bootstrapAgent = p.getAddress();
54 }
55 agentCount++;
56 }
57 @Override
58 public boolean finalizeSetup(){
59 return agentCount == getTrial().getNumAgents();
60 }
61 }

The sampling experiments are run on the Platform 9 3/4 simu-
lator (line 65), the custom simulator used in [12]. A subclass of
the Experiment class is used to define backend setup (lines 62-72).
In the initial experiments specific SamplingProtocol parameters are
not varied, so the the basic Trial class can be used directly.

62 public class SamplingExperiment extends Experiment{
63 @Override
64 public void runTrial(Trail t, File outputDir){
65 Environment env = new P934Environment();
66 env.setTrialLength(t.getLength());
67 Initializer init = new SamplingInitializer(t);
68 LogBook log = new DoubleValueLog();
69 LogBook results = env.runTrial(t.getNumAgents(), init, log);
70 results.writeData(outputDir);
71 }
72 }

5.3 Measurement
Measurement involves creating a set of logs to record metrics of

interest to an experiment. The uniformity of the samples returned
by SimpleGossip can be tested by using sampling to estimate the
total number of agents, N , in the system [12]. Using the inverted
birthday-paradox, let x be the total number of items seen before two
items for the same agent are detected. The estimate of N is then
x2/2. Agents can make repeated estimates of the network size by
watching the stream of incoming items produced by SimpleGos-
sip. The statistical accuracy of this estimate gives a measure of the
uniformity of the distribution from with the samples are drawn.

A listener model is used to allow objects to register to be noti-
fied each time SimpleGossip receives a new item. A class, SizeEs-
timate, watches the item stream and generates size estimates us-
ing the inverted birthday-paradox method. In turn SizeEstimate
informs listeners registered with it each time a new estimate is gen-
erated. These estimates are recorded using the DoubleValueLog
class, from the AgentScope toolkit (lines 73-113). DoubleVal-
ueLog uses the DataSet class from the AgentScope toolkit to store
and analysis values (line 74). The Chart class from the AgentScope
toolkit is used to produce graphs of these values (lines 92-104).

73 public class DoubleValueLog extends LogBook implements ValueListener<Double>{
74 DataSet values;
75 public DoubleValueLog(String name){
76 super(name);
77 values = new DataSet();
78 }

79 @Override
80 public synchronized void newValue(Double v) {
81 values.addValue(v);
82 }
83 @Override
84 public synchronized void aggregate(LogBook moreData) {
85 if (moreData instanceof DoubleValueLog) {
86 DoubleValueLog l = (DoubleValueLog) moreData;
87 values.addValues(l.getValues());
88 }
89 }
90 @Override
91 public void writeData(File directory){
92 Chart c = values.graphDistribution(1, getName());
93 c.saveImageAndSerializedChart(directory, getName());
94 }
95 @Override
96 public void combineData(File[] dirs, File outputDirectory) {
97 LineChart outputChart =
98 new LineChart(getName(), ‘‘Size Estimate’’, ‘‘Number of Occurrences’’);
99 for(File f: dirs){

100 File nextFile = new File(f, getName() + ‘‘.ser’’);
101 LineChart c = (LineChart) Chart.readSerializedChart(nextFile);
102 outputChart.addDataSeries(f.getName(), c.getDataSeries(‘‘dist’’));
103 }
104 outputChart.saveImageAndSerializedChart(outputDirectory, getName());
105 }
106 @Override
107 public synchronized LogBook clear(){
108 DoubleValueLog l = new DoubleValueLog(getName());
109 l.values = values;
110 values = new DataSet();
111 return l;
112 }
113 }

In order to specify the measurements to be made during the ex-
periment, the initializeAgent() method of SamplingInitializer (lines
50-56) is extended (lines 116-124) to create a SizeEstimate (line
118) and log (line 120) on each agent, and to register each log with
the platform logger (line 122) . The logger takes care of trans-
ferring the values recorded in each agent log to a central log. To
gather data the logger calls the clear() method (lines 107-112) on
each registered agent log. The logger gives this data to the cen-
tral log through the aggregate() method (lines 84-88). This central
log is specified in Experiment.runTrial() to be another instance of
DoubleValueLog (line 69).

