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ABSTRACT
This paper studies the problem of majority-rule-based collective
decision-making where the agents’ preferences are represented by
CP-nets (Conditional Preference Networks). As there are exponen-
tially many alternatives, it is impractical to reason about the indi-
vidual full rankings over the alternative space and apply majority
rule directly. Most existing works either do not consider compu-
tational requirements, or depend on a strong assumption that the
agents have acyclic CP-nets that are compatible with a common or-
der on the variables. To this end, this paper proposes an efficient
SAT-based approach, called MajCP (Majority-rule-based collec-
tive decision-making with CP-nets), to compute the majority win-
ning alternatives. Our proposed approach only requires that each
agent submit a CP-net; the CP-net can be cyclic, and it does not
need to be any common structures among the agents’ CP-nets. The
experimental results presented in this paper demonstrate that the
proposed approach is computationally efficient. It offers several or-
ders of magnitude improvement in performance over a Brute-force
algorithm for large numbers of variables.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems

General Terms
Algorithms, Design

Keywords
CP-nets; Voting; Preference aggregation; Majority rule

1. INTRODUCTION
Group decision making where a collective decision needs to be

derived from individual preferences has been an active area of re-
search [1]. In particular, various aggregation rules and voting pro-
cedures have been developed as group decision-making mecha-
nisms [9]. However, the decision-making process tends to become
much more complex when the attributes of the domain are inter-
dependent. As an example, a research group plan to order several
PCs and the group members need to decide on a standard group
PC configuration. The decisions are not independent, because, per-
haps, the preferred operating systems may depend on the given pro-
cessor type. For instance, “I prefer to choose WinXP operating
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system rather than Linux if an Intel processor is given.” Hence,
we cannot decide on the issues separately. Moreover, in many
real world decision-making problems, the number of alternatives
is exponential in the number of domain variables. The prohibitive
size of such combinatorial domain makes it impractical to represent
preference relations explicitly.

In this paper, we investigate the theory of CP-nets as a formal
model for representing and reasoning with the agents’ preferences.
There are some preference relations can not be modelized by CP-
nets and its variants. For instance, Domshlak et al. [5] compare
compare the expressive power of soft constraints and CP-nets and
study several examples in which the preference relations can not
be represented by CP-nets. However, CP-nets are quite commonly
used and to some extent, representative of a variety of languages.
Moreover, CP-nets and its variants can be used to specify individual
preference relations in a relatively compact, intuitive, and struc-
tured manner, making it easier to encode human preferences and
supports the decision-making systems in real world applications.

In this paper, given that the individual preferences have been
elicited and represented as CP-nets, the problem of majority-rule-
based preference aggregation will be addressed. Recent work on
the complexity of computing dominance relations shows that dom-
inance testing1 for an arbitrary CP-net is PSPACE-complete [6].
However, computing the majority winning alternatives with mul-
tiple agents’ CP-nets may furthermore require dominance testing
on each pair of alternatives on each individual CP-net. For exam-
ple, having 10 binary variables, each involved agent would need to
compare

(210

2

)
= 523776 pairs of alternatives. This problem is

likely to be even harder than NP or coNP problems. The problem
of computing aggregation rules from a collection of CP-nets has
been studied in the literature, e.g.,[8, 10]. In particular, Lang and
Xia [8] consider decomposition with voting rules assuming that the
agents’ preferences can be represented with acyclic CP-nets being
compatible with a common order on the variables. However, such
an assumption is unlikely to be applicable in most real world appli-
cations [11]. Xia et al. [12] partially addressed this shortcoming by
introducing an order-independent sequential composition of voting
rules. In their framework, the profile is still required to be compat-
ible with some order on the variables, but this order is not specified
in the definition of the rule. Nevertheless, the domain restriction
by this order-independent sequential composition of voting rules
is still severe: there must exist some (unspecified) directed acyclic
graph that the profile is compatible with. Xia et al. [11] gener-
alize the earlier, more restrictive method, proposing an aggrega-
tion methodology that does not require any relationship among the

1A dominance testing, given an individual CP-net and two alterna-
tives o and o′, tests whether o is preferred to o′ according to the
preferences induced by that CP-net.
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agents’ CP-net structures. However, the performance of their algo-
rithm also depends on the consistency among the structures of the
agents’ CP-nets.

To this end, our paper addresses the above drawbacks, propos-
ing an efficient SAT-based approach, called MajCP (Majority-rule-
based collective decision-making with CP-nets), to compute the
majority winning alternatives. The proposed approach allows the
agents to have different preferential independence structures, and
enables us to aggregate preferences when the agents’ CP-nets are
cyclic. With multiple agents’ CP-nets as input, it first reduces the
problem into an extended SAT (Boolean satisfiability problem) for
cardinality constraints, such that the set of possible winners can
be obtained by computing the models of the corresponding SAT.
Then the set of majority winners is the subset of the possible win-
ners after filtering out those that are majority-dominated by some
alternative. The proposed approach reduces the search space and
is computationally efficient. According to the experimental evalu-
ation, it offers several orders of magnitude improvement in perfor-
mance over a brute-force algorithm for large numbers of variables.

The paper is structured as follows. We provide background in-
formation about CP-nets and majority rule in Section 2. In Section
3, we study a hypercube-wise composition of majority rule and an-
alyze its incompatibility with the original majority preferences by
several examples. After that, we present our proposed approach for
computing the winning alternatives in Section 4 and the experimen-
tal results in Section 5. Finally, we discuss about the concluding
remarks in Section 6.

