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ABSTRACT
In infinitely repeated games, the act of teaching an outcome
to our adversaries can be beneficial to reach coordination,
as well as allowing us to ‘steer’ adversaries to outcomes that
are more beneficial to us. Teaching works well against fol-
lowers, agents that are willing to go along with the proposal,
but can lead to miscoordination otherwise. In the context
of infinitely repeated games there is, as of yet, no clear for-
malism that tries to capture and combine these behaviours
into a unified view in order to reach a solution of a game.
In this paper, we propose such a formalism in the form of
an algorithmic criterion, which uses the concept of targeted
learning. As we will argue, this criterion can be a beneficial
criterion to adopt in order to reach coordination. Afterwards
we propose an algorithm that adheres to our criterion that is
able to teach pure strategy Nash Equilibria to a broad class
of opponents in a broad class of games and is able to follow
otherwise, as well as able to perform well in self-play.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent system

General Terms
Algorithms, Theory

Keywords
Game Theory, Implicit Cooperation, Coordination, Teach-
ing

1. INTRODUCTION
In the area of multiagent learning, game theory is an im-

portant tool to model the interaction between agents that
arises. In order to establish and sustain coordination in a
repeated game, the agents need to achieve a mutual bene-
ficial outcome. In a setting where the agents are not pre-
coordinated and have no explicit way of communication (only
by observing actions/outcomes) this quickly becomes a com-
plex scenario. From this perspective, the act of proposing (or
forcing) an outcome to our adversaries makes sense, which
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we will informally describe as ‘teaching’ behaviour. On the
other hand we have ‘following’ behaviour, which can be un-
derstood as the act of going along with such a proposal.
Teaching behaviour does not only make sense in order to
reach coordination, but often adopting the role of a teacher
allows us to ‘steer’ followers to outcomes that are more ben-
eficial to us. However, it can lead to miscoordination if mul-
tiple agents try to teach different outcomes of the game.
Without an external designation of these roles, it can be
hard to decide whether to take on the role of a teacher or
a follower. In the context of infinitely repeated games there
is, as of yet, no clear formalism that tries to capture and
combine these behaviours into a unified view in order to
reach a solution of a game. A reason for this could be the
fact that the distinction between teaching behaviour on one
hand, and following behaviour on the other, is often not so
clear-cut as one might presume. In order for the reader to
place this observation into perspective, the next section dis-
cusses different lines of previous work related to this work
in which either (1) intuitively (a combination of) teaching
and following behaviour occurs, but the authors do not ex-
plicitly mention this or in which (2) the authors mention the
existence of (one of) these behaviours but do not provide a
formalism or a unified view.

2. PREVIOUS WORK
In order to make the distinction between teaching and

following behaviour, one can try and identify the nature of
teaching behaviour. In [5], the authors mention the con-
cept of teaching (or leading) in repeated games, which is
introduced in the form of two strategies. These strategies,
named Godfather and Bully, can be used to induce good per-
formance from ‘followers’. Bully assumes it has first mover
advantage, and optimizes its payoff assuming that the other
player is a follower. Godfather (a generalization of Tit for
Tat) uses the threat of security level to maintain a mutually
beneficial outcome. Intuitively, these strategies can indeed
be understood as teacher strategies, but the authors do not
explicitly mention why this is the case. In [3], the authors
argue that the main difference between teaching strategies
as opposed to following strategies is the fact that teacher
strategies also take into account the payoff of the opponent.
We believe that this notion is insufficient, since arbitrary
mixed strategies can also be considered teaching strategies:
they force the opponent into a way of play by reducing the
setting to a Markov problem.

Another approach can be to try to identify follower strate-
gies in order to make the distinction between the two. Fol-
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lower strategies can be intuitively understood as strategies
that condition on the way of play of the opponent. Typical
examples are model-based learners, such as Fictitious Play
and Rational Learning. However, Godfather also conditions
on the way of play of the opponent, so it is a natural question
to ask why it is not a following strategy. In [5], the authors
argue that reinforcement learning algorithms like Q-learners
can be considered followers. However, we believe that Q-
learners capture a bit of both: with a high learning rate
they are able to quickly adapt (follow), while a low learn-
ing rate ensures that the agent stays committed to a way of
play (teach). Even more so, the difference between teaching
and following quickly becomes a grey area when we consider
strategies that use a multitude of strategies, like no-regret
learners.

We also have related research in which intuitively the com-
bination of teaching and following behaviour occurs, but of-
ten the authors never seem to mention it. One example
in which the authors do mention this can be found in [3],
in which the authors use a variant of godfather that uses
both teacher and follower utility together with the notion
of guilt to determine the length of the punishment phase.
Here guilt is the extra reward the opponent has accumu-
lated by deviating from the target solution. The problem
with this approach is that guilt has little scientific basis and
it is often very unclear if the opponent should remain guilty
in particular cases. Moreover, the algorithm can lead to very
unpredictable and complex behaviour, which is hard for the
opponent to predict this.

