
Toward Error-bounded Algorithms for Infinite-Horizon
DEC-POMDPs

Jilles S. Dibangoye
Ecole des Mines de Douai

Douai, France
jilles.dibangoye@mines-

douai.fr

Abdel-Illah Mouaddib
University of Caen

Caen, France
mouaddib@info.unicaen.fr

Brahim Chaib-draa
Laval University

Québec, Qc, Canada
chaib@aid.ift.ulaval.ca

ABSTRACT
Over the past few years, attempts to scale up infinite-horizon DEC-
POMDPs are mainly due to approximate algorithms, but without
the theoretical guarantees of their exact counterparts. In contrast,
ε-optimal methods have only theoretical significance but are not ef-
ficient in practice. In this paper, we introduce an algorithmic frame-
work (β-PI) that exploits the scalability of the former while pre-
serving the theoretical properties of the latter. We build upon β-PI
a family of approximate algorithms that can find (provably) error-
bounded solutions in reasonable time. Among this family, H-PI
uses a branch-and-bound search method that computes a near-optimal
solution over distributions over histories experienced by the agents.
These distributions often lie near structured, low-dimensional sub-
space embedded in the high-dimensional sufficient statistic. By
planning only on this subspace, H-PI successfully solves all tested
benchmarks, outperforming standard algorithms, both in solution
time and policy quality.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent systems

General Terms
Algorithms, Experimentation, Performance

Keywords
artificial intelligence, decentralized pomdps, point-based solvers.

1. INTRODUCTION
In recent years, there has been increasing interest in finding scal-

able algorithms for solving multiple agent systems where agents
cooperate to optimize a joint reward function while having differ-
ent local information. To formalize and solve such problems,[5,
14] suggest similar models that enable a set of n agents to cooper-
ate in order to control a partially observable Markov decision pro-
cess (POMDP), namely decentralized partially observable Markov
decision process (DEC-POMDP).

Unfortunately, finding either optimal or even near-optimal so-
lutions of such a problem has been shown to be particularly hard

Cite as: Toward Error-bounded Algorithms for Infinite-Horizon DEC-
POMDPs, J.S. Dibangoye, A.-I. Mouaddib and B. Chaib-draa, Proc. of
10th Int. Conf. on Autonomous Agents and Multiagent Systems (AA-
MAS 2011), Tumer, Yolum, Sonenberg and Stone (eds.), May, 2–6, 2011,
Taipei, Taiwan, pp. 947-954.
Copyright © 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

[5, 15]. Significant efforts have been devoted to developing near-
optimal algorithms for DEC-POMDPs. These algorithms consist
in searching in the entire space of all policies [17, 4]. State-of-the-
art optimal or near-optimal methods such as DEC-PI [4], DP [11],
MAA∗ [17], PBDP [18], or mathematical programs [3, 6] suggest
first performing the exhaustive enumeration of all possible policies
before they prune dominated ones. This is both an advantage and a
liability. On the one hand, it preserves the ability to eventually find
an ε-optimal policy, which is a key property. Yet it makes these
methods impractical even for small toy problems. This is mainly
because they quickly run out of memory.

To tackle the memory bottleneck, a number of memory-bounded
algorithms have been suggested, and proven to be remarkably scal-
able, but without the theoretical guarantees of their exact counter-
parts [4, 16, 7, 10, 2]. Memory-bounded algorithms use a fixed
amount of memory, i.e., the size of the solution is fixed prior to
the execution of the algorithm. Infinite-horizon memory-bounded
techniques such as NLP and BPI rely on mathematical programs
that search the best possible policy for a fixed size [1]. On the other
hand, finite-horizon memory-bounded methods including MBDP [16],
MBDP-OC [7], PBIP [10], PBIP-IPG [2] and CBPB [12] are mainly
point-based algorithms. They compute approximate policies over
a bounded number of beliefs1 by selecting only a few policies for
each point. While applying finite-horizon algorithms to infinite-
horizon cases is non-trivial, they provide good insights on approxi-
mation methods. However, both infinite and finite approaches lack
theoretical guarantees on the approximation. So it would seem we
are constrained to either solving small toy problems near-optimally,
or solving large problems but possibly doing so badly.

In this paper, we introduce an algorithmic framework (β-PI)
that builds upon both approximate and near-optimal techniques.
This provides the ability to preserve the theoretical properties of
the former, while exploiting the scalability of the latter. To do so,
β-PI incorporates the error β the decision-maker can sacrifice at
each time step of the execution stage for computational tractability.
A theoretical analysis of β-PI provides error-bounds on solutions
produced by many approximate techniques. We then exploit the
H-PI algorithm that aims at reducing the error produced in approx-
imate algorithms while improving the empirical performances [9].
In order to reduce the error-bound, H-PI relies on the concept of
distributions over histories, i.e., the sufficient statistic for the se-
lection of a decision rule2 in general DEC-POMDPs [8] – page
199. By planning over distributions over histories experienced by
the agents, H-PI considerably tightens the error-bound produced.
These distributions often lie near structured, low-dimensional sub-

1A belief is a probability distribution over the underlying states of the system.
2A decision rule is a mapping d : H → A from history set to action set.

947

space embedded in the high-dimensional sufficient statistic. By
maintaining only a single policy-node for each individual history,
it circumvents the memory bottleneck. This is achieved by means
of a branch-and-bound search method that tracks the best policy
for each distribution over histories experienced by the agents. This
paper also provides empirical results demonstrating the successful
performance of H-PI algorithm on all tested benchmarks: outper-
forming standard algorithms, both in solution time and policy qual-
ity.

2. BACKGROUND AND RELATED WORK
We review the DEC-POMDP model and the associated notation,

and provide a short overview of the state-of-the-art algorithms.

