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ABSTRACT
False-name bids are bids submitted by a single agent under
multiple fictitious names such as multiple e-mail addresses.
False-name bidding can be a serious fraud in Internet auc-
tions since identifying each participant is virtually impos-
sible. It is shown that even the theoretically well-founded
Vickrey-Clarke-Groves auction (VCG) is vulnerable to false-
name bidding. Thus, several auction mechanisms that can-
not be manipulated by false-name bids, i.e., false-name-proof
mechanisms, have been developed.

This paper investigates a slightly different question, i.e.,
how do they affect (perfect) Bayesian Nash equilibria of
first-price combinatorial auctions? The importance of this
question is that first-price combinatorial auctions are by far
widely used in practice than VCG, and can be used as a
benchmark for evaluating alternate mechanisms. In an en-
vironment where false-name bidding are possible, analyti-
cally investigating bidders’ behaviors is very complicated,
since nobody knows the number of real bidders. As a first
step, we consider a kind of minimal settings where false-
name bids become effective, i.e., an auction with two goods
where one naive bidder competes with one shill bidder who
may pretend to be two distinct bidders. We model this auc-
tion as a simple dynamic game and examine approximate
Bayesian Nash equilibria by utilizing a numerical technique.
Our analysis revealed that false-name bidding significantly
affects the first-price auctions. Furthermore, the shill bidder
has a clear advantage against the naive bidder.
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1. INTRODUCTION
In a combinatorial auction, also called package auction,

multiple goods are simultaneously for sale, and, in general,
bidders can express arbitrary valuation functions over sub-
sets of the goods. This allows bidders to express substi-
tutability and complementarity of the goods in their valua-
tions. A recent book by Cramton et al. [3] gives a thorough
survey of the theory and practice of combinatorial auctions.
False-name bids [16] are bids submitted by a single agent
under multiple fictitious names such as multiple e-mail ad-
dresses. False-name bidding can be a serious fraud in com-
binatorial auctions on the Internet, since identifying each
participant is virtually impossible.

The Vickrey-Clarke-Groves (VCG) auction is best moti-
vated by its dominant strategy property under incomplete
information, that is, truth-telling by all bidders in the auc-
tion leads outcomes (allocation of goods) to be efficient.
However, VCG has several limitations in environments with
complementarities among goods. One is vulnerability to
false-name bidding. As mentioned above, since such dishon-
est actions are very difficult to detect, they can cause even
more serious problems in auctions on the Internet. Several
auction mechanisms that cannot be manipulated by false-
name bids (i.e., false-name-proof mechanisms) have been de-
veloped [15, 7, 6]. We say a mechanism is false-name-proof
if, for each bidder, declaring his true valuation function us-
ing a single identifier is a dominant strategy, even though
the bidder can choose to use multiple identifiers.

In this paper, we investigate a slightly different question.
We know false-name manipulations can affect a dominant-
strategy equilibrium of strategy-proof mechanisms, i.e., VCG
is not false-name-proof. How do they affect (perfect) Bayesian
Nash equilibria of other non-direct-revelation mechanisms,
in particular, the first-price combinatorial auction mecha-
nism? The importance of such analysis is that first-price
combinatorial auctions are by far widely used in practice
than VCG, and the obtained results can be used as a bench-
mark for evaluating other auctions/mechanisms. In first-
price auctions, bidders simply submit sealed bids, they are
allocated the goods so that the combination of bids max-
imizes the seller’s revenue, and each winning bidder pays
the amount of the associated bid. However, it is not so far
investigated how false-name bidding affects first-price com-
binatorial auctions.

In an environment where false-name bids are possible,
analytically investigating bidders’ behaviors is very compli-
cated, since bidders are asymmetric and nobody knows the
number of real bidders. Bidders are asymmetric if their val-
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ues are drawn from asymmetric distributions. Much of the
motivation in investigating false-name bidding arises from
environments where bidders have complementarities among
goods. The equilibria in first-price auctions do not have
a well-known closed-form solution. Accordingly, many ap-
proaches by computer scientists and economists have been
developed to approximate an equilibrium strategy. Seminal
works by Wellman and his colleagues have developed tech-
niques to obtain an analytically intractable Nash equilib-
rium in empirical mechanism design [14, 12, 8]. Those have
recently been used to design and evaluate alternate mecha-
nisms [13, 10]. Armantier et al. advocated a similar tech-
nique called a constrained strategic equilibrium approach [1].