In other research we have that authors never mention the
existence of teaching and following behaviour, even though
their approach does intuitively seem to exhibit it to some
degree. In [1], the authors use the WoLF principle (Win
or Learn Fast) to extend the basic gradient ascent IGA al-
gorithm. The WoLF principle states that if the player is
winning, the algorithm should use a lower learning rate in
the case if it is losing. Adopting a low learning rate can be
seen as unwillingness to change your strategy, hence teach-
ing behaviour, while adopting a high learning rate can be
seen as follower behaviour. Another example of such re-
search can be found in [2], where the authors propose the
AWESOME (adapt when everybody is stationary, otherwise
move to equilibrium) algorithm which is able to play a best
response against stationary opponents in n-action n-player
games, and is also able to converge to a Nash equilibrium
in self-play. This algorithm does exactly what the name
implies, except the other way around: It starts out with
the assumption that the opponents are equilibrium players,
and thus plays their part of the pre-computed equilibrium
strategy (teaching). If this hypothesis later on is refuted,
it then proceeds to assume the opponent is stationary and
adapts accordingly by playing a best-response to the empiri-
cal frequency of play (following). But again, the point about
teaching and following behaviour is not explicitly made, the
algorithm merely works this way to ensure the above men-
tioned properties. In a multitude of papers found in [6], [7]
and [8], the authors propose a criterion that states that an
algorithm should achieve a close to optimal payoff against
certain classes of opponents with high probability. It is then
possible to use this criterion to demand a best response value
against a multitude of opponents, which can lead to interest-
ing step-wise teaching and following behaviour. For example

Figure 1: Non-teaching game
Left Right

Top 1,0 0,0
Bottom 0,0 1,0

in [6], the algorithm (1) first considers that the opponent is
stationary (and plays a best response), (2) afterwards con-
siders that the opponent is a follower (and plays a mixed
strategy variant of Bully) and (3) if no considerations can
be made, concludes that the best we can do is follow (and
plays Fictitious Play). But again, the point about teaching
and following is not explicitly made. As we will motivate
later, we believe that this approach, using beliefs about our
opponent to decide whether to teach or to follow, is a suit-
able approach for our problem.

Lastly, there is economic research about the subject which,
for the purpose of this section, should not be omitted. In this
approach (market) leaders and followers make up the com-
plex dynamics of a system that arises. The point of depar-
ture is the model, such as the Stackelberg leadership model,
where leader and follower are defined by the game itself
and distinguished by the first-mover advantage. An impor-
tant question here is whether or not the notion of teaching
and following can completely exist outside the model(game)-
level. This is actually questionable, as we will demonstrate
by the following example. Consider the game shown in Fig-
ure 1, which we have chosen to name the “non-teaching
game”. Now consider that we are the row player, and our
opponent is the column player, and we are playing an in-
finitely repeated game where we want to maximize our av-
erage returned payoff. In this game, the opponent is in-
different about all possible outcomes of the game. Forcing
outcomes by leading (Bully) or retaliating (Godfather) is
impossible in this game, since the opponent does not prefer
any outcome over another. The security value for this game
is 0.5 by adopting the mixed strategy (0.5,0.5) (the security
value is the value the agent can guarantee regardless of the
opponent by playing purely defensively). Arguably, the best
strategy to adopt in this game is to start out with this de-
fensive strategy and afterwards play a best response based
on the frequency of play of the opponent (for example in
the case he plays Left more than Right), or in other words
following behaviour. These types of games are evidence that
teaching might not be feasible in all games.

3. BASIC CONCEPTS
In the previous section, we saw that the distinction be-

tween teaching and following behaviour is not so clear cut
as one might suspect. In this section we will provide the
reader with a criterion that tries to capture the essence of
teaching and following. In our setting we consider infinitely
repeated, complete, perfect information normal-form games
(complete and perfect information implies that all agents
have knowledge about the payoffs of the game and the ac-
tions that have taken place), with 2 players and n actions.
These games are defined in the normal game-theoretic sense,
that is to say they consist of a finite set of players, a finite
set of actions for each player and a real valued payoff func-
tion that maps for each player an action profile to a real
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number. The goal is to maximize the average reward the
player receives. The n player extension might be interesting
for possible future research, but for now we do not want to
complicate matters too much.

During our approach we will sometimes stop and delib-
erate on two important aspects of teaching and following,
which is the what (“what to teach?”) and the when (“when
to teach and when to follow?”). Here we can already partly
state the “what”, namely we should teach something that is
within the capabilities of our opponent. This idea to get a
best response value against strategies that belong to a cer-
tain class of strategies is discussed by Shoham and Brown in
[9, pp. 222–223], where they discuss the concept of targeted
learning and use a criterion named (efficient) targeted opti-
mality. The following definition is similar, except that we
replaced the somewhat vague notion of ‘class of opponents’
to a set of strategies, which can be any subset of the full
strategy set available.

Definition 1. Given a (finite or infinite) strategy set S, a
strategy is said to be targeted optimal if it holds that for any
choice of ǫ > 0 and δ > 0 there should exist a number of
rounds τ , polynomial in 1

ǫ
and 1

δ
, such that for every number

of rounds t ≥ τ the strategy against an arbitrary strategy
σ ∈ S achieves average payoff of at least VBR(σ) − ǫ with
probability 1 − δ, where VBR(σ) is the value of the best
response given that the opponent plays σ. If, during run-
time, for a choice of ǫ and δ the average payoff when playing
our strategy remains ǫ-close to the best response value for
every number of rounds t ≥ τ , where τ is defined as previous,
we say that the property of optimality is maintained.