115 @Override
116 public void initializeAgent(Agent a, Logger l){
117 SimpleGossip p = new SimpleGossip(a, bootstrapAgent);
118 SizeEstimate e = new SizeEstimate();
119 p.addListener(e);
120 DoubleValueLog log = new DoubleValueLog(‘‘SizeEstimate’’);
121 e.addListener(log);
122 l.addLogBook(log);
123 ...
124 }

Experiment.runTrial() also specifies what should be done with
the central log at the end of an experiment (line 70). The Dou-
bleValueLog write method produces a chart of the distribution of
values recorded (lines 91-94).

An experiment series is defined in the run method of the Sample-
Experiment class (lines 126-131). Two trials are specified, one with
100 agents and one with 1000 agents. Both are run, and the output
is combined using the DoubleValueLog.combine() method (lines
133-135). The FileManager class from the AgentScope toolkit is
used to specify the directory structure for storing results. The File-
Manager runTrial() and combineData() methods simply call the
corresponding Experiment methods with appropriate File arguments.

125 @Override
126 public void run(File outputDir) {
127 FileManager fm = new FileManager(this, outputDir);
128 fm.runTrial(new Trial(‘‘SimpleGossip100’’, 100, trialLength));
129 fm.runTrial(new Trial(‘‘SimpleGossip1k’’, 1000, trialLength));
130 fm.combineOutput();
131 }
132 @Override
133 public void combineOutput(File[] inputDirs, File outputDir) {
134 (new DoubleValueLog(‘‘SizeEstimate’’)).combineData(inputDirs, outputDir);
135 }

The final output of the experiment is shown in Figure 1. The
figure shows the distribution of size estimates made by all agents
during a run. Vertical lines mark the average. With 100 agents
SimpleGossip performs reasonably well, on average estimating the

394

Figure 1: Size estimates: basic simulations.

system size to be 82.6. With 1000 agents however it gives an av-
erage size estimate of 238.7 showing that SimpleGossip is not a
precise sampling protocol.

5.4 Extending the Experiment
The experiment described above can be easily extended. Alter-

native sampling protocols can be tested against SimpleGossip to di-
rectly compare performance. Additional metrics can be recorded.
Or the environment in which the scenario is run can be modified.

In order to compare SimpleGossip to alternative sampling pro-
tocols a SamplingTrial class is created which specifies which pro-
tocol to use through a getSamplingProtocol() method. The Sam-
plingInitializer calls this method when setting up an agent (line 51).
A library version of the Eddy protocol, described in [12], can then
be run in the scenario developed for SimpleGossip simply by cre-
ating and using a corresponding SampleTrial.

Analysing different aspects of SimpleGossip’s performance only
requires adding or modifying logbooks. For instance, to record
how the size estimates produced by the protocol change over time,
the DoubleValueLog used by the agents (line 120) can be replaced
by a TimeStampedValueLog and the DoubleValueLog used by the
SamplingExperiment can be replaced with a TimeStepsValueLog
(line 69). Both of these are generic logs from the AgentScope
toolkit. TimeStampedValueLog extends DoubleValueLog, record-
ing the time at which each value is logged, and TimeStampedVal-
ueLog uses these times to divide values into time steps.

Finally, the environmental conditions in which SimpleGossip op-
erates can be modified by configuring the Platform 9 3/4 backend.
The simulator can be set to implement churn, causing agents to fail
over time and adding new agents by calling the P934Environment.-
setChurn() method after creating the environment in SamplingEx-
periment.runTrial() (line 65).

Figure 2 shows the end result of these changes. The figure com-
pares the ability of SimpleGossip and Eddy to estimate system
size over time in a system with churn and an average size of 1000
agents. It highlights an important failing of SimpleGossip, as the
agent set changes the item set is not adapted, resulting in the quality
of samples degrading over time. Eddy shows that a more complex
protocol can manage the item set in a way that allows it to estimate
system size fairly accurately.

6. BACKENDS
The network, measurement, and control interfaces abstract the

experimental environment in which protocols are tested. In or-
der to use an alternative platform with a experiment written on
the AgentScope interfaces an experimenter need only write a small
set of adaptor classes. A backend adaptor maps the abstract con-
cepts from the AgentScope interfaces onto concrete implementa-

Figure 2: Size estimates: 1000 agents with churn.

tions within a platform. While backends all provide the same basic
functionality, they may vary significantly in the performance guar-
antees they provide for those functions. For instance a simulator
may guarantee that messages will always be delivered with mini-
mal delay, while in an emulation environment message and agent
failures may be common occurrences. Different environments also
include different support functions. Single machine environments
can easily provide support for precise measurements of agent be-
haviour. In distributed environments measurement can require ex-
pensive coordination and communication, and thus may necessarily
be less detailed. It is therefore natural that as a protocol proceeds
through the development cycle the most appropriate environment
for testing it will change.