2. BACKGROUND

2.1 CP-nets overview
Let V = {X1, . . . , Xn} be a set of n variables. For each Xi ∈

V, D (Xi) is the value domain of Xi. A variable Xi is binary
if D (Xi) = {xi, x̄i}. If {xi, x̄i} is the binary domain of Xi,
then xi = ¬x̄i; x̄i = ¬xi. If X =

{
Xi1 , . . . , Xip

}
⊆ V, with

i1 < · · · < ip, then D (X) denotes D (Xi1) × · · · × D
(
Xip

)
.

The assignments of variable values to X are denoted by x, x′ etc.,
and represented by concatenating the values of the variables. For
instance, if X = {X1, X2, X3}, an assignment x = x1x̄2x3 as-
signs x1 to X1, x̄2 to X2 and x3 to X3. If X = V, x is a com-
plete assignment; otherwise x is called a partial assignment. For
an assignment x, we denote by x [Xi] the value xi ∈ D (Xi) as-
signed to variable Xi by that assignment; and x [W] denotes the
assignment of the variable values w ∈ D (W) assigned to the set
of variables W ⊆ X by that assignment. We also allow logical
operations between the value assignments to binary variables. For
instance, x1x̄2 = x1 ∧ x̄2 = (X1 = x1) ∧ (X2 = x̄2). That is,
x1 is T rue and x2 is F alse. If p = x1x̄2 and q = x3, then
p∨ q = (x1x̄2)∨ x3 = ((X1 = x1) ∧ (X2 = x̄2))∨ (X3 = x3).

Let {X, Y, Z} be a partition of the set of variables V and � a
preference relation over D (V). X is conditionally preferentially
independent of Y given Z if and only if, for all x, x′ ∈ D (X),
y, y′ ∈ D (Y) and z ∈ D (Z):

xyz � x′yz iff xy′z � x′y′z

A CP-net N [3] over a set of variables V = {X1, . . . , Xn} is
an annotated directed graph G over X1, . . . , Xn, in which nodes
stand for the problem variables. Each node Xi is annotated with
a conditional preference table CP T (Xi), which associates a to-
tal order �Xi|u with each instantiation u of Xi’s parents P a (Xi).
For instance, let V = {X1, X2, X3}, all three variables are binary-
valued. Assume that the preference of a given agent over 2V can

be defined by a CP-net, whose structural part is the directed graph
G = {(X1, X2) , (X2, X3) , (X1, X3)}. Then the agent’s prefer-
ence over the values of X1 is unconditional, preference over the
values of X2 (resp. X3) is conditioned on the value of X1 (resp.
the context of X1 and X2). The conditional preference statements
contained in the CPTs are written with the following notation, e.g.
x1x̄2 : x3 � x̄3 means that if x1 is T rue and x2 is F alse, then
the agent prefers X3 = x3 to X3 = x̄3.

In this paper, we assume that each agent Aj’s preference is cap-
tured by a binary-valued (possibly cyclic) CP-net Nj and the or-
dering �Xi|u

Aj
, u ∈ D (P aj (Xi)), expressed in the CPTs of the

network is total. As such, conditional expressions of indifference
are not allowed, and an agent will not be indifferent between two
alternatives. However, as the preference relation induced from a
CP-net is generally not complete, two alternatives can be incompa-
rable for an agent.

2.2 Majority rule
In classical social choice theory, majority rule is one of the most

well known aggregation rule for collective decision-making. It is a
binary decision rule that selects one of two alternatives, based on
which has more than half of the votes. The semantics of majority
voting in the context of CP-nets has been provided by Rossi et al.
[10]:

DEFINITION 1 (MAJORITY SEMANTICS). Given two alterna-
tives o and o′, let S�, S≺, SZ be the sets of agents who say, respec-
tively, that o � o′, o ≺ o′, and o Z o′ (incomparable). We say that
o majority-dominates o′ (written as o �maj o′) if and only if there
is a majority of agents who prefer o to o′ (i.e., |S�| > |S≺|+ |SZ|).
Two alternatives o and o′ are majority-incomparable (written as
o Zmaj o′) if they are not ordered in either way.

In order to determine the winning alternatives according to ma-
jority rule, the Condorcet method has usually been used 2. The
following definitions of the Condorcet winner and weak Condorcet
winner are adapted from the standard social choice literature [1]:

DEFINITION 2 (CONDORCET WINNER). An alternative o is
a Condorcet winner if and only if it majority-dominates every other
alternative in a pair-wise matchup: ∀o′ ∈ O and o′ , o, o �maj

o′.

DEFINITION 3 (WEAK CONDORCET WINNER). An alterna-
tive o is a weak Condorcet winner if and only if it majority-dominates
or is incomparable to every other alternative in a pair-wise matchup:
∀o′ ∈ O and o′ , o, o �maj o′ or o Zmaj o′.

When the Condorcet winner exists, it is unique. A Condorcet
winner is also a weak Condorcet winner, while the reverse does not
hold: a weak Condorcet winner is not necessarily a Condorcet win-
ner. In majority-rule based group decision-making, it is possible
for a paradox to form, in which collective preferences can be cyclic
(i.e. not transitive), even if the preferences of individual agents are
not. For instance, it is possible that there are alternatives o1, o2, and
o3 such that a majority prefers o1 to o2, another majority prefers o2
to o3, and yet another majority prefers o3 to o1. The requirement
of majority rule then provides no Condorcet winner. Consequently,
the set of majority winning alternatives can be empty. Also, there
can be more than one weak Condorcet winner when the number
of agents is even or the individual preferences are incomplete (i.e.
2There are also some other aggregation methods which do not
comply with the Condorcet criterion, e.g., approval voting, Borda
count, plurality voting, etc..
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partial order). Note that the set of weak Condorcet winners are
majority-incomparable to each other.