Notice that (ǫ, δ)-optimality is quite a weak notion of op-
timality. To explain this choice in the context of teaching
and following, the choice of ǫ can be explained by the fact
that sometimes we need room to identify whether or not the
opponent can be taught. The latter choice can be explained
by the fact that we can never be certain whether or not the
opponent actually belongs to the target class. Here, δ can
be seen as a ‘measure of stubbornness’ to determine when
to abandon our hopes to achieve an average payoff ǫ-close to
the best response value (namely when we are certain enough
that the opponent does not belong to the target class). We
believe that this measure is something which we need when
it comes to teaching. In the next part of this section, def-
inition 1 will be used to define a novel criterion that tries
to capture teaching and following behaviour into a unified
view.

3.1 A new criterion for teaching and following
The first step in the construction of our criterion is to

use the notion of targeted optimality and create a new no-
tion in which it is applied sequentially. We propose this new
criterion as sequentially targeted optimality (we drop the ‘ef-
ficient’ adjective to keep the criterion name more compact).

Definition 2. A strategy σ is said to be sequentially tar-
geted optimal given strategy sets Sp and Ss if it holds that
this strategy first deploys a strategy, referred to as σp, and
σp should be targeted optimal given strategy set Sp. If for a
choice of ǫ and δ during run-time the property of optimality
is not maintained (either because (1) the strategy of the op-
ponent indeed belongs to Sp but with probability δ we have
not achieved an average payoff ǫ-close to the best response
value or (2) the strategy of the opponent does not belong to

Sp), then our strategy should deploy another strategy, re-
ferred to as σs, and σs should be targeted optimal given Ss.
If a strategy is sequentially targeted optimal with respect
to Sp and Ss, we refer to the first deployed strategy σp as
the primary strategy, and the second deployed strategy σs

as the secondary strategy.

The reason that we also applied the weaker notion of (ǫ, δ)-
optimality to the secondary strategy is simply because we
want to have room for an algorithm to also adhere to other
criteria (and not just one criterion which overrules any other
possible criterion). Notice that this criterion already states
some of the aspects of teaching and following. It states the
“what”: we try to achieve the best possible payoff (or at least
arbitrary close to) given that we condition on the opponent.
It also (partly) states the “when”: first we could have a
period in which we try to ‘teach’ the opponent, and if that
fails, we could have a period in which we try to ‘follow’.
However, if we just use an arbitrary primary strategy set
and secondary strategy set to create a sequential targeted
optimal strategy, this resulting strategy can definitely not
be labelled a teaching- and following strategy in all cases.
This is because we have not laid any restrictions on these
strategy sets and because we have to show that teaching
can indeed be beneficial. However, formalizing a notion of
teaching and following strategies is problematic, since it is
often a grey area as we saw in section 2. To overcome this
problem, we will try to define when a sequential targeted
optimal strategy is a sequentially teaching-following strategy
as a whole, without defining its specific parts Sp and Ss. To
do this, we will first introduce the notion of self-teachability.

Definition 3. A strategy σ is self-teachable if it is sequen-
tially targeted optimal given Sp and Ss, using primary strat-
egy σp and secondary strategy σs, if it holds that σp ∈ Ss

and σs ∈ Sp.

Loosely speaking, a strategy is self-teachable if we are able
to ‘follow’ (and get our desired best response value) on the
strategy which we use to ‘teach’ and we are able to ‘teach’
(and get our desired best response value) on the strategy
which we use to ‘follow’. Thus, if a strategy is self-teachable
it contains some sort of symmetry within the different strate-
gies that are deployed. Using this notion of ‘symmetry’, we
propose a novel criterion that tries to capture both teaching
and following behaviour, which is given by the sequential
teaching-following criterion in the next definition.

Definition 4. A strategy is said to be a sequential teaching-
following strategy if it is self-teachable in a set of games G
(that is, it achieves the property of self-teachability in all
these games) using strategy sets Sp and Ss and if it holds
that in all games belonging to G, the guaranteed best re-
sponse value of playing against a strategy from Sp is at least
as high as the guaranteed best response value of playing
against a strategy from Ss:

min
σ∈Sp

VBR(σ) ≥ min
σ′∈Ss

VBR(σ′)

If a strategy is a sequential teaching-following strategy, we
refer to the primary strategy as the teacher strategy and the
secondary strategy as the follower strategy.

This criterion states when a sequential targeted optimal
strategy is a sequential teaching-following strategy without
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Figure 2: Matching pennies
Left Right

Top -1,1 1,-1
Bottom 1,-1 -1,1

explicitly specifying its parts Sp and Ss and it states a cer-
tain beneficialness which is restricted to a set of games. The
beneficialness is stated in terms of payoff guarantees (and
not for example in terms of maximum payoff or expected
payoff), because minimum payoff is an important concept
in repeated games to identify enforceable outcomes. The re-
striction to a set of games is because we already talked about
the feasibility of teaching: not all games are suited for teach-
ing. It also allows us to play around more with the concept,
since we can form sequential teaching-following strategies
that use non-mixed strategies like Bully and Godfather as
teaching strategies for example, without necessarily consort-
ing to mixed variants. This is because in some games, the
only equilibrium strategies are mixed. One such well known
example is the matching pennies game shown in Figure 2.
Moreover, there is nothing restricting anyone to drop the re-
quirement by creating a sequential teaching-following strat-
egy that conditions over every game. We believe that this
notion captures the essence of teaching and following: here
teaching and following are defined as behaviours that are
able to coordinate together (both players are able to get a
best response) and they can be separated by the fact that
teacher behaviour has a certain beneficialness to it.