False-name bidding affects first-price auctions in a differ-
ent way than VCG auctions. At first glance, false-name
bidding seems not effective in first-price auctions. In a first-
price combinatorial auction, if a bidder wins, he pays the
amount of his bid. Assume a (potential shill) bidder can win

two goods X and Y with bid b{X,Y }. Assume he uses false-
names, splits his bid, and obtains X and Y separately by bid
b{X} and b{Y }, respectively. As far as b{X,Y } = b{X}+b{Y },
his payment does not change. However, the behaviors of
other bidders might be influenced by false-name bidding.
Let us assume there exists a competing bidder (denoted as
bidder 1) who also wants X and Y. For bidder 1, his bidding
strategy changes if his belief about his opponents changes.
In short, his bid decreases when he thinks he is facing two
opponents, each of whom wants either X or Y, compared
to the case where he thinks he is facing one opponent who
wants both X and Y. This is because, when there exist two
(real) bidders, each tries to free-ride the other bidder’s ef-
fort; neither raises his bid in the hopes that the other raises
his bids high enough to beat bidder 1 [11]. Thus, the total
of these two bidders’ bids tends to be small. Then, bidder
1 can safely decrease his bid. Consequently, when the shill
bidder pretends to be two bidders, bidder 1 decreases his
bid. The shill bidder can take advantage of this fact.

It is very complicated to construct a game of auctions
with false-name bidding. In the analysis of auctions with in-
complete information, it is assumed that each bidder knows
how many bidders are participating before an auction be-
gins. This is because we require the cumulative distribution
function of each bidder as common knowledge to solve such
auctions. Therefore, we must properly model how many
identifiers a shill bidder uses and when bidders know the
number of bidders.

As a first step, we consider a very simple and stylized
model where false-name bids become effective, i.e., an auc-
tion with two goods where one naive bidder competes with
one shill bidder who may pretend to be two distinct bidders.
We model this auction as a dynamic game with incomplete
information. We then examine approximate Bayesian Nash
equilibria when bidders’ preferences are drawn from asym-
metric distributions, by utilizing the CSE approach [1].

This paper provides novel insights into the properties of
first-price auctions in environments where false-name bid-
ding is possible. The numerical results suggest that false-
name bidding in first-price auctions can dramatically reduce
the revenue and does not reduce the surplus so much. Fur-
thermore, a shill bidder can highly increase his profit us-
ing two identifiers, while a naive bidder can keep his profit,
though he is less likely to defeat the shill bidder.

Let us briefly describe the organization of this paper. Sec-

tion 2 formalizes the first-price combinatorial auctions and
the solution concepts. Section 3 constructs a dynamic game
of auctions with false-name bidding. Section 4 shows the nu-
merical results of equilibrium bidding strategies. Section 5
examines the effect of false-name bidding in terms of the ma-
jor properties of auctions. Section 6 concludes this paper.

2. PRELIMINARIES

2.1 First-price combinatorial auctions
In a first-price single-item auction, each agent i submits

sealed bid bi for a good valued by agent i at vi. Among
all agents, the agent with the highest bid wins the good
(ties are broken randomly). In a combinatorial auction set-
ting, the auction is also called a menu auction. Bernheim
and Whinston developed a theory of sealed-bid, first-price
combinatorial auctions [2]. Let us consider a first-price com-
binatorial auction with two goods X and Y .

1. Each bidder i submits sealed bids bi = (b
{X}
i , b

{Y }
i , b

{X,Y }
i )

on {X} only, {Y } only, and the set/bundle of {X,Y }.
2. The auctioneer chooses an allocation, so that the com-

bination of bids maximizes the seller’s revenue.

3. Each winning bidder pays the amount of the associated
bid.

We also assume a quasi-linear, private value model with
no allocative externality. The utility (profit) of bidder i, if

he wins either X or Y with b
{X}
i or b

{Y }
i , is v

{X}
i − b

{X}
i

or v
{Y }
i − b{Y }i ; and the utility of bidder i, if he wins both

goods with b
{X,Y }
i , is v

{X,Y }
i − b{X,Y }i .

A losing bidder obtains nothing, pays zero, and thus, his
utility is zero, since we assume normalization. The seller
revenue, i.e., the utility of the auctioneer, is the sum of the
payments of the winning bidders.

2.2 Equilibrium concepts
We use two of the most prevalent solution concepts from

game theory: Bayesian Nash equilibrium (BNE) and per-
fect Bayesian equilibrium (PBE). BNE are used to analyze
games with incomplete information, or Bayesian games, e.g.,
analysis of non-direct-revelation mechanisms, such as first-
price auctions. A bidder’s (expected) profit depends not
only on the bids of other bidders but also on information
that is only partly known to the bidder, i.e., a distribution
function on the values of other bidders. Furthermore, PBE
is a refinement of BNE for dynamic games, which is required
to describe environments where false-name bidding is possi-
ble: a shill bidder can use multiple identifiers.