Rossi et al. [10] study the computational complexity of a brute-
force algorithm for aggregating preference based on majority rule.
Suppose that there are a set of m agents making decisions over a
set of n binary variables. To test whether an alternative is a winner
we need to compare the given alternative with all other alterna-
tives (2n) in all CP-nets (m). Recall that computing the majority-
dominance relation between a pair of alternatives require individ-
ual dominance testing on each agent’s CP-net, which is PSPACE-
complete. Moreover, finding the set of majority winners is even
more challenging. We need to compare all alternatives (2n) to all
other alternatives (2n) in all CP-nets(m). Consequently, it is im-
practical to use pair-wise comparison over the alternative space di-
rectly.

3. H-COMPOSITION OF MAJORITY RULES
Instead of applying voting directly over the alternative space, Xia

et al. [11] propose a hypercube-wise composition (H-composition)
of local voting rules. An H-composition of local rules is defined as
the following two steps. First, the set of all possible alternatives are
represented as a hypercube, and alternatives that differ on only one
variable are neighbours on this hypercube as discussed in [4]. Then
an induced graph is generated by applying local rules to each pair
of neighbours on this hypercube. In the second step, a choice set is
selected based on the induced graph as the set of winners. Accord-
ing to the representation in [11], we apply majority rule between
each pair of neighbours and obtain the following majority induced
graph:

DEFINITION 4 (MAJORITY INDUCED GRAPH). Given a col-
lection of CP-nets N = {N1, . . . ,Nm}, the majority induced graph,
denoted by G = (O, E), is defined by the following edges between
alternatives. For each variable Xi, any two alternatives o, o′ ∈ O
that differ only on the value of Xi, let there be a directed edge
o → o′ if a majority of agents prefer o to o′; there be a directed
edge o′ → o if a majority of agents prefer o′ to o. If o and o′

are majority-incomparable, G does not contain any edge between
o and o′.

For any two alternative o, o′ ∈ O that differ only on the value
of Xi, o [Xi] = xi and o′ [Xi] = x̄i, let W = V − {Xi} and
w = o [W] (= o′ [W]). Whether or not there is a directed edge
o → o′ (resp. o′ → o) can be computed directly from the condi-
tional preference table CP Tj(Xi) of each agent Aj’s CP-net Nj .
Because for each agent Aj , Nj |= o � o′ (resp. Nj |= o′ � o) if
and only if xi �Xi|w

Aj
x̄i (resp. x̄i �Xi|w

Aj
xi). Note that a pair of

neighbours o and o′ are incomparable if and only if the number of
agents is even and the number of agents who prefer o to o′ is equal
to the number of agents who prefer o′ to o.

The dominance relations in G are then induced by the directed
paths between alternatives [11]:

DEFINITION 5 (GRAPH DOMINANCE). Given a collection of
CP-nets N = {N1, . . . ,Nm}, let G = (O, E) be the majority
induced graph. For any o, o′ ∈ O, we say that o dominates o′ in G,
denoted by o �G o′ if and only if: i) there is a directed path from o
to o′, and ii) there is no directed path from o′ to o.

According to Xia et al. [11], the transitive closure�G of E spec-
ifies the minimum preorder such that if there is a directed path from
o to o′ in G then o �G o′. �G is the strict order induced by �G :
o �G o′ if and only if o �G o′ and o′ �G o. Based on the induced
graph, a choice set function is then defined, which always chooses
the following alternatives as winners.

(a) A1 (b) A2 (c) A3

(d) Majority induced graph

Figure 1: Illustration for Proposition 1

DEFINITION 6 (GRAPH WINNER). Let G = (O, E) be the
majority induced graph for a collection of CP-nets
N = {N1, . . . ,Nm}, we say,

• an alternative is a global Condorcet winner (GCW), if it dom-
inates all other alternatives in G;

• an alternative is a local Condorcet winner (LCW), if it dom-
inates all its neighbours in G;

• an alternative is a weak local Condorcet winner (wLCW), if
it dominates or is incomparable to all its neighbours in G.

When the global Condorcet winner (GCW) exists, it is unique.
A GCW is also a local Condorcet winner (LCW), while the reverse
does not hold: a LCW is not necessarily a GCW. Similarily, a LCW
is also a weak local Condorcet winner (wLCW), while a wLCW is
not necessarily a LCW.

However, we emphise here that GCW, LCW and wLCW in G are
different from the meaning of a (weak) Condorcet winner (Defini-
tion 2 and 3), which refers to a majority winner in pair-wise elec-
tion. In the following section, we analyze the relation between the
preferences derived from a majority induced graph G and the orig-
inal majority preferences among the agents.

PROPOSITION 1. Majority-domination �maj does not follow
from graph domination �G .