The symmetry we demanded in our previous definition
of teaching-following strategies may seem overly restrictive,
since we demanded a 2-way interaction: teaching should be
good against following and vice versa. However, this demand
not only serves as a way to distinguish teaching from follow-
ing strategy, but also to ensure certain beneficial properties
in self-play.

Proposition 1. When using a sequential teaching-following
strategy in self-play, if it is the case that one player main-
tains its teacher strategy σp ∈ Ss while the other maintains
his follower strategy σs ∈ Sp, then both players converge to
a Nash equilibrium.

Proof. Since the strategy σp is targeted optimal given
strategy set Sp for any arbitrary choice of ǫ > 0, and strategy
σs is targeted optimal given strategy set Ss for any arbitrary
choice of ǫ′ > 0, we know that the first player will achieve
for any ǫ an average payoff ǫ-close to VBR(σs) while the sec-
ond player will achieve for any ǫ′ a pay ǫ′-close to VBR(σp).
This means that, given an arbitrary ǫ and ǫ′, it holds that
for the first player there are no strategies available such that
more than ǫ expected payoff can be gained and for the sec-
ond player there are no strategies available such that more
than ǫ′ expected payoff can be gained. Thus both players
can not gain more than max(ǫ, ǫ′) by deviating unilaterally,
which implies a max(ǫ, ǫ′)-Nash equilibrium. Since the play-
ers maintain their strategies, we can let ǫ → 0 and ǫ′ → 0,
and thus max(ǫ, ǫ′) → 0, which means that in the limit the
players converge to a Nash equilibrium.

This proposition is important when we want to show when
a specific teaching-following strategy converges to a Nash
equilibrium in self-play. As we will see later, in order to
guarantee convergence to a Nash equilibrium in self-play we

also need to consider the case in which both the players
maintain their teaching strategy (if possible) and the case
in which both players maintain their following strategy.

The teaching-following criterion we supplied tried to in-
corporate intuitive aspects of teaching and following, such
as the “what” and the “when”. Based on the criterion, it can
be argued that in infinitely repeated games, it can be benefi-
cial to first try to teach an outcome that allows us to receive
a greater guaranteed outcome. This is especially the case
for conservative agents that care more about payoff guaran-
tees than payoff maximization. Many known strategies can
be extended to have a teaching phase, so there is not really
anything to lose given that the game is not finite. If the rate
of convergence plays a role, the criterion also states that the
properties should be achieved in efficient time. Moreover,
as we will see later on with our algorithm, combining two
strategies with the use of the criterion will cause the re-
sulting strategy to maintain many of the properties of the
original strategies. In other words, the criterion not only
tries to capture the essence of teaching and following, but
it is also a beneficial criterion for algorithms to adhere to.
Moreover, it allows authors to create strategies in terms of
‘weaknesses’: what works good against what in which situ-
ations? In the next section we will create an algorithm that
adheres to our proposed criterion.

4. IMPLEMENTATION
In this section, we will first look at the teaching and follow-

ing component of our algorithm individually and afterwards
we will combine them to create an algorithm that is both
able to teach and follow in repeated games by adhering to
our teaching-following criterion.

4.1 Teaching strategy
For the teaching part of our strategy, we will use a variant

of Bully. We already saw that intuitively this strategy is in-
deed a teaching strategy, since it assumes it has Stackelberg
leader advantage. On the other hand, Bully does not work
well in all games, in particular games that require mixed
equilibria. In the long run this will imply that our strategy
is not able to teach beneficial outcomes in all games.

The idea is that Bully, in some games, works specifically
well against opponents that are willing ‘to go along with the
proposal’, such as learning rules that play a best response
to the distribution of play. As it turns out, the class of
strategies that are ‘susceptible’ to Bully is very broad and
covers many examples found in literature. We refer to these
strategies as pure consistent strategies, which is a superclass
of the consistent strategies defined in [4]. The difference
is that pure consistent strategies should achieve a best re-
sponse against pure strategies, in stead of arbitrary mixed
strategies in the case of consistent strategies. We also ex-
tend the definition with the notion of a polynomial rate of
convergence, which will play a role in the next proposition.

Definition 5. A strategy is said to be ǫ-pure consistent if
there exists a T such that against any pure strategy σ−i

and for any t > T the strategy achieves a payoff ǫ-close to
VBR(σ−i) with probability 1− ǫ. A strategy is pure consis-
tent if it is ǫ-pure consistent for every positive ǫ and is said
to have a polynomial rate of convergence if T is polynomial
in 1

ǫ
.
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It can easily be shown that any consistent strategy (like
Fictitious play), universal consistent strategy (like no-regret
learners) and rational strategy (mentioned in [1], not to be
confused with the economical definition of rationality) are
pure consistent, as well as countless more strategies. The
reason for this is because a pure strategy is very easy to
learn for the opponent. This is again one of the beautiful
aspects of teaching and following: if the message we are
trying to teach is simple, the class we can target is much
larger than in the case in which we are trying to teach a
more complex message.