Let us define BNE in an auction with bidder 1 and 2 in
environments where false-name bidding is not possible. Bid-
der i assigns a value of vi for each combination of goods on
sale drawn from a cumulative probability distribution with
function Fvi and associated probability density function fvi .
Bidder i knows his own value vi and only that any other bid-
der j(6= i)’s value is independently distributed based on Fvj .
Thus, Fvj for all other bidder j and the number of them are
common knowledge. In general, the distribution of valua-
tions is assumed to be the same for all bidders, i.e., sym-
metric. However, since it must be asymmetric in auctions
with false-name bidding, we do not specify the distribution
here.
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A bidding strategy for bidder i is defined as a function si.
For example, bidder i with vi submits bi = si(vi). The in-
verse function of si is denoted as s−1

i . Any other bidder j’s
strategy sj is assumed to be increasing and differentiable. To
draw bidder i’s bid bi, we can obtain the cumulative prob-
ability distribution function Fbi and the associated density
function fbi for an arbitrary value of b:

Fbi(b) = Fvi(s
−1
i (b)) and fbi(b) =

fvi(s
−1
i (b))

d

db
si(s

−1
i (b))

.

The expected profits of bidder i ∈ {1, 2} for given vi and si
are calculated as follows:

Ui(bi, sj ; vi) = (vi − bi)Fbj (bi) for all i.

From these expected profit, we define a BNE in the auction
with bidder 1 and 2.

Definition 1 (Bayesian Nash equilibrium) A profile of
bidding strategies (s∗1, s

∗
2) consists of a Bayesian Nash equi-

librium in an auction with bidder 1 and 2 if

∀v1,∀v2, ∀s1,∀s2,
U1(s∗1(v1), s∗2; v1) ≥ U1(s1(v1), s∗2; v1), and
U2(s∗2(v2), s∗1; v2) ≥ U2(s2(v2), s∗1; v2).

The profile of the strategies maximizes the expected profit
of each bidder when the probabilistic distribution of values
and the number of bidders are common knowledge.

If a shill bidder can use multiple identifiers, the bidders’
equilibrium strategies become significantly more intricate.
In the analysis of auctions with incomplete information, it
is assumed that each bidder knows the number of participat-
ing bidders before an auction begins, as common knowledge.
However, if the shill bidder may pretend to be multiple dis-
tinct bidders, it is essential for a naive bidder to consider the
number of real bidders. For example, when the naive bidder
faces two bids, he may think that those come from a shill
bidder using two false identifiers or he may think they come
from two distinct bidders. As a result, a bidder’s (expected)
profit comes to depend on the prior distribution of others’
values and the partial information about the number of real
bidders. To model this, we construct a dynamic game and
focus on the PBE analysis in the later section.

PBE is the most commonly used for analyzing sequential
(dynamic) games with observed actions and private types
(values) [4]. Each bidder has a strategy si and beliefs that
are represented as a cumulative probability distribution func-
tion about values of other bidders. A strategy profile si is
a PBE if each bidder updates his beliefs using Bayes rule
whenever possible (consistency) and, whenever it is bidder
i’s turn to move, si prescribes an action that maximizes i’s
expected payoff from then on, given i’s beliefs (sequential
rationality).

As a first step, we consider a very simple and stylized
model where we restrict the number of false identifiers each
bidder can use and each bidder’s observable information.
This is because computing a PBE is intractable in environ-
ments where false-name bidding becomes effective. Thus,
in subgames of the restricted dynamic game, we can com-
pute a BNE strategies by utilizing a numerical technique
that enables one to approximate an analytically intractable
Nash equilibrium in a broad class of games with incomplete
information.

2.3 Constrained strategic equilibrium
This section briefly describes a solution concept for games

with incomplete information, called constrained strategic equi-
librium (CSE) [1]. The sequence of CSEs approximates an
equilibrium and CSE provides a useful way to numerically
compute BNE for games whose solutions cannot be analyt-
ically derived.

We consider a single play of an two-person simultaneous-
move game. Let N = {1, 2} denote a set of bidders (players).
The subscript i denotes a specific player i ∈ N , and the
subscript j refers to the player except i. CSE is defined as
a Nash equilibrium of a modified game in which strategies
are constrained to belong to an appropriate subset typically
indexed by an auxiliary parameter vector. Let us denote S
as a subset of all feasible strategy profiles and Sk as a set of
constrained strategy profiles for parameter k. Formally,

Definition 2 (Constrained strategic equilibrium) Let
Sk = {Sk1 , Sk2 } for a parameter k denote a set of constrained
strategy. Sk∗ ⊂ Sk is the set of CSEs if ∀ski ∈ Ski and
∀i ∈ N , Ũi(s

k∗
i , s

k∗
j ) ≥ Ũi(s

k
i , s

k∗
j ) where Ũi is the expected

utility of player i.

Armantier et al. [1] identified a compacity condition under
which a sequence of CSEs converges toward a Nash equilib-
rium.

Proposition 1 ([1]) If an expected utility Ũ is continuous
and if a sequence of CSEs {sk∗}k=1→∞ has a subsequence
with limit s̄ ∈ S, then s̄ is a Nash equilibrium.

Corollary 1 ([1]) If a set of strategy profiles S is compact,

Ũ is continuous and there exists a CSE strategy sk∗ for all
k > 0, then there exists a Nash equilibrium in S, and any
sequence of CSEs {sk∗}k=1→∞ has a subsequence that con-
verges toward a Nash equilibrium.