PROOF. To prove this proposition, we need to prove that given
a collection of CP-nets N = {N1, . . . ,Nm}, the majority induced
graph G = (O, E) and a pair of alternatives o, o′ ∈ O and o , o′,
it may be the case that o �G o′ but o �maj o′. Consider an ex-
ample of 3 agents making decision over 2 binary domain variables.
The agents’ CP-nets, their partial order over the alternative space
and the majority induced graph are depicted in Figure 1. Accord-
ing to the majority induced graph (see Figure 1(d)), there is a di-
rected path from outcome x1x2 to x̄1x̄2 and no directed path from
x̄1x̄2 to x1x2, i.e. x1x2 �G x̄1x̄2. However, for both A1 and A2,
these two alternatives are incomparable (see Figure 1(a) and Fig-
ure 1(b)), and thus, x̄1x̄2 and x1x2 are majority-incomparable, i.e.
x̄1x̄2 Zmaj x1x2. Consequently, in this example, x1x2 �G x̄1x̄2
but x1x2 �maj x̄1x̄2.

PROPOSITION 2. The preference relation �G derived from the
majority induced graph does not preserve the strict majority pref-
erence relation �maj .

PROOF. To prove this proposition, we need to prove that given
a collection of CP-nets N = {N1, . . . ,Nm}, the majority induced

661



(a) A1

(b) A2

(c) A3

(d) Majority induced graph

Figure 2: Illustration for Propositions 2 and 3

graph G = (O, E) and a pair of alternatives o, o′ ∈ O and o , o′,
it may be the case that o �maj o′ but o �G o′. Consider the agents’
CP-nets, their partial order over the alternative space and the corre-
sponding majority induced graph depicted in Figure 2. According
to the majority induced graph Figure. 2(d), there is no directed path
from alternative x̄1x̄2x3 to alternative x1x2x3, i.e. x̄1x̄2x3 �G
x1x2x3. However, both A1 and A2 preferred x̄1x̄2x3 to x1x2x3
(see Figure 2(a) and Figure 2(b)), and thus x̄1x̄2x3 �maj x1x2x3.
Consequently, in this example, x̄1x̄2x3 �maj x1x2x3 but
x̄1x̄2x3 �G x1x2x3.

As �G does not preserve the strict majority preference �maj , a
(weak) local Condorcet winner that dominates or is incomparable
to all it neighbours may still be majority-dominated by some alter-
native, and thus is not guaranteed to be a weak Condorcet winner.

COROLLARY 1. A (weak) local Condorcet winner is not neces-
sarily a weak Condorcet winner.

Consider the example in Figure 2. Alternative x1x2x3 is a LCW
as it dominates all its neighbours (x1x2x̄3, x1x̄2x3 and x̄1x2x3)
in the majority induced graph (see Figure 2(d)). However, it is
majority-dominated by another alternative x̄1x̄2x3 because both
A1 (Figure 2(a)) and A2 (Figure 2(b)) preferred x̄1x̄2x3 to x1x2x3
and thus is not a (weak) Condorcet winner.

Now we are interested in whether or not the (weak) local Con-
dorcet winners set is guaranteed to be a non-majority-dominated
set, i.e. the alternatives in this set can only be majority-dominated
by some alternative in this set but not by any other alternatives out-

(a) A1

(b) A2

(c) A3

(d) Majority induced graph

Figure 3: Illustration for Proposition 4

side this set. Unfortunately, the following proposition gives a neg-
ative answer to this question.

PROPOSITION 3. A (weak) local Condorcet winner can be
majority-dominated by an alternative outside the set of (weak) local
Condorcet winners, even though it is not majority-dominated by
any other (weak) local Condorcet winner.

PROOF. Consider the example in Figure 2, there are only two
LCWs x1x2x3 and x̄1x̄2x̄3 and x1x2x3 Zmaj x̄1x̄2x̄3: they are
incomparable for both A2 (see Figure 2(b)) and A3 (see Figure 2(c)).
However, as we mentioned before, x1x2x3 is majority-dominated
by alternative x̄1x̄2x3, which is not a LCW or wLCW.

Finally, we are interested in the following question: whether
a global Condorcet winner that dominates every other alternative
in the majority induced graph, is guaranteed to be non-majority-
dominated, i.e. a (weak) Condorcet winner.

PROPOSITION 4. A global Condorcet winner is not necessarily
a (weak) Condorcet winner.

PROOF. Consider the agents’ CP-nets, their preference ordering
over the alternative space and the corresponding majority induced
graph in Figure 3. In this example, there is a unique global Con-
dorcet winner x1x2x3 in G: there is a directed path from x1x2x3
to every other alternative and no incoming edges to x1x2x3 (see
Figure 3(d)). However, this global Condorcet winner x1x2x3 is
majority-dominated by x̄1x̄2x̄3 (x̄1x̄2x̄3 �maj x1x2x3), because
two agents (A1 and A2) prefer x̄1x̄2x̄3 to x1x2x3 (see Figure 3(a)
and Figure 3(b)).
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Proposition 4 further shows that the strict preference relation
�G derived from the majority induced graph might be conflict-
ing with the original majority preference relation �maj . For in-
stance, for the example in Figure 3, x1x2x3 �G x̄1x̄2x̄3, however,
x1x2x3 ≺maj x̄1x̄2x̄3.

From the above, it become clear that the majority induced graph
may not always represent the majority preferences properly. In par-
ticular, a winners in the majority induced graph, i.e., a GCW, LCW
or wLCW winner is not necessarily a (weak) Condorcet winner.
However, we observe that a (weak) Condorcet winner must be a
wLCW.