As our teacher strategy, we use a modified version of Bully.
This is because Bully is not well defined in cases in which
our opponent is indifferent about several outcomes. To cope
with this, we define our teacher value and action in the fol-
lowing way:

Definition 6. The teacher value, Vteacher, is defined as:

Vteacher = max
i

Vi(i, j
∗
i )

where

j∗i = argmin
j∈Ji

Vi(i, j)

and

Ji = { a | V−i(i, a) = max
j

V−i(i, j) }

In short, Vteacher is defined as the best possible payoff the
agent can guarantee by assuming it has first-mover advan-
tage and by assuming that the opponent plays a best re-
sponse to this pure strategy which is least beneficial to us.
The action belonging to Vteacher is defined as ateacher.

Observe that Vteacher is indeed a best response value against
an arbitrary pure consistent opponent (notice that it can
still be considered a best response value in repeated games
if the opponent is (universally) consistent, as long as we are
teaching a feasible and enforceable outcome; more on this
observation later). However, if it is the case that Vteacher <
VMaximin (recall for example the matching pennies game in
Figure 2), it is arguably better to play our (possibly mixed)
Maximin strategy. As we will see later, this will not pose a
problem since the notion of teaching-following can be re-
stricted to a set of games. The proof that we will use
is unique in the sense that it does not rely on probability
bounds to show a probability dependent payoff guarantee.
This is because our opponent is using a learning/adaptive
strategy (which cannot be simply captured by a Random
variable). However, observe that if we play a pure strategy
against a pure consistent strategy, the strategy we play also
seems to show ‘consistent behaviour’. This idea will be the
basis of the upcoming proof, in which we will show targeted
optimality against the set of pure consistent strategies by
adopting the strategy in which we repeatedly play ateacher.

Proposition 2. For any choice of ǫ > 0 and δ > 0
against an opponent that uses a pure consistent strategy σ−i

with a polynomial convergence rate, there exists a finite T ,
polynomial in 1

ǫ
and 1

δ
, such that playing ateacher repeatedly

will for any t > T result in an average payoff of at least
Vteacher − ǫ with probability 1− δ against this opponent.

Proof. We will first show that for any given value of
ǫ, there exists an ǫ′ > 0, such that if it is the case that

our opponent with probability equal or greater than 1 −
ǫ′ receives an average payoff ǫ′-close to his optimal pay-
off, we receive an average payoff ǫ-close to Vteacher. Since
our opponent has a polynomial rate of convergence, we use
a polynomial function T−i(

1
ǫ′ ) to denote the actual time

steps needed to achieve the property of pure consistency.
Let pi and p−i be the payoff belonging to the action pro-
file (ateacher, BR(ateacher)). Without loss of generality, we
consider that there is another action profile in the vector,
(ai, a−i) with payoff p′i and p′−i respectively such that p′i
is the worst payoff in the vector for our agent and p′−i the
(second) best for the other agent. Let’s also consider that
pi > p′i + ǫ, since otherwise any combination of actions by
the opponent would guarantee that the average payoff we
receive is larger or equal than Vteacher − ǫ. Similarly we
have that p−i > p′−i, since by definition of ateacher we have
that any action with payoff equal to p−i will net our agent
a payoff of at least Vteacher. For every possible ǫ, the worst-
case candidate h to violate the property is playing k propor-
tion (ateacher, BR(ateacher)) and (1−k) proportion (ai, a−i)
such that it holds that our opponent still receives an aver-
age payoff ǫ′-close to his optimal payoff. Since in this case
Vteacher = pi and VBR(ateacher) = p−i, we have to find an
ǫ′ such that the proportion k is high enough such that:

k ∗ p−i + (1− k) ∗ p′−i + ǫ′ ≥ p−i

implies that the following also holds:

k ∗ pi + (1− k) ∗ p′i + ǫ ≥ pi

Solving for ǫ′, we see that

ǫ′ ≤ ǫ ∗ κ

where

κ =

(

p−i − p′−i

pi − p′i

)

Since we know that pi > p′i, p−i > p′−i and ǫ > 0, this out-
come is strictly positive. Thus for ǫ′ any value in the interval
(0...b], where b = ǫ∗κ guarantees that if our opponent (with
probability 1 − ǫ′) receives a payoff ǫ′-close to his optimal
payoff then our agent receives a payoff ǫ-close to Vteacher.
Notice that this happens after T−i(

1
ǫ′ ) iterations.