2.1 The DEC-POMDP Model
A n-agent DEC-POMDP model can be represented using a tuple

(S, {Ai}, {Ωi}, h0, P,O,R, γ), where: S is a finite set of states;
Ai denotes a finite set of actions available for agent i, andA = ⊗ni=1 A

i

is the set of joint actions, where a = (a1, · · · , an) denotes a joint
action; P (s′|s, a) is a Markovian transition function, that denotes
the probability of transiting from state s to state s′ when taking ac-
tion a; Ωi defines a finite set of observations available for agent
i, and Ω = ⊗ni=1 Ωi is the set of joint-observations, where ω =
(ω1, · · · , ωn) is a joint observation; O(ω|a, s′) is an observation
function, that denotes the probability of observing joint observation
ω given that joint action a was taken and led to state s′; R(s, a) is
a reward function, that denotes the reward signal received when
executing action a in state s. The DEC-POMDP model is pa-
rameterized by: h0, the initial joint history, i.e., the team joint
action/joint-observation trace. When the agents operate over an
unbounded number of time-steps, the DEC-POMDP has a discount
factor, γ ∈ [0, 1). This model is referred as infinite-horizon DEC-
POMDPs with discounted rewards.

2.1.1 Sufficient Statistic
A key assumption of DEC-POMDPs is that during the online ex-

ecution stage the true state of the world could not be sensed exactly
and reliably: agents are imperfectly informed about the state of the
world to differing degrees.

Given that the state is not directly observable, the agents can
instead maintain a complete trace of all joint-observations and all
joint-actions they ever executed during the offline planning stage,
and use this to select their joint-actions. These joint-action/joint-
observation traces are referred to as joint-history experienced by the
agents. We formally define hiτ := (ai0, ω

i
1, a

i
1, ω

i
2, · · · , aiτ−1, ω

i
τ),

hτ := (h1
τ , · · · , hnτ), and Hτ := {hτ} to be the history of agent i,

the joint history of the team, and the set of histories at time step τ ,
respectively.

We define the sufficient statistic at step τ , µτ ∈ 4Hτ to be
a probability distribution of the team over joint-histories Hτ [8].
Furthermore, µτ at time step τ is calculated recursively, using only
the distribution over histories one time step earlier, µτ−1, along
with the most recent joint decision rule dτ−1 : Hτ−1 → A:

µτ (hτ) = µτ−1(hτ−1) · p(hτ−1, dτ−1(hτ−1), ωτ |hτ−1)

for all hτ−1 ∈ Hτ−1 and ωτ ∈ Ω, where joint history hτ is given
by joint history one step earlier, along with its corresponding joint-
action and a given joint-observation, i.e., (hτ−1, dτ−1(hτ−1), ωτ).
Notice that p(h, a, ω|h′) =

∑
s,s′ O(ω|a, s′)P (s′|a, s)µτ−1(h′)

and µ0(h) = 1 if and only if h = h0. Finally, the distribution over
individual history hi is defined by µi(hi) =

∑
h p(h

i|h)µ(h),
where p(hi|h) = 1 if and only if there exists hj such that hihj =

h, otherwise p(hi|h) = 0. If not all joint histories are reachable,
µτ yields a positive probability only for reachable histories denoted
H̄τ . Unfortunately, H̄τ can get very large as time goes on. More
precisely, set of histories increases exponentially with increasing
time step H̄τ = O(|Ai||Ωi|nτ). For this reason, we want to plan
only over a small set of distributions over histories experienced
by the agents. These distributions often lie near structured, low-
dimensional subspace embedded in the high-dimensional sufficient
statistic.

2.1.2 Optimization Criterion
The goal of DEC-POMDP planning is to find a sequence of

joint-actions {a0, · · · , aτ} maximizing the expected sum of re-
wards E[

∑∞
τ=0 γτR(sτ , aτ)]. Given the initial belief, the goal

is to find a joint-policy δ that yields the highest expected reward.
Throughout the paper, a policy δ of the team is represented as a de-
terministic joint-policy graph. That is, a vector (δ1, δ2, · · · , δn) of
individual policy graphs as illustrated in Figure 1. We note X :=

x1
0

x1
1

x1
2 x2

0

x2
2

x2
1

ω2

ω′2

ω′2

ω2

ω′2

ω2

ω′1

ω1

ω1

ω′1

ω1

ω′1

Figure 1: Deterministic policy graphs for two agents.

X1 × · · · × Xn the set of joint-policy nodes x = (x1, · · · , xn).
A policy for a single agent i is therefore represented as a deter-
ministic policy graph δi, where Xi = {xi} denotes a set of policy
nodes. Solving such a problem usually relies on successive approx-
imations of the joint-policy graph. After τ consecutive iterations,
the solution consists of a set of hyperplanes Λτ = {υx}, together
with the corresponding joint-policy graph δτ . The value function
at iteration τ can be formulated as:

υτ (µτ) = sup
x1

1τ ,x
1
2τ ,··· ,x1

|Hτ |τ···
xn1τ ,x

n
2τ ,··· ,xn|Hτ |τ

|Hτ |∑
k=1

µτ (hkτ) · υxkτ (hkτ) (1)

where xkτ = (x1
kτ , x

2
kτ , · · · , xnkτ) denotes the joint-policy node

associated to joint-history hkτ . The resulting set of joint-policy
nodes Xτ := {xkτ}k=1,··· ,m represents the next step joint-policy
graph δτ . When joint-policy node x is associated to joint-action a,
for all s ∈ S, hyperplane υx follows:

υx(hτ) =
∑
s p(s|hτ)(R(s, a) + γ

∑
ω υ

a,ω,x′(s))

p(s|hτ) =
∑
s′ O(ω|a,s′)P (s′|a,s)µτ−1(hτ−1)

p(hτ ,a,ω|hτ−1)

where p(s|hτ) denotes the probability of being in state s given his-
tory hτ , this probability distribution is also referred to as belief
state. The estimate value υa,ω,x

′
denotes the value of taking joint-

action a followed by a joint-observation ω conditional transition to
joint-policy node x, and is given by:

υa,ω,x
′
(s) =

∑
s′ P (s′|s, a)O(ω|a, s′)υx′(s′)

It is worth noticing that Equation (1) denotes the supremum over
all next step joint-policy graphs that selects both: on the one hand,

948

the best3 hyperplane υxkτ for each joint-history hkτ ; and a single
policy-node xikτ for each individual history hikτ , on the other hand,
thus preserving the ability to control the system in a distributed
manner.