THEOREM 1. Let G = (O, E) be the majority induced graph
for a collection of CP-nets N = {N1, . . . ,Nm}. Then a (weak)
Condorcet winner is also a weak local Condorcet winner in G.

PROOF. Suppose a (weak) Condorcet winner o is not a wLCW,
then there exist at least one neighbour o′ in G such that o′ →
o ∈ E. That means, there is a majority of agents prefers o′ to
o (o′ �maj o), contradicting the fact that o is a (weak) Con-
dorcet winner. Thus, a (weak) Condorcet winner must also be a
wLCW.

A (weak) Condorcet winner must be a wLCW, while the reverse
does not hold: a wLCW is not necessarily a (weak) Condorcet win-
ner. Nonetheless, this relation provides us a more efficient way to
compute the majority winners among a large alternative space: first
compute the set of wLCWs, and then compute the set of majority
winners by filtering out those that are majority-dominated by some
alternative.

REMARK. Here the notions of majority induced graph coincides
with the definitions in [11] when the number of agents is odd, and
differ only in the presence of incomparability between neighbours
when the number of agents is even. According to [11], when a
pair of neighbours o and o′ are majority-incomparable, G contains
directed edges both from o to o′ and o′ to o. However, their def-
inition may exclude the weak Condorcet winners when the num-
ber of agents is even. For instance, if a weak Condorcet winner is
majority-incomparable to one of its neighbours, then it is not con-
sidered to be a wLCW (nor a GCW or LCW) according to their
definition.

4. COMPUTE THE (WEAK) CONDORCET
WINNER

In this section, we present our proposed approach, MajCP
(majority-rule-based collective decision-making with CP-nets), for
computing the majority winning alternatives. The proposed ap-
proach includes the following two steps. First, we compute the
set of wLCWs via a reduction to an extended SAT (Boolean sat-
isfiability problem) for cardinality constraints (See Algorithm 1).
Then, in the second step, the set of (weak) Condorcet winners can
be obtained by filtering out those that are majority-dominated by
some alternative.

Assume m agents A = {A1, . . . , Am} are making decisions
over a set of n variables V = {X1, . . . , Xn}. The preference of
each agent Aj is captured by a (possibly cyclic) binary-valued CP-
netNj and let N = {N1, . . . ,Nm}. We first reduce the problem of
computing the set of wLCWs into a corresponding SAT problem.
The variables in our reduction consist of the variables in the agents’
CP-nets. Firstly, we generate a set of optimality constraints that a
wLCW must satisfy according to majority rule. For each variable
Xi, each agent Aj’s has a conditional preference table CP Tj (Xi)

stating the conditional preference on the values of variable Xi with
each instantiation of Xi’s parents P aj (Xi). We separate these
condition entries in CP Tj (Xi) into the following two categories.

• The set of parent context in which agent Aj prefers xi to x̄i:
Uxi�x̄i

Aj
=
{

u ∈ D (P aj (Xi)) | xi �Xi|u
Aj

x̄i

}
.

• The set of parent context in which agent Aj prefers x̄i to xi:
Ux̄i�xi

Aj
=
{

u ∈ D (P aj (Xi)) | x̄i �Xi|u
Aj

xi

}
.

Let P i
j =

∨
u∈Uxi�x̄i

Aj

u (resp. P̄ i
j =

∨
u∈Ux̄i�xi

Aj

u), i.e., the disjunc-

tion of the condition part of the entry whose conclusion is xi � x̄i

(resp. x̄i � xi) in the CP Tj (Xi) of agent Aj (line 14–20). Note
that if agent Aj has unconditional preference over a variable Xi,
P aj (Xi) = ∅ and xi �Xi

Aj
x̄i (resp. x̄i �Xi

Aj
xi), that means the

condition P i
j (resp. P̄ i

j ) is always T rue and P̄ i
j (resp. P i

j ) is always

F alse (line 7–11). Thus, xi �
Xi|P i

j

Aj
x̄i (resp. x̄i �

Xi|P̄ i
j

Aj
xi).

For each individual agent Aj , Uxi�x̄i
Aj

and Ux̄i�xi
Aj

are comple-

mentary, and thus P i
j = ¬P̄ i

j (resp. P̄ i
j = ¬P i

j ). For any setting
w = D (W) (W = V − {Xi}) that satisfies P i

j (resp. P̄ i
j ), then

xiw �Aj x̄iw (resp. x̄iw �Aj xiw).
Given a directed graph G = (O, E), for any two alternatives

o, o′ ∈ O that differ only on the value of Xi: o [Xi] = xi and
o′ [Xi] = x̄i. Let q = (m + 1)/2 (m is the total number of
agents) (line 1). There is an directed edge o → o′ (resp. o′ → o)
in G if and only if, for the setting w = o [W] (= o′ [W]) and
W = V − {Xi}, there exist a set of at least q agents, denoted
by S (S ⊆ N), each agent Aj ∈ S has the following conditional
(unconditional) preference xi �Xi|w

Aj
x̄i (resp. x̄i �Xi|w

Aj
xi), i.e.,

w satisfies
∧

Aj∈S
P i

j (resp.
∧

Aj∈S
P̄ i

j ). Furthermore, there will be a

set of
(

m
q

)
distinct q-subsets of agents that satisfies this majority

requirement, denoted by C. Consequently, if the setting w satisfies∨
S∈C

( ∧
Aj∈S

P i
j

)
(resp.