The second step in our proof is to observe that this result
is general enough to apply to any game, since we can just
drop the assumption that p′i and p′−i belong to the same pay-
off profile. It is not hard to see that fixating the proportion
that (ateacher, BR(ateacher)) is played in combination with
an arbitrary action profile allows us to find a larger value for
ǫ′ than in the case of repeatedly getting the worst possible
payoff for our agent and the second best for the other agent.
In other words, this is the largest possible range we can find
for ǫ′ that is small enough to ensure the property. Moreover,
we can make the observation that it also holds that for ev-
ery later iteration than T−i(

1
ǫ′ ), the average payoff will not

decrease. For a small enough value of ǫ′ for the opponent
(namely small enough such that there exists no other payoff
in the payoff vector that is smaller than max

a∈A2
V−i(ateacher, a)

and larger or equal than max
a∈A2

V−i(ateacher, a)−ǫ′) the oppo-

nent can do no better to maintain or increase the proportion
k in which BR(ateacher) is played. Thus, for a small enough
value of ǫ for our agent, the proportion in which we receive
Vteacher is also maintained or increased. Since in the above
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proof the calculation for ǫ′ was based on achieving the worst
possible payoff in the remaining proportion of rounds, it is
impossible that our average payoff also drops lower; it is
enough that the proportion in which Vteacher is achieved re-
mains constant or increases.

The final step is to prove the proposition. Using the ear-
lier defined function T−i and our found value for κ, we see
that after T−i

(

max( 1
δ
, 1

κ∗ǫ
)
)

time steps, we receive for any
later time step an average payoff ǫ-close to Vteacher with
probability 1 − δ. Since T−i is a polynomial function, we
also achieve this polynomial in 1

ǫ
and 1

δ
(notice that κ is

just a game-constant).

This proof concludes the teaching part of our strategy and
enables us to move on to the following strategy.

4.2 Following strategy
For our following strategy, we have a number of possi-

bilities, since many strategies achieve a best response value
against pure strategies within polynomial time (for exam-
ple Fictitious Play). However, we have chosen to select the
AWESOME strategy to fill in this role, which is discussed in
[2]. We stress that for the sake of understanding the message
we are trying to convey in this paper no thorough under-
standing of AWESOME is required. The most important as-
pect of AWESOME is the fact that it has two key properties,
namely AWESOME (1) converges to a Nash equilibrium in
self-play, which, as we will prove later, cause our sequential
teaching-following strategy to converge as well; and (2) con-
verges to a best-response against arbitrary stationary oppo-
nents. The resulting teaching-following strategy will (more
or less) also have this property. Unfortunately, proving tar-
geted optimality against pure strategies when using AWE-
SOME is not so easy as it may seem, and requires knowledge
of valid schedules and the specific steps taken in the algo-
rithm. Moreover, the exact amount of rounds needed in
which we acquire targeted optimality is not relevant in the
case of our algorithm, since we will play AWESOME for the
rest of the game once we adopt it. Thus instead of giving
the full proof, we give a brief proof outline.

Proposition 3. When using the AWESOME algorithm,
for any δ > 0 and ǫ > 0, there exists a number of rounds
τ , polynomial in 1

ǫ
and 1

δ
, such that for any number of

rounds t ≥ τ the strategy against an arbitrary pure strategy
σ achieves average payoff of at least VBR(σ)− ǫ with proba-
bility 1 − δ, where VBR(σ) is the value of the best response
against σ.

The proof is heavily based on the fact that the observed
distribution of play of the opponent is identical to the true
distribution of play (contrary to mixed strategies). After ev-
ery restart, AWESOME will first consider that the opponent
is an equilibrium player. This hypothesis is refuted after a
fixed amount of rounds, based on the monotonically decreas-
ing closeness parameter (belonging to the schedule) that de-
notes the maximum allowed distance between distributions
in the equilibrium playing phase, and it is based on the dis-
tance between the pure strategy distribution and the equi-
librium strategy distribution. Afterwards AWESOME will
consider that the opponents are stationary, which we will
refer to as the stationary playing phase. First AWESOME
will play a random action that either is a best response or
not. In the first case, AWESOME will play this action for

the rest of the game since it will never switch actions and
thus the algorithm will never restart on behalf of itself nor
the opponent. If this is not a best response, we will eventu-
ally switch actions after a fixed amount of rounds based on
the number of players, the maximum number of actions, the
payoff difference between our best and worst outcome in the
game and our monotonically decreasing closeness parameter
(belonging to the schedule) that denotes the maximum al-
lowed distance between distributions in the stationary play-
ing phase. If this function decreases fast enough, we will
restart the algorithm. Using this information, we can find
the number of restarts (and thus eventually the number of
iterations) needed to ensure targeted optimality against pure
strategies.

Using this proof we can immediately see that AWESOME
is not only targeted optimality given the class of pure strate-
gies, but also pure consistent. This property implies that by
Definition 3 our eventual algorithm will be self-teachable.