Throughout the paper, we will use superscripts either to name
agent, e.g., xi, Ωi or to distinguish estimate values between joint-
policy graphs and joint-policy nodes, e.g., υδ , υx, or υa,ω,x. In
addition, we use subscripts to indicate time step or iteration, e.g.,
υτ , Λτ , δτ . Finally, except specific indications, ‖ · ‖ denotes the
Chebyshev norm.

2.2 Related Work
In this section, we discuss near-optimal as well as approximate

approaches to solving infinite horizon DEC-POMDPs with discounted
rewards.
DEC-PI was the first attempt to compute a near-optimal pol-

icy for infinite-horizon DEC-POMDPs with discounted rewards. It
builds over a series of exhaustive backups a vector of stochastic pol-
icy graphs, one for each agent [4]. However, the number of policy
nodes generated by the exhaustive backups is double exponential
in the number of iterations. In order to reduce the number of policy
nodes generated, DEC-PI does pruning by using iterated elimina-
tion of dominated policies after each backup, without loosing the
ability to eventually converge to a near-optimal policy. Performing
this pruning, however, can be expensive, in addition the number of
policy nodes still grows exponentially.

To alleviate these problems, we can use a heuristic search tech-
nique (referred to as I-MAA∗), which uses a best-first search in the
space of deterministic joint-policy graphs with a fixed size. I-MAA∗
prunes dominated joint-policy graphs at earlier construction stages.
This is done by calculating a heuristic for the joint-policy graph
given known parameters and filling in the remaining parameters
one at a time in a best-first fashion. Both DEC-PI and I-MAA∗ pro-
vide good guarantees on the solution quality, but they do not scale
beyond small toy problems. This is mainly due to the explosion
in memory. As such, researchers have turned their attention to a
family of approximate memory-bounded algorithms.

Thus, a version of DEC-PI namely DEC-BPI was introduced to
keep the policy size bounded over the iterations of the DEC-PI al-
gorithm [4]. DEC-BPI iterates through the policy nodes of each
agent’s stochastic policy graph and attempts to find an improve-
ment. A linear program searches for a probability distribution over
actions and transitions into the agent’s current policy graph that
increases the value of the policy graph for any initial belief state
and any initial policy node of the other agents’ policy graph. If
an improvement is discovered, the policy node is updated based
on the probability distributions found. Each policy node of each
agent is examined in turn and the algorithm terminates when no
policy graph can be further improved. While this algorithm allows
memory to remain fixed, it provides only a locally optimal solu-
tion. Unfortunately, this locally optimal solution can be arbitrarily
far from the actual optimal solution.

In an attempt to address some of these problems, a set of optimal
policy graphs given a fixed size with nonlinear program was de-
fined in the NLP algorithm. Because it is often intractable to solve
this NLP optimally, a locally optimal solver is used. Unlike DEC-
BPI, this approach allows initial belief state to be used so smaller
policy graphs may be generated and the improvement takes place in
one step. While concise policy graphs with high value can be pro-
duced, large policy graphs, which may be required for some prob-

3The best hyperplane is not necessarily the maximal hyperplane for a given joint-
history, this is why the sup operator is outside the

∑
, and states the major difference

with POMDPs both in terms of complexity and value function expression.

lems, cannot be produced by the current locally optimal solvers.
Even more importantly, these locally optimal solvers do not pro-
vide any error-bound on their solutions. So it would seem we are
constrained to either solving small toy problems near-optimally, or
solving large problems but possibly doing so badly.

3. A NEW NEAR-OPTIMAL ALGORITHM
In this section, we present a new near-optimal algorithm (β-

PI) for solving infinite-horizon DEC-POMDPs with discounted re-
wards. β-PI has only theoretical significance and is not efficient in
practice. However, its framework serves as a foundation to derive
methods that are both error-bounded and very efficient in practice,
as discussed in the next section (Section 4).
β-PI algorithm (Figure 2) consists of a two-step method: the

policy-evaluation (step 2); and the policy-improvement (step 3). At
each iteration τ , the policy-evaluation estimates the set of hyper-
planes Λτ of the current joint-policy graph δτ , while the policy
improvement updates set Λτ into set Λτ+1. Thereafter, it trans-
forms the current joint-policy graph δτ into an improved one δτ+1

through comparison of Λτ and Λτ+1. Finally, duplicated, domi-
nated, and unreachable old policy nodes are pruned.

1. Set parameters (β, ε) and joint-policy graph δ0.
2. (Policy Evaluation) Obtain Λτ by evaluating δτ .
3. (Policy Improvement) Transform δτ to δτ+1 through

Λτ+1 = (β-H) · Λτ
4. If ‖υτ+1 − υτ‖ < ε(1 − γ)/2γ, stop and return δτ+1.
Otherwise set τ = τ + 1 and return to step 2.

Policy Iteration Algorithm β-PI

♣

Figure 2: β-PI Algorithm.