∨
S∈C

( ∧
Aj∈S

P̄ i
j

)
), then there is an directed edge

o → o′ (resp. o′ → o), and thus o �G o′ (resp. o′ �G o). For the
purpose of explanation, we reason directly with cardinality formu-
las, which has been widely explored in CSPs and SAT (cardinality
constraints), see e.g., [2] and [7]. For each variable Xi, let Fi and
F ′i be the following cardinality formula respectively (line 24):

Fi = [≥ q]
(
P i

1 , . . . , P i
m

)
(1)

F ′i = [≥ q]
(
P̄ i

1 , . . . , P̄ i
m

)
(2)

Such that Fi (resp. F ′i ) is T rue when at least q formulas among
P i

1 , . . . , P i
m (resp. P̄ i

1 , . . . , P̄ i
m) are T rue. Note that the cardi-

nality formula Fi (resp. F ′i ) is logically equivalent to the classical
propositional formula

∨
S∈C

( ∧
Aj∈S

P i
j

)
(resp.

∨
S∈C

( ∧
Aj∈S

P̄ i
j

)
).

Given an directed graph G = (O, E), let o, o′ ∈ O be two
alternatives that differ only on the value of a variable Xi, o [Xi] =
xi and o′ [Xi] = x̄i. Let w = o [W] (= o′ [W]) and W = V −
{Xi}. If the setting w satisfies Fi (resp. F ′i ), then there is an
directed edge o → o′ (resp. o′ → o). Consequently, the wLCWs
must satisfy the following optimality constraints for each variable
Xi (line 25).

DEFINITION 7 (OPTIMALITY CONSTRAINTS). Given a col-
lection of CP-nets N = {N1, . . . ,Nm}, for each variable Xi, the
majority-optimality constraint ϕi to the value of Xi is:

ϕi = (Fi ⇒ xi) ∧ (F ′i ⇒ x̄i) (3)
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Algorithm 1: MajCP
Input: N, a set of CP-nets of the agents;
Output: CW , a set of (weak) Condorcet winners

q ← (m + 1)/2 where m is the total number of agents;1
ϕ← T rue;2
foreach Xi ∈ V do3

list, list′ ← ∅;4
foreachNj ∈ N do5

if P aj (Xi) = ∅ then6

if xi �Xi
Aj

x̄i then7
P i

j ← T rue; P̄ i
j ← F alse;8

else9
P̄ i

j ← T rue; P i
j ← F alse;10

end11

else12
P i

j ← F alse; P̄ i
j ← F alse;13

foreach cp-statement ∈ CP Tj (Xi) do14
if u ∈ Uxi�x̄i

Aj
then15

P i
j ← P i

j ∨ u16
else17

P̄ i
j ← P̄ i

j ∨ u18
end19

end20

end21

add P i
j to list; add P̄ i

j to list′;22

end23
Fi ← [≥ q] list; F ′i ← [≥ q] list′;24
ϕi ← (Fi ⇒ xi) ∧ (F ′i ⇒ x̄i);25
ϕ← ϕ ∧ ϕi26

end27
graphW inners← the models of ϕ;28
CW ← optimalityCheck(graphW inners);29
return CW ;30

Note that if there is an odd number of agents, F ′i = ¬Fi and the
above constraint ϕi can be simplified to:

ϕi = (Fi ⇔ xi)

Finally, let ϕ be the conjunction of all ϕi (one for each variable)
(line 26):

ϕ =
∧

Xi∈V

ϕi (4)

THEOREM 2. Let G = (O, E) be the majority induced graph
for a collection of CP-nets N = {N1, . . . ,Nm}. An alternative o
is a weak local Condorcet winner if and only if it satisfies the above
SAT ϕ.

PROOF. (Soundness) Let o be an alternative that satisfies ϕ. For
every neighbour o′ of o that differs on the value of a single variable
Xi ∈ V, as o satisfies ϕi = (Fi ⇒ xi) ∧ (F ′i ⇒ x̄i), then either
there is an directed edge o→ o′ or there is no edge between o and
o′. According to Definition 6, o is a wLCW.
(Completeness) Assume first that there is at least one wLCW o, and
suppose that o does not satisfy ϕ. Then there exists at least one op-
timality constraint ϕi = (Fi ⇒ xi) ∧ (F ′i ⇒ x̄i) that o does not
satisfy. As Fi and F ′i are mutually exclusive, and for the sake of

simplicity we assume that o does not satisfy Fi ⇒ xi. An im-
plication is unsatisfied only when the hypothesis is T rue and the
conclusion is F alse. That is, o satisfies Fi yet o [Xi] = x̄i. Let
o′ be a neighbour of o, o [W] = o′ [W] (W = V − {Xi}) and
o′ [Xi] = xi. Then, o′ satisfy Fi ⇒ xi. There must be an edge
o′ → o in G and thus o′ �G o, contradicting the fact that o is a
wLCW. Hence, the above SAT ϕ must be satisfied by all the alter-
natives that are wLCWs.

As such, we reduce the problem of computing wLCWs into a
SAT problem and the set of wLCWs can be obtained by comput-
ing the models of the corresponding SAT (line 28). Recall that a
wLCW is not necessarily a weak Condorcet winner. In the second
step, we need to test the majority optimality of each wLCW (i.e. a
model of the corresponding SAT) by comparing it to all other alter-
natives and filtering out those that are majority-dominated by some
alternative (line 29).