In the example experiment the Platform 9 3/4 simulator can be
replaced by the AgentScape agent middleware [15] simply by chang-
ing which Environment is created in line 65. Figure 3 compares the
size estimate distributions for the Eddy protocol on 50 agents run-
ning in AgentScape and on Platform 9 3/4. Each backend has its
advantages and disadvantages. Since AgentScape is a full agent op-
erating system, testing is not limited to aspects that were designed
into the environmental model. Run with the 1 second gossip inter-
val, t, used in the original experiments, the Eddy protocol swamps
AgentScape communications. Gossiping protocols are often de-
signed assuming low-cost communication methods, such as UDP
[3], while AgentScape communication is designed to be reliable
and to maximise security. The “AgentScape Congested” trial shows
that messages timing out in Eddy results in an under-estimate of the
system size. Slowing the gossip rate to 10 seconds shows that Eddy
performs roughly equally both in simulation and in the real environ-
ment, indicating that it does not have any inadvertent dependancies
on shared data or the synchronised timing of the simulation envi-
ronment. AgentScape, however, is limited to testing smaller num-
bers of agents than the simulator since each AgentScape agent runs
as one or more threads, nor can it easily be setup to mimic churn.
Run on AgentScape, the deficiencies of the SimpleGossip protocol
seen in Figures 1 and 2 would not be as apparent.

7. DISCUSSION
The design of AgentScope centres on increasing the potential im-

pact of experimental work. The example in Section 5 demonstrates
the following improvements over an ad-hoc platform-specific ap-
proach to experimental design:

• Explicit services: Rather than viewing services as being pro-
vided by the backend platform, services (protocols) are moved
above the experimental interface. This ensures that the full
cost and complexity of an agent algorithm is clearly visible.
It also widens the range of platforms and the range of agent

395

Figure 3: Size estimates: 50 agents on AgentScape.

models that can be supported. Finally, it allows AgentScope
to be limited to a small simple interface that is easier to adopt
and integrate with existing work.

• Parity of protocol, scenario, and measurement: By giving
the interfaces for protocol development, experiment develop-
ment and measurement equal weight, the need for reusability
of all three is emphasised. An agent or protocol designer
need not start from scratch, but can use existing services,
scenarios and metrics. This allows researchers to focus on
developing and testing the novel aspect of their ideas.

• Abstraction of platform type: Experiments are not specific
to one type platform. The reusability of code over differ-
ent stages in the development cycle is improved, and direct
comparisons of performance on different platforms can be
made. This has implications for the backends used, each
platform need no longer provide a full solution. Timing is
an important example, rather than requiring that distributed
platforms include the ability to do tests with synchronised
time or to create system snapshots, an approach can be used
where these tests are done on a simpler centralised platform,
and other metrics used to confirm that performance does not
change when an experiment is run in a distributed setting.

8. CONCLUSIONS AND FUTURE WORK
This paper examines a comprehensive, long-term approach to

multi-agent systems development, and in particular the experimen-
tal phases of development. A survey of recent experimental work
observes a scarcity of experimental work in the later stages of de-
velopment, along with a limited level of code reuse. AgentScope,
a small set of interfaces on which platform generic experiments
can be built is presented. The AgentScope interfaces abstract agent
communication, the full setup of experimental scenarios and per-
formance measurement. A demonstration experiment shows how
AgentScope can support rapid development of flexible and reusable
experiments.

AgentScope promotes a view of the multi-agent systems devel-
opment process as a long-term research effort by a community of
researchers, developing ideas from theory to practice. AgentScope’s
design centres around improving researchers’ ability to transfer ideas
between projects, groups, or institutions. The aim is to enable a
comprehensive development process by improving the reusability
of all parts of a experiment. Improvements in reusability support
the creation of libraries of protocols, scenarios and metrics that can
allow researchers to quickly incorporate previous work into their
own experiments. With such changes, experiments become more
easily reproducible, and new algorithms can be directly compared

to old, making improvements and tradeoffs clear. Published li-
braries of scenarios, in which practitioners share their experience
of expected use-cases, can be created, enabling input from industry
experts to be incorporated in academic work.