The compacity of the strategy space is standard in games
with incomplete information and it applies to a large class of
games including several auction models, such as asymmetric
first-price auctions. The numerical technique enables one
to approximate an analytically intractable Nash equilibrium
in such a class. CSE also has an approximation algorithm
that can be applied for asymmetric games with incomplete
information. Let us briefly show the algorithm:

1. Consider a family of parameterized constrained strate-
gies: ski (vi) = si(d

k
i , vi) ∈ Ski , with dki ∈ Dk

i ⊂ Rγ(k).
Note that γ(k) is a function of the final dimension and
is set to 2k−1.

2. Maximize player i’s expected utility after fixing pa-
rameter dkj . The approximation of the expected utility

for dkj is defined as

ŨMi (si(d
k
i , vi)) =

1

M

M∑
m=1

Vi(d
k, ṽm)Gi(si(d

k
i , ṽ

m
i )).

where Vi is the utility function of player i with value
ṽm, which denotes a vector of two values drawn ran-
domly (N = 2). M is the Monte Carlo size and
Gi is the cumulative probability distribution function
that player i wins the game (auction) when he takes
si(d

k
i , ṽ

m
i ).
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3. Step 2 is repeatedly applied for each player. If dk for
all i is not updated, this algorithm stops.

In most applications, Gi cannot be calculated analytically
and needs to be approximated by a kernel density estima-
tion. The kernel density estimation is a non-parametric way
of estimating Gi by L sample drawn from the distribution
of values F . Let {v1, . . . , vL} denote L sample drawn from

F . The kernel density estimation f̂h(v) is shown by the
following equation:

f̂h(v) =
1

Lh

L∑

l=1

K(
v − vl
h

),

where K(·) is the Gaussian distribution as a kernel function
and h is a smoothing parameter called a bandwidth

Notice that the accuracy of kernel density estimation de-
pends on bandwidth h. For example, if you enlarge h more
than an appropriate value, f̂ loses its feature – and vice
versa. However, it is difficult to find the optimal bandwidth
because it heavily depends on the structure of problems. In
this paper, we use the following equation that achieves em-
pirically good accuracy [5].

h = (

∫
K(t)2dt)1/5(

3

8
√
π
σ−5)−1/5L−1/5.

where σ is the sample variance of L.

3. A DYNAMIC GAME WITH FALSE-NAME
BIDDING

This section illustrates the PBE analysis through a 2- or
3-bidder combinatorial auction with two different goods, X
and Y . Consider a dynamic game shown in Figure 1 with
two stages: identifier-choice and bidding. First, with prob-
ability p, bidder 1 and 2 participate in an auction (N = 2),
and with probability 1 − p, bidder 1, 3, and 4 participate
(N = 3). Assume that bidders have no knowledge about
probability p. Second, at the identifier-choice stage, each
bidder chooses how many identifiers he uses, and, in prac-
tice, only bidder 2 can choose one or two identifiers. Last,
at the bidding stage, each bidder bids after observing the
number of participating bidders, which may include false
identifiers.

We also need to define a type that each bidder receives in
games with incomplete information to provide each bidder
with strategy space and information. We assume that the
type determines the value for each combination of auctioned
goods and the number of identifiers he can use.

Let us define types of bidder 1-4 and the observable infor-
mation in the following. Bidder 1 values only the set of two
goods drawn from the sum of two uniform distributions on
interval [0, 1], Uni(0, 1):

(v
{X}
1 , v

{Y }
1 , v

{X,Y }
1 ) = (0, 0, Uni(0, 1) + Uni(0, 1)),

each of which is drawn independently. At the identifier-
choice stage, he does nothing, since he can use only a single
identifier. He also has a belief about how many bidders are
participating as probability p1, with which he is competing
with bidder 2. Here, p1 does not always be true, i.e., p1 may
not be equal to the true probability p. Before the bidding
stage, he observes the number of bidders. When he observes
one other bidder, he realizes that his opponent is bidder 2

Nature

Identifier-choice stage Bidding stage

p: N=2

p1

1-p1

1-p: N=3

bidder 2

bidder 1 bidder 2

Case 1:
(U1,U2)

Case 3:
(U'1,U'2)

Case 2: 
(U''1,U''3,U''4)

Case 4

bidder 1 bidder 2uses two 
identifiers

uses one 
identifier

bidder 4

possible
bid

possible
bid

possible
bid

possible
bid

possible
bid

bidder 3

possible
bid

possible
bid

Figure 1: A dynamic game of an auction with false-
name bidding

and bids to maximize his profit conditional on his belief
about bidder 2’s value. On the other hand, when he observes
two other bidders, he realizes that his opponents are false
identifiers of bidder 2 with probability p1, or that they are
distinct bidders of bidder 3 and 4, with 1−p1. Consequently,
he bids to maximize his profit conditional on his joint belief
about bidder 3 and 4s’ value.