The above procedure is similar to classical ε-optimal policy-
iteration algorithms [4], when parameter β = 0. This parame-
ter denotes the decision-maker’s preference on the quality of the
returned solution. Indeed, β-PI is designed to return a solution
with error bounded by β when compared to the ε-optimal solution,
so as to satisfy the decision-maker’s preferences. To this end, β-
PI replaces the exhaustive backup operator performed in classical
policy-iteration algorithms by a new backup operator (β-H) that
builds up the improved value function with error bounded by β.

3.1 Backup Operator
A backup operator aims at computing an improved set Λτ+1 =

{υx′} given set Λτ . Each joint-policy node x′ corresponds to a
joint-action choice a (resp. ai) followed by a joint-observation
choice ω (resp. ωi) conditional transition to joint-policy node x
(resp. xi). As a result, one can represent a joint-policy node x′ as
a set of action-observation-node trios {(ai − ωi − xi)}i=1,··· ,n.

1. ∀(ai, ωi) compute set Xai,ωi

τ+1 = IEDT(ai, ωi, Xi
τ).

2. ∀a, compute set Xa
τ+1 =

⊗n
i=1(

⊗
ωi∈Ωi X

ai,ωi

τ+1).
3. Compute set Λτ+1 = {υx′ | x′ ∈ ∪a∈A Xa

τ+1}.

Λτ+1 = (β-H) · Λτ

♣

Figure 3: Backup Operator β-H.

Following this idea, backup operator β-H, described in Figure
3, prunes those dominated trios, but without actually construct-
ing joint-policy nodes x′ exhaustively (step 1). Next, it creates set

949

Xa
τ+1 (∀a ∈ A), a cross-product over agents and individual obser-

vations, which includes one trio (ai − ωi − xi) from each Xai,ωi

τ+1

(step 2). Finally, it takes the union of Xa sets and creates the im-
proved value function represented by set Λτ+1 (step 3).

The intuition behind β-H is that rather than adding all possible
triosAi×Ωi×Xi

τ as suggested in classical algorithms [4], we only
add trios that would be part of non β-dominated joint-policy node
x′. That is, trio (ai − ωi − xi) is pruned if its value goes up over
β by changing policy node xi by another one for some distribution
ζ(·) of states s; policy node xj of the other agents; action aj ; and
observation ωj . For the sake of simplicity we use the abbrevia-
tion ρj = (s, aj , ωj , xj). Our β-dominance criterion is therefore
formulated as follows: maximize ξ, s.t.: ∀yi ∈ Xai,ωi

τ+1 \{xi}, in∑
ρj
ζ(ρj)υa,ω,x(s) + ξ + β ≤

∑
ρj
ζ(ρj)υa,ω,y(s) (2)

where
∑
ρj ζ(ρ

j) = 1 and ζ(ρj) ≥ 0 and a = aiaj , ω = ωiωj ,
x = xixj and y = yixj . We provide in Figure 4 an example on
how the concept of β-dominance can be used in practice.

Algorithm 1 Iterative Elimination of β-Dominated Trios
1: procedure PRUNE(ai, ωi, Xi

τ)

2: Initialize: Xai,ωi

τ+1 ← Xi
τ ;

3: repeat
4: for i = 1, 2, · · · , n do
5: for xi ∈ Xai,ωi

τ+1 do

6: Maximize ξ, s.t.: ∀yi ∈ Xai,ωi

τ+1 \{xi}, in Eq. (2).

7: if (ξ ≤ 0) then Remove yi from Xa,ωi

τ+1 ;

8: until no changes occur

We are now ready to present the iterative elimination of β-dominated
trios algorithm – called IEDT Algorithm 1. This algorithm loops
over each trio (ai, ωi, xi) and tests whether there exists a proba-
bility distribution ζ such that (ai, ωi, xi) β-dominates any other
trio, e.g., (ai, ωi, yi). Those trios are kept in sets Xai,ωi

τ+1 . Then it
repeats this procedure for all agents, until no more changes occur.
DEC-PI and DP introduce a similar pruning mechanism namely it-
erative elimination of dominated policies. However, ours remains
fundamentally different. The key difference lies in when this prun-
ing takes place and what we actually prune. DEC-PI and DP itera-
tive elimination procedures take place after each exhaustive backup,
i.e., they first generate all possible policies before they prune dom-
inated ones. IEDT, however, takes place before the exhaustive
backup, providing the ability to prune all β-dominated trios before
we actually build the next step policies. As a result, all policies
generated by IEDT are non β-dominated policies, as discussed be-
low.

3.2 Theoretical Analysis
This section states and proves the theoretical properties of our

β-PI algorithm, including: error-bound and convergence. We first
show that our β-PI algorithm does not prune trios that would be
part of a non β-dominated joint-policy node.

LEMMA 1. Any joint-policy node x′ that includes β-dominated
trio (ai, ωi, xi) is β-dominated by some probability distribution
over some joint-policy nodes.

PROOF. We will prove this result for 2 agents (although its holds
for more), and from the agent 1’s perspective. Let trio (ai, ωi, xi)
be a β-dominated trio. We now show that any joint-policy node x′

that includes (ai, ωi, xi) is β-dominated by some probability dis-
tribution over a set of joint-policy nodes {y′} that are identical to
x′ except instead of including (ai, ωi, xi), some probability distri-
bution over trios {(ai, ωi, yi)} is chosen. That is, ∀s, ∀ω2, ∀x2,

υ
a,ω1ω2,x1x2

(s) ≤
∑

y1 6=x1
p(y1) · υa,ω

1ω2,y1x2
(s) + β (3)

∑
ω∈Ω

υ
a,ω,x1x2

(s) ≤
∑
ω∈Ω

∑
y1 6=x1

p(y1) · υa,ω,y
1x2

(s) + β (4)

υ
x′ (s) − β ≤

∑
ω1,y1

p(ω1
, y

1)

R(s, a) +
∑
ω∈Ω

υ
a,ω,y1x2

(s)

 (5)

υ
x′ (s) − β ≤

∑
y′

p(y′) · υy
′
(s) (6)

whereω = (ω1, ω2) and a = (a1, a2). The inequality (3) results
from inequality (2) where trio (ai, ω1, x1) is supposed stochasti-
cally β-dominated; in the inequality (4), we consider the sum over
all joint observations ω ∈ Ω; in inequality 5, we add the immedi-
ate reward, and build joint-policy nodes x′ and {y′}. The cross-
product between the probability distribution p(y1) and the uniform
probability distribution over Ω1 enables us to build a probability
distribution p(ω1, y1) and we build in a similar way a probability
distribution p(y′) so that x′ is stochastically dominated by {y′}.
This ends the proof.