THEOREM 3 (COMPLEXITY). Given a collection of m CP-
nets N = {N1, . . . ,Nm}, if ∀Nj ∈ N, the node in-degree is
bounded by a constant, then translating the problem of comput-
ing weak local Condorcet winners into a corresponding extended
SAT problem for cardinality constraints is polynomial.

PROOF. Assume there are n variables and the number of par-
ents of a node in the dependency graph of each agent is bounded
by a constant d. In order to translate the problem of computing wL-
CWs into the corresponding SAT problem ϕ, we need to generate
a majority-optimality constraint ϕi for each variable Xi. For each
variable Xi, we need to check each Nj’s conditional preference
table CP Tj (Xi). The number of cp-statements in CP Tj (Xi)
is exponential in the number of parents of Xi in the dependency
graph of a Nj . Since we assume that node in-degree is bounded
by a constant d, the exponential is still a constant (i.e. 2d) and the
number of variables included in the condition entry of every cp-
statement is also bounded by d. Thus, the running time of transla-
tion is O(n ·m · 2d · d).

THEOREM 4 (COMPLEXITY). Given a collection of m CP-
nets N = {N1, . . . ,Nm}, if ∀Nj ∈ N, the node in-degree is
bounded by a constant, then i) checking whether an alternative is a
weak local Condorcet winner is polynomial; and, ii) finding the set
of weak local Condorcet winners is NP-complete.

PROOF. Based on Theorem 2, to check whether an alternative
o is a wLCW we just need to check whether o is a model of the
corresponding extended SAT problem ϕ, that is, whether o satisfies
the optimality constraint ϕi = (Fi ⇒ xi) ∧ (F ′i ⇒ x̄i) of each
variable Xi. The constraint Fi ⇒ xi (resp. F ′i ⇒ x̄i) is satisfied
if and only if the condition Fi (resp. F ′i ) is F alse or the conclu-
sion xi (resp. x̄i) is T rue. For instance, if o assigns x̄i to Xi, o
satisfies F ′i ⇒ x̄i. Thus, o satisfies ϕi if and only if o also satisfies
Fi ⇒ xi. Also, as o [Xi] = x̄i, o satisfies Fi ⇒ xi if and only
if Fi is evaluated to F alse. Checking the truth value of Fi can be
done by counting the elements in the list of Fi that is evaluated to
T rue: if there are fewer than (m + 1)/2 formulas are evaluated
to T rue then Fi is evaluated to F alse. Suppose there are n vari-
ables and node in-degree is bounded by a constant d. Then there
are m formulas listed in Fi and each formula is a disjunction of at
most 2d conjunctions of at most d literals. Consequently, the run-
ning time of checking whether an alternative is a model of ϕ is thus
O(n ·m · 2d · d).

Regarding the problem of finding the set of wLCWs. As we
already show that testing whether an alternative is a wLCW (i.e.
is a model of ϕ) is polynomial, the problem of finding the set of
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(a) CP-net of A1 (b) CP-net of A2 (c) CP-net of A3 (d) CP-net of A4

Figure 4: CP-nets of the agents

wLCWs (i.e. the models of ϕ) is in NP. To show hardness, we
reduce 3-SAT to our problem: given a 3-CNF formula F , for each
clause (x1 ∨ x2 ∨ x3) ∈ F , we construct the optimality constraint:
≥ 2 [x̄1, x̄2] ⇒ x3. Any satisfying assignment of the original 3-
CNF formula, at lease one of x1, x2 and x3 is true. If x1 or x2 are
T rue, then the condition of the optimality constraint is not satisfied
and thus the optimality constraint is satisfied. If x1 and x2 are both
F alse, then x3 is T rue, which satisfies the optimality constraint as
this is the preferred value of a majority of agents. Hence, any model
of the original 3-CNF formula is an optimal assignment of the set
of optimality constraints. The argument reverses: any wLCW is
also a model.

We emphise here that the above complexity is for testing or finding
the wLCWs rather than the (weak) Condorcet winners in Defini-
tion 2 and 3. As we show in Section 3 (Corollary 1), a wLCW is
not necessarily a weak Condorcet winner. To find out the set of
weak Condorcet winners, we still need to filter out from the set of
wLCWs those candidates that are majority-dominated by some al-
ternative. This checking is required even when there exists only one
wLCW. Consequently, the complexity for finding the set of weak
Condorcet winner remains PSPACE complete.

EXAMPLE. Now, we demonstrate the execution of the proposed ap-
proach with an example. Assume four agents A = {A1, A2, A3, A4}
making decision over a set of four Boolean variables X1, X2, X3
and X4.Consider the agents’ CP-nets depicted in Figure 4. We first
generate a set of majority-optimality constraints that a wLCW must
satisfy. For variable X1, we refer to each agent Aj’s conditional
preference table CP Tj (X1):
A1: Ux1�x̄1

A1
= {x2x4, x̄2x̄4} and Ux̄1�x1

A1
= {x2x̄4, x̄2x4}, thus

P 1
1 = x2x4 ∨ x̄2x̄4 and P̄ 1

1 = x2x̄4 ∨ x̄2x4;
A2: the preference over variable X1 is unconditional, x1 �X1

A2
x̄1,

thus P 1
2 = T rue and P̄ 1

2 = F alse;
A3: the preference over variable X1 is unconditional, x1 �X1

A3
x̄1,

thus P 1
3 = T rue and P̄ 1

3 = F alse;
A4: Ux1�x̄1

A4
= {x2x̄4} and Ux̄1�x1

A4
= {x2x4, x̄2x4, x̄2x̄4}, thus

P 1
4 = x2x̄4 and P̄ 1

4 = x2x4 ∨ x̄2x4 ∨ x̄2x̄4.
Consequently, F1 = [≥ 3]