Bidder 2 positively values both {X}, {Y }, and {X,Y }.
Each value on {X} and {Y } is independently drawn from
Uni(0, 1) and value on {X,Y } is their sum:

(v
{X}
2 , v

{Y }
2 , v

{X,Y }
2 ) = (Uni(0, 1), Uni(0, 1), v

{X}
2 + v

{Y }
2 ).

Thus, bidder 1 and 2 have a symmetric distribution on
{X,Y }. At the identifier-choice stage, bidder 2 can use one
or two identifiers and knows that N = 2 was chosen because
he himself participated. He also exactly knows what infor-
mation bidder 1 observes. When he uses one identifier, he
knows that bidder 1 realizes that no bidder uses false identi-
fiers. When he uses two identifiers, he knows that bidder 1
has that belief p1 about bidder 2’s presence. At the bidding
stage, bidder 2 bids based on that information and his belief
about bidder 1’s value.

Bidder 3 and 4 can use only a single identifier. We only
explain bidder 3’s case only, since bidder 3 and 4 have al-
most identical information and value except the good he

desires. Bidder 3 values only {X} and v
{X}
3 is drawn from

Uni(0, 1). After the identifier-choice stage, he knows that
N = 3 was chosen because he himself participated. At the
bidding stage, bidder 3 bids based on that information and
his joint belief about bidder 1 and 3s’ values.

We explore the strategies in four specific subgames for
some p and p1 to effectively show how bidders’ behaviors
change. Then, we calculate bidders’ expected profits in a
subgame of the dynamic game by utilizing the CSE approx-
imation algorithm.

Case 1: 2 bidders - 2 identifiers (p = 1).

With probability p = 1, bidder 1 and 2 participate
(N = 2) and bidder 2 always chooses to use a single
identifier. Since bidder 1 and 2 use a single identifier
and submit their bids, no false-name bidding occurs.
They obtain profits of U1 and U2.

544



Case 2: 3 bidders - 3 identifiers (p = 0 and p1 = 0).

With probability p = 0, bidder 1, 3 and 4 participate
(N = 3), always use a single identifier, and submit
their bids, knowing that bidder 1 believes that no false-
name bidding occurs (p1 = 0). They obtain profits of
U ′′1 , U ′′3 and U ′′4 .

Case 3: 2 bidders - 3 identifiers (p = 1 and p1 = 0).

With probability p = 1, bidder 1 and 2 participate
(N = 2), and bidder 2 always chooses to use two iden-
tifiers. Thus, three identifiers submit their bids. Since
bidder 1 believes that no false-name bidding occurs
(p1 = 0), he chooses the same bidding strategy as in
Case 2. Bidder 2 takes the best response to the bidding
strategy of bidder 1. Bidder 1 and 2 obtain profits of
U ′1 and U ′2. Note that, for bidder 2, the expected profit
when he uses two identifiers is always better than when
he uses a single identifier; for bidder 2, the strategy us-
ing two identifiers is PBE.

Case 4: 2 or 3 bidders - 3 identifiers (p = 1/2 and p1 =
1/2).

Case 4 stochastically combines Case 2 and 3 where,
with p = 1/2, Case 3 occurs, and with 1 − p = 1/2,
Case 2 occurs. No bidder knows exactly the proba-
bility, but every bidder knows bidder 1’s belief about
Case 2 or 3 occurs (p1 = 1/2). Except bidder 1, all bid-
der take a best response to bidder 1’s bidding strategy
in which he considers false-name bidding.

4. NUMERICAL RESULTS
This section illustrates the PBE bidding strategies in Case 1-

4, which are the consequences of the dynamic game de-
scribed in Section 3. For comparison, we also note the
corresponding strategies in VCG auctions in Appendix A.1.
Since the values of the bidders on {X,Y } in Case 1 are
drawn from symmetric distributions, PBE has a well-known
closed-form solution. On the other hand, those in Case 2-4
are drawn from asymmetric distributions. Thus, we the-
oretically show the PBE bidding strategies in Case 1 and
numerically show them in Case 2-4 by utilizing the CSE ap-
proximation method.1 The required parameters are set to
k = 5, M = 1000000, and L = 1000.

4.1 Case 1: 2 bidders – 2 identifiers
Let v ∈ [0, 2] be a value on the bundle of {X,Y } for bid-

der 1 and 2 and let s(v) : R+ → R+ be a mapping function
of the value to the bid. Since PBE in Case 1 has a closed-
form solution, we can theoretically derive the equilibrium
bidding strategy s(v) [9]:

s(v) =

{
2
3
v if 0 ≤ v ≤ 1,

2
3
(v + 1 + 2v−1

v2−4v+2
) if 1 < v ≤ 2.

The red line in Figures 2-5 shows this bidding strategy,
which is labeled as “Case 1: symmetric bidder.” Bidder
1 with low value (v < 1) shades his bid to two-thirds of his
value, and bidder 1 with high value (v > 1), further shades
his bid as his value increases.