4.3 Algorithm
The combination of the teacher and follower strategy gives

us a new strategy that is able to teach pure strategy out-
comes to adversaries that are willing to go along with this
(pure consistent strategies) and is able to follow otherwise
with a strategy we targeted in the teaching phase (in this
case AWESOME). Observe that, as we will show later, the
games in which this resulting strategy may work does not
include games in which a mixed equilibrium strategy is re-
quired. The resulting algorithm is shown in ‘Algorithm 1’.
The input parameter 〈(ǫp, δp), (ǫs, δs)〉 should always be the

Algorithm 1 Sequential teaching-following strategy

Require: 〈(ǫp, δp), (ǫs, δs)〉
Ensure: ǫp > 0, δp > 0, ǫs > 0, δs > 0
1: t← 0
2: while (t < T−i

(

max( 1
δp , 1

κ∗ǫp )
) ∨ (AvgPayoff ≥

Vteacher − ǫp) do
3: playaction(ateacher)
4: t← t + 1
5: end while
6: playstrategy(AWESOME)

same for any sequential targeted optimal algorithm: it con-
tains a pair of ǫ and δ values for both the primary and sec-
ondary strategy. These parameters, as previously discussed,
depict the closeness of the average payoff required and the
probability that this will be reached. As we have seen, the
lower the values, the longer the teaching/following process
will take. The meaning of the κ variable can be found in
Proposition 2 and the function T−i is a polynomial function
that estimates the rate of convergence of the opponent, and
can effectively limit the target class to slow or fast learners
(notice that we cannot make the teaching phase too short,
since we also have to retain the self-teachability criterion).
We again see a beautiful aspect of teaching arise: if the
opponent is a slow learner, we might stop on teaching our
opponent prematurely. Since the best response value against
an arbitrary pure strategy is VMinimax′ , where VMinimax′ is
the pure strategy Minimax value, we know that this strat-
egy is a teaching-following for all games in which Vteacher ≥
VMinimax′ (observe that VMinimax′ ≥ VMaximin, which set-
tles our earlier conncern that repeatedly playing ateacher is
not a best response in games in which Vteacher < VMaximin
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Figure 3: Battle of the sexes
Left Right

Top 3,1 0,0
Bottom 0,0 1,3

such as the matching pennies game shown in Figure 2).
From a game-theoretic viewpoint, this result also makes per-
fect sense, since in this case we are indeed teaching a feasible
and enforceable outcome, which then in turn can constitute
a repeated Nash equilibrium as justified by the Folk theo-
rem (for readers unfamiliar with this observation, we refer
to [9, pp. 151-153] where this is very well explained). This
observation can be used to prove convergence to a Nash
equilibrium in self-play.

Proposition 4. In infinitely repeated games, our teaching-
following algorithm, restricted to its set of games, will neces-
sarily converge to a Nash equilibrium in self-play if it holds
that ǫp

i and ǫp
−i are sufficiently small.

Proof. First let us define what ‘sufficiently small’ means:
the values for ǫp

i and ǫp
−i are sufficiently small if for both

players it holds that there exists no other payoff-profile in
the payoff matrix for which both players receive a payoff of
at least Vteacher−ǫp. Notice that this is not a big restriction,
since we can just compute this and pick such a small value
for ǫp accordingly.
We distinguish the following 3 cases in self-play:

1. Both players maintain their primary strategy σp. This
happens when both agents coincidently achieve an ǫp-
close best response value while making false assumptions
about their opponent. However, our demand for the val-
ues of ǫp ensure that we are indeed teaching Vteacher and
not settling on another payoff profile. Since we know that
this outcome is both feasible and enforceable in our set
of games, we know that we are playing a repeated Nash
equilibrium.

2. Both players achieve their best response value when one
player uses primary strategy σp while the other uses sec-
ondary strategy σs. Since both players are playing a best
response to each other in these games, we know that σp is
targeted optimal given σs and vice versa, which implies
by Proposition 1 a Nash equilibrium.

3. Both players maintain their secondary strategy σs for the
rest of the game. Convergence to a Nash equilibrium in
this specific case is proven in [2].

Moreover, our algorithm more or less retains all the prop-
erties of AWESOME. For example, it can be easily shown
that if the strategy of the opponent converges to a station-
ary strategy, our algorithm will converge to a best-response
given this stationary strategy or we will achieve an average
payoff ǫp-close to Vteacher.

Our teaching-following strategy enables us to teach a re-
peated Nash equilibrium which provably can be learned by
a very broad class of opponents (contrary to just playing
AWESOME) in efficient time and allows us to switch if the
former fails. On top of the beneficial theoretical properties
of our algorithm, we believe we can make our discussion

Figure 4: Stackelberg game
Left Right

Top 1,0 3,2
Bottom 2,1 4,0

of our algorithm even more convincing by looking at some
specific games.

The following games are examples in which our algorithm
is able to perform particularly well.

1. In the battle of the sexes game, shown in Figure 3, our
algorithm is able to teach (‘force’) the (most) beneficial
outcome of 3 to follower strategies that are willing to go
along, while other strategies that are able to coordinate
might reach a point on the Pareto boundary which is less
beneficial (such as 1).

2. Our algorithm is able to signal repeated Nash equilibrium
outcomes that are easy to learn by the opponent and can
ensure greater payoff than the equilibrium of the stage
game. This is the case with the Stackelberg game shown
in 4 (with ‘Stackelberg game’ we do not mean the for-
mal definition, but rather we refer to [9, p. 200] where
they use this name to distinguish a particular simultane-
ous action Cournot game). In this particular game, our
sequential teaching-following strategy is able to teach the
outcome that will give our agent a payoff of 3, where
as the equilibrium strategy of the stage game gives us a
lower payoff of 2.