(
P 1

1 , P 1
2 , P 1

3 , P 1
4
)

and F ′1 = [≥
3]
(
P̄ 1

1 , P̄ 1
2 , P̄ 1

3 , P̄ 1
4
)

. F1 can be simplified to (x2 ∨ x̄4). F ′1 is un-
satisfiable and evaluated to F alse, because two formulas P̄ 1

2 and
P̄ 1

3 out of four in the formula list of F ′i are F alse. Hence, the win-
ning alternative must satisfy the following optimality constraint for
variable X1: ϕ1 = (x2 ∨ x̄4 ⇒ x1) ∧ (F alse⇒ x̄1). An im-
plication is unsatisfied only when the hypothesis is T rue and the
conclusion is F alse, thus F alse⇒ x̄1 is always T rue and ϕ1 can
be simplified to ϕ1 = x2 ∨ x̄4 ⇒ x1.

Similarly, we obtained the following optimality constraints (sim-
plified form of the cardinality constraints) for variable X2, X3 and
X4:
X2: ϕ2 = (x̄1x3x4 ⇒ x2) ∧ (x1x̄3 ∨ x1x̄4 ∨ x̄3x̄4 ⇒ x̄2);
X3: ϕ3 = (x̄1x̄2 ⇒ x3) ∧ (x1x̄2 ⇒ x̄3);
X3: ϕ4 = x̄4;
Consequently, we obtain the following SAT:
ϕ = ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 = (x2 ∨ x̄4 ⇒ x1) ∧ (x̄1x3x4 ⇒ x2) ∧
(x1x̄3 ∨ x1x̄4 ∨ x̄3x̄4 ⇒ x̄2)∧(x̄1x̄2 ⇒ x3)∧(x1x̄2 ⇒ x̄3)∧x̄4

The above SAT has only one satisfied assignment x1x̄2x̄3x̄4. Af-
ter checking the majority optimality of x1x̄2x̄3x̄4, it is also a weak
Condorcet winner in this example.

5. EXPERIMENT
In this section, we present the experimental results regarding the

execution time of the proposed approach. We compare the perfor-
mance of the proposed MajCP approach to a Brute-force al-
gorithm, which runs a direct election over the alternative space. In
these experiments, the numbers of agents are 5 and 15 respectively,
and we vary the numbers of variables from 2 to 10. The number of
parents of a variable in the agents’ CP-nets is bounded by 6. For
each number of agents and each number of variables, we generate
5,000 random examples of the agents’ CP-nets.

The log-scale plots in Figure 5 show the average execution times
of the Brute-force algorithm and the proposed MajCP ap-
proach in the case of 5 agents and 15 agents, respectively. It demon-
strates that the proposed MajCP approach is much more efficient
than the Brute-force algorithm. In general, for large numbers
of variables, it offers several orders of magnitude improvement in
performance over the Brute-force algorithm both for 5 agents
and 15 agents. For instance, when there are 10 variables, the ex-
ecution time of MajCP is reduced by more than three orders of
magnitude as compared to Brute-force algorithm. We fur-
ther test 100 cases for 11 variables and 5 agents (resp. 11 vari-
ables and 15 agents), which shows that the execution time of the
Brute-force algorithm is on average more than 5000 seconds
(resp. 9000 seconds). On the other hand, the proposed MajCP ap-
proach can produce the majority winners in about 10 seconds (resp.
15 seconds). Note that when there exist wLCWs (1 or more), the
proposed MajCP approach still need to test the majority-optimality
of the wLCWs by comparing each wLCW to all other alternatives.
However, when there are no wLCWs, the proposed approach can
return the result quickly by only solving the corresponding SAT
problem. For instance, given 15 agents and 10 variables, when
there does not exists any wLCWs, the proposed approach returns
the results within 0.04 seconds. Table 1 provides the probability
that there exists no wLCWs for the given agents’ preferences in
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Figure 5: Average execution time comparison (Log scale plot)

those experiments.

Table 1: The percentage of cases when there are no wLCWs

Agents Variables
2 4 6 8 10

5 4.71% 12.73% 19.67% 22.11% 24.51%
15 5.44 % 15.99% 22.22% 25.42% 27.94%

6. CONCLUSION AND FUTURE WORK
In this paper, we have introduced an efficient approach to com-

pute the set of winning alternatives from a collection of CP-nets
based on majority rule. Unlike previous work where the agents’
preferences are required to satisfy some restrictive conditions on
the dependence graph (such as the existence of a common acyclic
graph to all the agents), the proposed approach allows the agents to
have different preferential independence structures and also works
on cyclic CP-nets. It first computes a set of weak local Condorcet
winners (wLCWs) by reduces the problem into an extended SAT
(Boolean satisfiability problem) for cardinality constraints. Then
the set of majority winning alternatives is a subset of wLCWs after
filtering out those are majority-dominated by some alternative. The
proposed approach reduces the size of search space and is compu-
tationally efficient.

Future research can extend the proposed approach to compute
the winners of other aggregation rules. Another extension would
be to investigate techniques to aggregate preferences that are repre-
sented by more powerful variants such as TCP-nets and UCP-nets.
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