1In addition to the CSE approximation method, we exam-
ined these cases by a similar algorithm to [12] and obtained
almost identical results.
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4.2 Case 2: 3 bidders – 3 identifiers
Unlike Case 1, the values of all bidders are drawn from

asymmetric distributions. In fact, bidder 1 values [0, 2] only
at {X,Y }, and bidder 3 and 4 values [0, 1] at {X} and {Y },
respectively. In general, there are no closed-form solutions
for this case, but it can be easily solved by appropriate nu-
merical methods. Figure 2 illustrates the bidding strategies
of bidder 1, 3, and 4 with respect to their realizations of the
values drawn from each distribution (blue and pink lines
labeled as “Case 2: bidder 3” and “Case 2: bidder 4”).

Bidder 1 with low value less than about 0.75, shades his
bid to the same amount as in Case 1, and bidder 1 with high
value reduces his bid more than in Case 1. The amount of
reduction gradually increases as his value increases. Bidder
3 and 4 still shade their bids, in particular, with very low
values, they prefer to bid zero.

This result is consistent with the free-rider problem in
auctions [11]: A bidder does not raise his bid in the hopes
that the other raises his bid high enough for that bidder
to obtain a good. For example, bidder 3 and 4 value {X}
and {Y }, respectively. If the sum of their bids exceeds the
amount of the bid on {X,Y }, bidder 3 and 4 win. Bidder 3
may expect bidder 4 to bid so high that bidder 1 loses and
has an incentive to obtain {X} with a low bid, and vice
versa. Also, bidder 1 takes the best response to their shaded
bids.
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4.3 Case 3: 2 bidders – 3 identifiers
Case 3 has a more complicated strategy space, since bidder

2 can use two identifiers. Figure 3 illustrates the bidding
strategies of bidder 1 and 2 (green and blue lines labeled
as “Case 3: bidder 1” and “Case 3: false-name bidder 2”).
Bidder 1’s strategy is equivalent to the one in Case 2, since
he believes that he is competing with two distinct bidders.
Bidder 2 splits his bid into two bids on {X} and {Y } by
using two identifiers. The blue line in Figure 3 indicates the

sum of those two bids in v
{X,Y }
2 .

Bidder 2 with low value (v
{X,Y }
2 < 0.75) or very high

value (1.8 < v
{X,Y }
2 ) prefers to bid almost the same amount

as bidder 1. On the other hand, bidder 2 with intermediate
values first submits a slightly higher bid than bidder 1, raises
his bid, and gradually reduces toward bidder 1, as his value
increases.

This result suggests that bidder 2 can increase his profit
as a result of taking the best response to the distribution of
bidder 1’s value which is a joint distribution of two Uni(0, 1).
With such a distribution, bidder 1 is most likely to have his
value of 1 and is least likely to have 0 or 2. Thus, bidder 2
raises his bids around 1 to maximize his profit. Therefore,
bidder 2 has enough opportunities of false-name bidding to
increase his expected profit.

4.4 Case 4: 2 or 3 bidders – 3 identifiers
In Case 4, bidder 1 considers the possibility that two of

his competing bids come from one shill bidder (bidder 2)
conditional on his belief about the actual number of par-
ticipating bidders, i.e., p1 = 1/2. Figure 4 illustrates the
bidding strategies of bidder 1-4. Note again that bidder 2’s
strategy is represented as the sum of two bids.

The doubt of bidder 1 that a shill bidder exists raises his
bid, so it becomes much closer to that in Case 1. Bidder 1
averages his bidding strategies in Case 1 and 2 in Figure 5.
Unlike bidder 1, bidder 2 can slightly raise his bid higher
than bidder 1 because bidder 1 may not correctly suspect
the number of real bidders. Thus, the opportunities of false-
name bidding are reduced. As well as bidder 2, bidder 3
and 4 know bidder 1’s strategy. With lower value, they bid
slightly lower than in Case 2, but, with higher value, they
bid slightly higher.

5. DISCUSSION
This section discusses obtained properties from the nu-

merical results: the social surplus, the auctioneer’s revenue,
and the profits of bidders. We decide the values of bidders
based on the settings in Case 1-4 and generate 10 million
instances. Table 1 summarize the average properties when
bidders take the equilibrium bidding strategies in first-price
auctions. For comparison, we also note the corresponding
results of VCG auctions in Appendix A.2.

From bidder 1’s perspective, Case 1 (N = 2) and Case 2
(N = 3) are seemingly the same, since the (aggregated) val-
ues of the opponents are the same. However, in Case 2,
bidder 3 and 4 try to free-ride each other and decrease their
bids. Thus, bidder 1 lowers his bids to maximize his profit.
As a result, bidder 1 successfully increases his profit from
0.233 to 0.334 (+43%). This also significantly decreases the
revenue from 0.767 to 0.620 (-19%); the decrease of the sur-
plus from 1.23 and 1.22 (-1%) is relatively small. The fact
that the surplus does not significantly change means that the
obtained allocation is nearly efficient. All bidders decrease
their bids. Occasionally, bidder 1 wins when the efficient
allocation is allocating goods to bidder 3 and 4, but this
happens only when bidder 1’s value is close to the sum of
values of bidder 3 and 4.