This section was mainly concerned with presenting an algo-
rithm that is able to teach and follow with the use of our
proposed criterion. In the next section we will take a step
back to take a look at our criterion again, which will open
the way for some general discussion.

5. GENERAL DISCUSSION
In this paper we used the notion of sequential targeted

optimality to create a teaching-following criterion as a way
of capturing both teaching and following behaviour in re-
peated games. However, some choices we made during the
construction of our criterion could be made differently. An
important choice we made was when we defined the notion of
self-teachability. The only demand we had is that teaching
and following behaviour are able to coordinate together, and
that the teacher strategy sets itself apart from the follower
strategy in terms of payoff guarantee in certain games. This
definition can potentially imply that in some games what we
understand as a ‘teaching’ strategy can conversely function
as a ‘following’ strategy in other games. Since this definition
still fully captures the coordination aspect of teaching and
following this is not really a problem, but admittedly there
might be something more to the broad meaning of a teach-
ing strategy and the broad meaning of a following strategy.
Another choice immediately becomes apparent when we de-
fine the beneficialness of the teaching part over the following
part. We used payoff guarantees to define this beneficial-
ness, which makes sense from the viewpoint of a conserva-
tive agent. On the other hand, expected payoff or maximal
payoff guarantees also make sense when we consider for ex-
ample greedy agents or risk-taking agents. We made this
choice mainly because a minimal payoff guarantee allows us
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to identify cases in which playing a strategy will necessarily
lead to an enforceable outcome. But again we stress that
this was nothing more than a choice.

Another important point of discussion is the fact that the
notion is restricted to a set of games. By showing that in
some games teaching strategies (other than our Maximin
strategy) are not really feasible, we tried to make the point
more clear that we really need this restriction. However,
this restriction also has its problems. For example: what
does it mean that a strategy is restricted to a set of games?
Does it mean that the strategy is useless in other games?
We have not really give an interpretation to this restriction.
It becomes even more troublesome when the payoff matrices
are not known. When do we know which strategy to use?
We stress that this was never our intention to define; we are
merely interested in defining the set of games in which ‘it
makes sense’ to use such a strategy. The exact interpretation
of this restriction is up to the creator of the strategy.

We also made a choice with the switching criterion in our
definition of sequentially targeted optimality. As shown in
[6], by smart use of the probability factors δ we can devise
an algorithm that is targeted optimal simultaneously given
different classes of opponents, instead of sequentially in our
algorithm. If we would allow simultaneous optimization, it
could lead to a potentially different definition of teaching
and following.

As a final point of discussion, we note that our definition
of sequentially teaching-following was not concerned with
safety and convergence to Nash equilibria in self-play (al-
though we have given conditions in which this can happen).
We note that the latter is the least of our worries, since in
a teacher and follower setting one might be less concerned
about self-play. It is questionable why we even need to per-
form well given that we face ourselves, given that we are
only concerned whether or not our opponent is a follower.
The first point, a safety condition, is arguably more impor-
tant. Any strategy should be safe to use, else we can just
play our security strategy instead. However, we did not feel
the need to include this in our criterion; this can simply
be a separate criterion instead when devising a sequential
teaching-following strategy.

6. FUTURE RESEARCH
There are many possibilities for future research. First of

all, we would really like to see a sequential teaching-following
strategy that uses Bully extended to the set of mixed strate-
gies as its teaching strategy and for example AWESOME as
its following strategy. This strategy targets in its teaching
phase the set of consistent opponents (and not necessarily
the pure consistent opponents) and its following phase the
set of stationary opponents (and not necessarily pure strate-
gies). However, we note that proving targeted optimality for
AWESOME against stationary opponents can be tricky as
it requires manipulation of many probability factors.

Another possible point of departure is to extend the no-
tion of teaching-following to n-player games. In this par-
ticular case, we have to take into account the fact that our
opponents might belong to different classes. The notion of
targeted optimality has to be extended to cope with this
fact. As shown in [8], checking if multiple opponents belong
to a single class also becomes quite tricky, but is definitely
an interesting direction to go in.

In this paper, our focus was on teaching and following in

a sequential way. But it might be perfectly possible to teach
and follow in different ways (such as periodic). This could
be a direction for possible future research. For example,
dropping sequentially optimality in favour of simultaneous
optimality might cause interesting behaviour. In this case,
if a solution of the game is reached, the agent still needs
to worry about the fact whether or not the opponent might
belong to a different target class. This might open up the
way to new insights concerning the subject.

Another quite different point of departure is to investi-
gate the exact nature of teaching and following. We used
the self-teachability criterion, but we also mentioned in the
introduction that teacher and follower strategies also have
‘certain properties’ that allow us to identify them as such
(for example Bully and Godfather can be reasonably un-
derstood as teacher strategies). The challenge becomes to
devise a formal notion of when a strategy is a teaching strat-
egy and when a strategy is a following strategy.

A last point for possible future research we like to discuss
is in settings where the payoff matrices (initially) are not
known. If the payoff matrix of the adversary stays hidden
throughout, it can be troublesome for teaching strategies,
since (arguably) they rely heavily on the payoff matrix of
the opponent. In these settings, it might be interesting to
investigate how teaching and following can still arise.
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