Future work involves developing libraries of protocols, scenarios
and metrics. Current work in this area focuses on the domain of dis-
tributed energy resource management, a highly multi-disciplinary
field. The aim is to show that sophisticated agent-based experi-
mentation can be made accessible to a broad audience. The Mea-
surement package and Web Interface package for the AgentScope
toolkit are also under development.

9. REFERENCES
[1] Autonomous Agents and Multi-Agent Systems, volumes 18-21.

Springer, 2009-2010.
[2] P. S. da Silva and A. C. V. de Melo. Reusing models in multi-agent

simulation with software components. In AAMAS ’08: Proc. 7th Int
Joint Conference on Autonomous Agents and Multiagent Systems ,
pages 1137–1144, 2008.

[3] N. Drost, E. Ogston, R. V. van Nieuwpoort, and H. E. Bal. ARRG:
real-world gossiping. In HPDC ’07: Proc. 16th Int. Symposium on
High Performance Distributed Computing, pages 147–158, 2007.

[4] L. Gasser and K. Kakugawa. MACE3J: fast flexible distributed
simulation of large, large-grain multi-agent systems. In AAMAS ’02:
Proc. 1st Int. Joint Conference on Autonomous Agents and
Multiagent Systems, pages 745–752, 2002.

[5] J. Himmelspach, M. Rohl, and A. M. Uhrmacher. Component-based
models and simulations for supporting valid multi-agent system
simulations. Applied Artificial Intelligence, 24:414–442, 2010.

[6] B. Horling, R. Mailler, and V. Lesser. Farm: A Scalable
Environment for Multi-Agent Development and Evaluation. In
A. G. C. Lucena, J. C. A. Romanovsky, and P. Alencar, editors,
Advances in Software Engineering for Multi-Agent Systems, pages
220–237. Springer-Verlag, 2004.

[7] H. Kitano and S. Tadokoro. Robocup rescue: A grand challenge for
multiagent and intelligent systems. AI Magazine, 22(1):39–52, 2001.

[8] J. Niu, K. Cai, S. Parsons, P. McBurney, and E. Gerding. What the
2007 TAC market design game tells us about effective auction
mechanisms. Journal of Autonomous Agents and Multi-Agent
Systems, 2010.

[9] I. Noda, H. Matsubara, K. Hiraki, and I. Frank. Soccer server: a tool
for research on multi-agent systems. Applied Artificial Intelligence,
12:233–250, 1997.

[10] M. J. North, N. T. Collier, and J. R. Vos. Experiences creating three
implementations of the repast agent modeling toolkit. ACM Trans.
Model. Comput. Simul., 16(1):1–25, 2006.

[11] M. Oey, S. van Splunter, E. Ogston, M. Warnier, and F. Brazier. A
framework for developing agent-based distributed applications. In
WI-IAT ’10: Proc. IEEE/WIC/ACM Int. Joint Conference on Web
Intelligence and Intelligent Agent Technology, pages 470 –474, 2010.

[12] E. Ogston and S. Jarvis. Peer sampling with improved accuracy.
Peer-to-peer Networking and Applications, 2(1):51–71, 2009.

[13] R. Vincent, B. Horling, and V. R. Lesser. An agent infrastructure to
build and evaluate multi-agent systems: The java agent framework
and multi-agent system simulator. In Revised Papers from the
International Workshop on Infrastructure for Multi-Agent Systems,
pages 102–127. Springer-Verlag, 2001.

[14] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An integrated
experimental environment for distributed systems and networks.
SIGOPS Oper. Syst. Rev., 36(SI):255–270, 2002.

[15] N. J. E. Wijngaards, B. J. Overeinder, M. van Steen, and F. M. T.
Brazier. Supporting internet-scale multi-agent systems. Data and
Knowledge Engineering, 41(2-3):229–245, 2002.

[16] M. Wooldridge, N. R. Jennings, and D. Kinny. The gaia
methodology for agent-oriented analysis and design. Journal of
Autonomous Agents and Multi-Agent Systems, 3:285–312, 2000.

396