Let us examine Case 3 where false-name bidding is possi-
ble, i.e., a naive bidder (bidder 1) and a shill bidder (bidder
2) participate. The naive bidder completely believes that
he is competing with two bidders (p1 = 0), and the shill
bidder knows this fact and always uses two false identifiers.
Recall that this behavior of bidder 2 consists of a PBE. The
revenue of 0.681 is intermediate between Case 1 and 2 and
it decreases from 0.767 in Case 1 to 0.681 (-11%). Here,
bidder 1 believes that he is facing two small bidders. If
they were real bidders, they would try to free-ride and lower
their bids. Thus, bidder 1 also lowers his bid. However,
bidder 2 optimizes his two bids against the wrong belief of
bidder 1. Thus, false-name bidding by bidder 2 decreases
the revenue. In contrast, the surplus hardly changes regard-
less of the existence of false-name bidding. This fact means
that the obtained allocation is nearly efficient. All bidders
decrease their bids. Occasionally, bidder 2 wins when the
efficient allocation is allocating goods to bidder 1, but this
happens only when bidder 2’s value is close to bidder 1’s
value.

In addition, the existence of false-name bidding signifi-
cantly affects the profits of bidders. Bidder 2 significantly
increases his profit from 0.233 to 0.312 (+34%) by using
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Table 1: Properties of Case 1-4 in first-price auctions
Case 1 Case 2 Case 3 Case 4a Case 4b

revenue 0.767 0.620 0.681 0.718 0.660
surplus 1.23 1.22 1.22 1.23 1.22
(efficiency) (100%) (99%) (99%) (100%) (99%)
profit (bidder 1) 0.233 0.334 0.226 0.244 0.319
profit (bidder 2) 0.233 - 0.312 0.269 -
profit (bidder 3) - 0.134 - - 0.122
profit (bidder 4) - 0.134 - - 0.122

false identifiers, but the profit of bidder 1 does not change
much from Case 1, only from 0.233 to 0.226 (-3%). However,
this is not what bidder 1 expected. If he were facing two
real bidders, his profit would have been 0.334 (in Case 2).
Bidder 2 steals a significant amount of bidder 1’s profit by
over-bidding bidder 1. Interestingly, the profit of bidder 2
in Case 3 (0.312) is relatively close to that of bidder 1 in
Case 2 (0.334). Also, the profit of bidder 1 in Case 2 (0.334)
is relatively close to the sum of profits of bidder 3 and 4 in
Case 2 (0.384).

Let us examine Case 4 where a naive bidder (bidder 1) is
suspicious of the number of real bidders. Bidder 1 is won-
dering if the two observed bids were submitted from two
distinct bidders or one shill bidder. We categorize Case 4
as either Case 4a with false-name bidding or Case 4b with-
out. These results are summarized in the last two columns
of Table 1. In Case 4a, the revenue decreases from 0.767 in
Case 1 to 0.718 (-6%), and it increases from 0.681 in Case 3
to 0.718 (+5%). Recall that bidder 1 in Case 4 takes an av-
erage bidding strategy of Case 1 and 2 under the suspicion
of the actual number of participating bidders, i.e., p1 = 1/2.
Thus, bidder 1 raises his bids more than Case 3. By false-
name bidding the profit of bidder 2 (0.269) is higher than
in Case 1 (0.233). However, he cannot increase his profit
(0.269) so much as in Case 3 (0.312). Accordingly bidder
1’s suspicion effectively mitigates the decrease of revenue
when a shill bidder may be present. The effect of false-name
bidding is reduced by the fact that the naive bidder is aware
of its possibility.

Let us turn to Case 4b where bidder 3 and 4 submit two
distinct bids, considering the suspicion of bidder 1. Case 4b
achieves the revenue of 0.660, and Case 2 does 0.620. The
revenue increases by about +6%, but the profits of the bid-
ders decrease, including bidder 3 and 4, who are the real
bidders. In a contrast to Case 4a, the suspicion of bidder 1
increases the revenue and reduce the profits of all bidders.

It is worthy to note that, if the naive bidder can distin-
guish Case 4a and 4b for sure, false-name bidding is no
longer profitable. This implies that, if your opponent is
sure about your identity, it is useless that you pretend to be
somebody else and there is no point using false-name bid-
ding. However, since this is impossible on the Internet, a
shill bidder can take advantage of false-name bidding. It is
most effective when your opponent never imagines the pos-
sibility of disguise. Also, it is still effective if your opponent
is aware of that possibility, but cannot distinguish a real
person and a false identifier.