We now show that our β-PI algorithm returns a near-optimal
solution. To do so, we apply the Banach Fixed-Point Theorem
[13] to prove that β-H is a contraction mapping on the space V
of bounded functions on S with supremum norm. The proof that
β-PI is near-optimal follows from properties of norms and con-
traction mappings.

THEOREM 1. Our β-PI algorithm returns a near-optimal solu-
tion for any initial history, with error bounded by (ε/2 + β/(1− γ)).

PROOF. First, we prove that β-H is a contraction mapping on
the space of value functions V for any positive scalar β. Since S is
discrete, β-H maps V into V .

Let υ and u be estimate values of value functions V and U
in V respectively. Fix h0 ∈ H0, assume that (β-H)υ(µ0) ≥
(β-H)u(µ0), and let xh0 = arg max

x : υx∈(β-H)V

∑
s υ

x(h0). Denote

ah0 the joint-action associated to joint-policy node xh0 , and ξ =
(β-H)υ(µ0) − (β-H)u(µ0). Then, 0 ≤ ξ ≤ ∑

s(R(s, ah0) +
γ
∑
s′,ω P (s′|s, ah0)O(ω|ah0 , s

′)υx(s′))p(s|h0)−∑s(R(s, ah0)+

γ
∑
s′,ω P (s′|s, ah0)O(ω|ah0 , s

′)uy(s′))p(s|h0). Finally,

ξ ≤ γ
∑
s,s′,ω

P (s′|s, ah0)O(ω|ah0 , s
′)p(s|h0)[υx(s′)− uy(s′)]

≤ γ
∑
s,s′,ω

P (s′|s, ah0)O(ω|ah0 , s
′)p(s|h0)‖υ − u‖

= γ‖υ − u‖

Repeating this argument in the case (β-H)u(µ0) ≥ (β-H)υ(µ0)
implies that |β-H)υ(µ0)− (β-H)u(µ0)| ≤ γ‖υ−u‖ for all initial
distributions µ0 ∈ 4H̄0. Taking the supremum over µ0 in the
above expression gives the result.

We now able to show that β-PI returns a joint-policy graph δ
that is near-optimal. Suppose that ‖υτ+1 − υτ‖ ≤ ε(1 − γ)/2γ
holds for some iteration. Then, the overall error in β-PI is bounded
by ‖υδ −υτ+1‖+ ‖υτ+1−υ∗‖. Since δ is a fixed point of (β-H),

950

the first expression is bounded as follows: ‖υδ − υτ+1‖
= ‖(β-H) · υδ − υτ+1‖
≤ ‖(β-H) · υδ − (β-H) · υτ+1‖+ ‖(β-H) · υτ+1 − υτ+1‖
≤ γ‖υδ − υτ+1‖+ ‖(β-H) · υτ+1 − (β-H) · υτ‖
≤ γ‖υδ − υτ+1‖+ γ‖υτ+1 − υτ‖

where inequalities follow because (β-H) is a contraction mapping
on V . Rearranging terms yields:

‖υδ − υτ+1‖ ≤ γ

1− γ ‖υτ+1 − υτ‖.

Then, the second expression follows because (0-H) and (β-H) are
contraction mappings on V: ‖υτ+1 − υ∗‖

≤ ‖(β-H)υτ+1 − (0-H)υτ+1‖+ ‖(0-H)υτ+1 − υ∗‖
≤ β + ‖(0-H)υτ+1 − (0-H)υ∗‖
≤ β + γ‖υτ+1 − υ∗‖

Rearranging terms yields: ‖υτ+1−υ∗‖ ≤ β/(1− γ). Thus when
‖υτ+1−υτ‖ ≤ ε(1−γ)/2γ holds, the first expression is bounded
by ε and the second expression is bounded by β/(1 − γ), so that
the error produced by β-PI is bounded by ε/2 + β/(1− γ).

To better understand the significance of the error-bound in β-PI,
let’s consider its terms. The first term ε/2 denotes the error pro-
duced by the stopping criterion in β-PI algorithm in Figure 2, step
4. This criterion stops the algorithm before a fixed point of β-H has
been found. It is required when optimal joint-policies do not exist,
so we seek ε-optimal joint-policies for β = 0. This criterion also
guarantees that β-PI terminates after a finite number of iterations.
The second term β/(1 − γ) defines the error the decision-maker’s
preference produced by pruning all β-dominated hyperplanes. De-
creasing the decision-maker’s parameter β reduces the error-bound
and increases the solution size, but it is usually worthwhile to avoid
an explosion of the solution size.

Unfortunately, it is worth noticing that the number of preserved
hyperplanes in β-PI would be very large in many practical cases.
This is mainly because it is likely that there exists a probability
distribution for which many hyperplanes β-dominate any other. In-
deed, there are infinitely many possible probability distributions.
In the next section, we provide two enhancements that overtake the
limitations of β-PI to scale up while preserving its ability to bound
the error produced.

4. ERROR-BOUNDED ALGORITHMS
First, we want to plan only over distributions of histories ex-

perienced by the agents B := {µ} as a means of reducing the
infinitely many possible probability distributions considered into
β-PI. Then, we want to arbitrarily increase parameter β such that
at some point only one policy node will be preserved for each indi-
vidual history as a means of reducing the solution size.

Thereafter, those distributions can be used to build non β-dominated
hyperplanes at each iteration of β-PI algorithm. In particular, the
linear program (inequality 2) can be replaced by a series of compar-
isons over joint-histories h where distributions µ ∈ B is positive,
without affecting the ability to find a near-optimal solution with
respect to B. More formally, if inequality

υa,ω
iωj ,xixj (h) ≤ υa,ω

iωj ,yixj (h) + β

holds for any (ωj , xj), then trio (ai, ωi, xi) is β-dominated by trio
(ai, ωi, yi) for h.

To better understand the pruning procedure using joint-histories,
consider the example illustrated in Figure 4. This figure shows the

steps of pruning β-dominated trios for a problem with 2 agents;
2 individual observations {ωi, ω′i} and policy-nodes {xi, x′i}; a
joint-history h = h1h2; joint-action a = a1a2, and β = 0.9.
The set of trios are represented in a form of a bayesian game Fig-
ure (4.A). Figure (4.B) illustrates the first pruning of β-dominated
trios for each agent (red lines). As an example, trio (a1, ω1, x1)

is pruned since it is β-dominated by trio (a1, ω1, x′1). The prun-
ing process continues until no more pruning occurs. Figure (4.D)
shows that for joint-history h, joint-action a and β = 0.9, there
is only one possible non β-dominated hyperplane (each agent has
only one possible policy node for each observation – a single policy
node for each individual history). This remark is crucial to bound
the error produced by algorithms that keep only one hyperplane for
each joint-history h or its corresponding belief state p(·|h), such as
point-based solvers MBDP and PBIP. That is, there exists a possi-
ble large scalar βB such that there is only one non βB-dominated
hyperplane for each joint-history h.

The next section presents H-PI, which provides an efficient and
scalable derivation of β-PI, while preserving the ability to bound
the error produced.

4.1 Heuristic PI Algorithm
The heuristic policy-iteration (H-PI) algorithm replaces backup

operator β-H in β-PI by a more scalable backup operator denoted
β-HB . This operator performs the backup only over a set of dis-
tributions over histories µ ∈ B, by means of a branch-and-bound
search in the space of non β-dominated policy nodes.

As H-PI proceeds in the same way for every iteration, and each
distribution µ ∈ B, we therefore restrict our attention to the fol-
lowing problem that occurs at each iteration and for each µ: the
problem of assigning trio (ai, ωi, xi) for each individual history
hi where µi(hi) > 0, and this for every individual observation
ωi ∈ Ωi and all agents i = 1, 2, · · · , n, and such that the resulting
joint-policy nodes {xh}h : µ(h)>0 are the best possible. That is, the
corresponding set of hyperplanes {υxh}h : µ(h)>0 β-dominates any
other at µ. More formally, β-HB computes {υxh}h : µ(h)>0, such
that for any other set of hyperplanes {υx′h}h the following holds:∑
h µ(h)υxh(h) + β ≥∑h µ(h)υx

′
h(h).

The idea behind H-PI is to build a search tree in which nodes θ
are sets of partially specified mappings {(di, σi)}i, where di : Hi →
Ai is a mapping from individual history setHi = {hi|µi(hi) > 0}
to individual action set Ai; and σi : Hi × Ωi → ∪aiXai,ωi is a
mapping from pairs of individual history and observation to non
β-dominated policy nodes.

Notice that by assigning a value to a variable we often constrain
the possible assignments of the other variables. To better under-
stand this, let’s consider the assignment of value ai to variable
di(hi), as a result variables σi(hi, ωi) are constrained to choose
their values in Xai,ωi . Thereafter, it is likely that trios that were
non β-dominated before the assignment become β-dominated af-
ter. For this reason, H-PI interleaves each search node expansion
step with an iterative elimination of β-dominated trios for each ex-
panded nodes in the search tree. This provides H-PI’s first prun-
ing mechanism. The second one prunes nodes based on upper and
lower bounds.

We define the upper-bound based on the decomposition of the
exact estimate into two estimates. The first estimate,G(θ, µ), is the
exact estimate coming from variables where θ is constrained4. The
second estimate, H(θ, µ), is the upper-bound value coming from
variables where θ is not constrained. That is, υ̂(θ, µ) = G(θ, µ) +

4A partially specified mapping φ : X → Y is said to be constrained at x ∈ X if
φ(x) has been assigned a value y ∈ Y , otherwise it is said to be non constrained.

951

x2

x′2
ω2

x2

x′2
ω′2

ag
en

t2

x1 x′1
ω1

x1 x′1
ω′1

agent 1

A

−1.40 −1.00 −3.94 −0.60

−6.02 −3.94 −4.30 −6.02

−5.16 −0.88 −2.75 −7.48

−11.3 −1.40 −1.40 −1.00

x2

x′2
ω2

x2

x′2
ω′2

ag
en

t2

x1 x′1
ω1

x1 x′1
ω′1

agent 1

B

−1.40 −1.00 −3.94 −0.60

−6.02 −3.94 −4.30 −6.02

−5.16 −0.88 −2.75 −7.48

−11.3 −1.40 −1.40 −1.00

x2ω2

x2

x′2
ω′2

ag
en

t2

x′1
ω1

x1 x′1
ω′1

agent 1

C

−1.00 −3.94 −0.60

−0.88 −2.75 −7.48

−1.40 −1.40 −1.00

x2ω2

x′2ω′2

ag
en

t2

x′1

ω1

x′1

ω′1

agent 1

D

−1.00 −0.60

−1.40 −1.00

Figure 4: Illustration of the β-dominance criterion, where β = .9.