We have so far investigated situations where bidder 1’s
belief is correct (p = p1), except Case 3 (p = 1 and p1 = 0).
Let us consider what happens if bidder 1’s belief is incorrect
(p 6= p1). When p1 increases in Case 3, bidder 1’s belief

gradually becomes correct for the probability of number of
real bidders p = 1. Thus, the bidding strategies of bidder 1
and 2 change from Case 3 toward Case 1. If bidder 1 has
p1 = 1, the properties in Case 3 are identical to those in
Case 1. On the other hand, when p1 increases in Case 2
(p = 0 and p1 = 0), bidder 1’s belief gradually becomes
incorrect. Then, if bidder 1’s belief becomes p1 = 1/2, the
situation becomes identical to Case 4b. Bidder 1 increases
his bid. As a result, the revenue increases and the profits of
all bidders decrease.

6. CONCLUSION
This paper numerically analyzes how false-name bidding

affects the outcomes in first-price combinatorial auctions.
False-name bidding causes serious problems in the VCG
auctions. However, to the best of the authors’ knowledge,
this is the first analysis about first-price combinatorial auc-
tions. The game of first-price auctions is regarded as a game
of incomplete information, which typically does not have a
closed-form solution, except under such simplifying assump-
tions as symmetry among types of bidders. Thus, predict-
ing the consequences of such games is often analytically in-
tractable. In addition, the extension of games of auctions
to games where false-name bidding is possible further com-
plicates them. Therefore, we construct a dynamic game of
auctions with false-name bidding and approximately solve
the subgames in four specific settings.

We reveal how the existence of false-name bidding changes
the equilibrium bidding strategies and its properties. The
results suggest that false-name bidding in first-price auctions
dramatically reduces the revenue and the profits of bidders
who neither use nor are concerned about false-name bidding.

In future works, we will extend our analysis to a variety
of empirical distributions and generalize the approximation
algorithm to solve dynamic games of auctions with false-
name bidding.
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APPENDIX

A. VCG COMBINATORIAL AUCTIONS

A.1 PBE bidding strategies
This subsection summarizes the consequences of Case 1-

4 in VCG. Throughout Case 1 and 2, all bidders have a
dominant strategy to bid their own values in VCG. In Case 3,
bidder 1 believes that truth-telling is the dominant strategy,
since he never considers the possibility of false-name bidding.
In sharp contrast, bidder 2 uses two false identifiers and
manipulates VCG so that he always obtain the goods and

pays zero. This strategy is an equilibrium strategy as long
as bidder 1 takes the truth-telling strategy.

For example, in our setting, the value on {X,Y } of bid-
der 1 is drawn from a joint distribution on interval [0, 2].
Bidder 2 splits his bid and bids 2 on {X} and {Y }, respec-
tively. As long as bidder 1 keeps s1(v) = v, bidder 2 has an

equilibrium strategy to bid b{X} and b{Y }, each of which is

greater than or equal to b
{X,Y }
1 , i.e., to bid 2 which is the

maximum value of b
{X,Y }
1 .

In Case 4, bidder 1 considers false-name bidding. When
bidder 3 and 4 are present (N = 3), Truth-telling for them
is clearly a dominant strategy as in Case 2. When bidder 2
is present (N = 2), as mentioned in Case 3, he has an equi-
librium strategy so that he always win with zero payment
as long as bidder 1 takes the truth-telling strategy. Against
this strategy, we restrict our attention to a situation where
bidder 1 takes the truth-telling strategy because bidder 1
has no chance to obtain any good. There exists no bidding
strategy that outperforms the truth telling strategy, even
if he is confident that his opponents are using false-name
bidding. To be precise, we must consider situations so that
bidder 1 over-bids to obtain the goods, which never increase
his profit. Accordingly, for all bidders, an equilibrium bid-
ding strategy in Case 4 is equivalent to Case 3.

A.2 Discussions
The results of VCG are much simpler than those of first-

price auctions. The difference from Case 1 (N = 2) to Case 2
(N = 3) only depends on the payment rules. The revenue
decreases from 0.767 to 0.617 (-20%), and the surplus re-
mains unchange, since all bidders submit their own values in
the equilibrium. The profit of bidder 1 also doesn’t change,
but the sum of the profits of bidder 3 and 4 in Case 2 exceeds
the profit of bidder 2 in Case 1.

In Case 3 where false-name bidding is possible, the rev-
enue is zero, and only the profit of bidder 2 is positive. As
mentioned in Section 4, bidder 2 uses two false identifiers
and manipulates the VCG outcome so that he always ob-
tain the goods and pays zero. Also, the surplus drastically
decreases from 1.23 to 1.00 (-19%). Note that the surplus
of 1.00 equals the lowest achievable surplus in our setting.
Furthermore, Case 4 inherits this result in Case 3. Case 4a
corresponds to Case 3, and Case 4b corresponds to Case 2,
even if bidder 1 is suspicious of the number of real bidders.
These obtained results imply that false-name bidding is even
more serious in VCG than in the first-price auctions, as ex-
isting theoretical considerations in mechanisms that have
dominant-strategy equilibria. In other words, outcomes in
VCG are significantly manipulated by false-name bidding,
regardless whether bidder 1 considers the possibility of false-
name bidding by bidder 2.
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