Algorithm 2 Heuristic Backup Operator
1: procedure β-HB(µ)
2: Initialize: Incumbent := υ(µ); Live := {θ0}
3: repeat
4: Select θk ∈ Live with the highest υ̂(θk, µ)
5: Live := Live \ {θk}
6: Branch on θk generating θk1 , · · · , θkm
7: for 1 ≤ p ≤ m do
8: if υ̂(θkp , µ) > Incumbent +β then
9: if θkp is completely defined then

10: Incumbent := υ̂(θkp , µ)

11: Solution := θkp
12: else Live := Live ∪ {θkp}
13: until Live = ∅
14: return Solution

H(θ, µ), where:

G(θ, µ) =
∑
hR(h, d(h)) + γ

∑
(h,ω)

µ(h)υd(h),ω,σ(h,ω)(h)

where d(h) and σ(h, ω) are constrained,

H(θ, µ) =
∑
h max

a
R(h, a) + γ

∑
(h,ω)

µ(h) max
υa,ω,x

υa,ω,x(h)

where d(h) and σ(h, ω) are not constrained. Notice thatR(h, d(h))
is given by

∑
s µ(h)p(s|h)R(s, d(h)).

H-PI search starts with a pool of live nodes with a partially spec-
ified mapping θ, where none of the variables are specified, see Al-
gorithm 2. Moreover, the value hereof is used as the value (called
incumbent) of the current best solution, (line 2). At each itera-
tion of the search, a node θ that yields the highest upper-bound
is selected for exploration from the pool of live nodes, (lines 4-
5). Then, a branching is performed: two or more children of the
node are constructed through the specification of a single variable,
(line 6). Furthermore, for each of the generated child nodes θk,
the upper-bound is computed. In this case, the current node corre-
sponds to a completely specified node, its upper-bound is its exact
value at µ, the value hereof is compared to the incumbent, and the
best solution and its value are kept, (lines 8-11). If its upper-bound
is not better than the incumbent, the node is discarded, since no
completely specified descendant nodes of that node can be better
than the incumbent. Otherwise, the possibility of a better solution
in the descendant nodes cannot be ruled out, and the node is then
joined to the pool of live nodes, (line 12). When the search tree
has been completely explored, the algorithm starts a new search
tree with a new distribution over histories µ, until all have been
processed, and this at each iteration.
H-PImay be considered as an extension and generalization of ei-

ther near-optimal search methods such as I-MAA∗, or point-based
search techniques for solving finite-horizon DEC-POMDPs includ-
ing MBDP, PBIP. Indeed, H-PI is designed to provide error-bounds
on the solution produced as does near-optimal methods. H-PImeets

this requirement either by planning only other a small set of distri-
butions µ or by using parameter β, or doing both. In addition,
H-PI is able to scale up through the selection of a small set of
distributions µ, and by planning only over a small number of his-
tories among those where µ(h) > 0. In particular, when we plan
separately over histories h where µ(h) > 0, we actually perform
a point-based search method as does MBDP, PBIP. Even within
the latter case, H-PI remains fundamentally different with respect
to other point-based search methods. The key difference lies in
how the heuristic function is computed. While finite-horizon DEC-
POMDP heuristic functions are all based only on the current state
of assignments of values to variables, H-PI performs an additional
step of iterative elimination of β-dominated trios after each node
expansion step, thus tightening its heuristic function. The following
provide theoretical guarantees on the solution produced by H-PI.

4.2 Convergence and Error-bound
For any set of distributions over histories B and iteration τ ,

H-PI produces an estimate υτ with the corresponding set of hy-
perplanes Λτ . The error between υτ and the true value function
υ∗τ is bounded. The bound depends on four parameters: the den-
sity εB of the set of distributions over histories B, where εB is
the maximum distance from any legal distribution µ to B, that
is: εB = maxµ′∈4H̄ minµ∈B ‖µ′ − µ‖1; the distance βB be-
tween hyperplanes that compose υτ , where βB is the maximum
Chebyshev distance of any pair or hyperplanes into Λτ , that is:
βB = maxυx,υy∈Λτ ‖υx − υy‖; the probability µB = 1 −
minτ

∑
h∈Hτ µτ (h) that a history is visited during the online exe-

cution stage, but not taken into account during the offline planning
stage; and the Chebyshev distance ‖r‖ = maxs,a |R(s, a)| over
the rewardsR(s, a), which defines maximum possible rewards that
occur after a one step decision.

That is, by keeping all non-dominated hyperplanes over a denser
sampling of distribution set4H̄ , υτ converges to υ∗τ , the true value
function. Cutting off H-PI iterations at any sufficiently large time
step, we know that the divergence between υτ and the optimal value
function υ∗ is bounded. The following lemma states and proves
a bound on the error ‖(βB-HB)υτ − (0-H)υτ‖ produced by one
application of the backup operator βB-HB .

LEMMA 2. The error ηprune produced by (βB-HB) when per-
forming the value function backup overB instead of4H̄ , is bounded
by: ηprune ≤ µB · (βB + εB‖r‖/(1− γ)).

PROOF. First, we note that applying a similar argument to that
used to derive that β-H is a contraction mapping, we prove that
βB-HB is also a contraction mapping on V . Let υ be a value
function in V , and (0-HB) be the backup operator that plans only
over distributions µ ∈ B but keeps all non dominated hyperplanes
for each distribution µ ∈ B. Using the triangle inequality, we
know that the error ‖(βB-HB)υ − (0-H)υ‖ produced by βB-HB

is bounded by ‖(βB-HB)υ− (0-HB)υ‖+ ‖(0-HB)υ− (0-H)υ‖.
We thus propose a two-fold step method that bounds the two ex-
pressions above.

952

On the one hand, we establish the error φ1 = ‖(βB-HB)υ −
(0-HB)υ‖ made by preserving only one non β-dominated policy
node for each individual history. Let h be a joint history where
βB-HB makes it worst error. This is achieved by pruning away
policy-node xi and hyperplane υx

ixj . Let υx
i
hx
j
h be the hyperplane

that is maximal for h. By pruning υx
ixj , βB-HB makes an error of

at most µ(h)[υx
ixj (h) − υxihxj (h)]. Furthermore, we know that

υx
ixj (h) ≤ υxihxjh(h). Therefore, φ1

≤ µ(h)[υx
ixj (h) − υx

i
hx
j

(h)] (7)

= µ(h)[υx
ixj (h) − υx

i
hx
j

(h) + (υx
ixj (h) − υx

ixj (h))] (8)

≤ µ(h)[υx
ixj (h) − υx

i
hx
j

(h) + υ
xihx

j
h (h) − υx

ixj (h)] (9)

= µ(h)[υ
xihx

j
h − υx

i
hx
j

] · p(h) (10)

≤ ‖υx
i
hx
j
h − υx

i
hx
j
‖ · µ(h) (11)

≤ βB · µB (12)

The equation (8) results from adding zero (υx
ixj (h)− υxixj (h))

to equation (7). In inequality (9), we replace the third expression
υx

ixj on the right hand side by υx
i
hx
j
h , since υx

i
hx
j
h is maximal for

h. Rearranging terms in equation (9) yields equation (10) where
p(h) is the matrix form of p(s|h). Applying the Chebyshev norm
and the definition of βB result in inequalities (11) and (12), respec-
tively.

On the other hand, we establish the error φ2 = ‖(0-HB)υ −
(0-H)υ‖ produced by (0-HB) by planning only over B instead of
4H̄ . Let µ′ ∈ 4H̄\B be the distribution where βB-HB makes
its worst error, and µ ∈ B be the closest sampled distribution to
µ′. Let u be the value function that would be maximal at µ′. Let
υ be the value function that is maximal at h. By failing to include
hyperplanes that compose u in its solution set, (0-HB) makes an
error of at most u(µ′)− υ(µ′). In addition, we know that υ(µ) ≥
u(µ). So, φ2

≤ u(µ′)− υ(µ′) (13)
= u(µ′)− υ(µ′) + (u(µ)− u(µ)) (14)
≤ u(µ′)− υ(µ′) + υ(µ)− u(µ) (15)
= (u− υ) · (µ′ − µ) (16)
≤ ‖u− υ‖ · ‖µ′ − µ‖1 · µB (17)
≤ εB · µB · ‖r‖/(1− γ) (18)

The equation (14) results from adding zero (u(µ) − u(µ)). In
inequality (15), we replace the third expression u(µ) on the right
hand side by υ(µ), since υ is maximal at µ. Rearranging terms
in equation (15) yields equation (16). Inequality (17) follows from
Hölder inequality and inequality (18) results from the definition of
εB . This ends the proof.

THEOREM 2. For any distribution set B and any iteration τ ,
the error of H-PI algorithm, ‖υτ − υ∗‖, is bounded by: ητ ≤
ε/2 +

(
βB/(1− γ) + ‖r‖εB/(1− γ)2

)
µB .

PROOF. The overall error ητ in H-PI at iteration τ is bounded
by ‖υτ − υ∗τ‖ + ‖υ∗τ − υ∗‖. Because βB-HB is a contraction
mapping, when the stooping criterion ‖υτ − υτ−1‖ ≤ ε(1− γ)/γ
holds, the second term ‖υ∗τ − υ∗‖ is bounded by ε/2. The remain-
der of this proof states and demonstrates a bound on the first term
ητ = ‖υτ −υ∗τ‖ as follows: ητ = ‖(βB-HB)υτ−1− (0-H)υ∗τ−1‖
≤ ‖(βB-HB)υτ−1 − (0-H)υτ−1‖+ ‖(0-H)υτ−1 − (0-H)υ∗τ−1‖

This follows from the definition of backup operators βB-HB and
0-H, as well as the norm properties. We note that the first term on
the right hand side of the last inequality is in fact error estimate
ηprune. Moreover, as 0-H is a contraction mapping, the second

term on the right hand side of the last inequality is bounded by
γ‖υτ−1 − υ∗τ−1‖. Replacing these terms yields:

ητ ≤ ηprune + γ‖υτ−1 − υ∗τ−1‖ (19)

Then, the error-bound follows as a consequence of Lemma 2, the
definition of ητ−1 = ‖υτ−1 − υ∗τ−1‖ and series sum properties:

ητ ≤ ηprune + γητ−1

≤
(
βB + ‖r‖εB

1−γ

)
· µB + γητ−1

≤
(
βB
1−γ + ‖r‖εB

(1−γ)2

)
µB

This ends the proof.

This result is rather intuitive. Indeed, the error produced by the
H-PI relies on three terms. The first ε/2 denotes the error pro-
duced by cutting off H-PI iterations when the stopping criterion
is reached. The second term βB/(1− γ) represents the error pro-
duced by adding only non β-dominated hyperplanes – and in some
case only a single hyperplane for each joint history. In other words,
by pruning all βB-dominated hyperplanes for each joint history.
The last term εB‖r‖/(1 − γ)2 illustrates the error produced by
planning only over a small set B. The overall error states the rela-
tionship between exact PI, β-PI and H-PI algorithms.

This result synthesizes error-bounds for policy iteration algo-
rithms with respect to three criteria: the backup operator used; the
distribution set, and the pruning criterion. This general error-bound
can be used to bound the error produced by any algorithm designed
within β-PI’s algorithmic framework. In particular, when we plan
only over a single joint history h at a time using H-PI – as does
point-based algorithms including MBDP [16], MBDP-OC [7], PBIP
[10], and PBIP-IPG [2], the error is bounded by ε/2 + βB

(1−γ)
+

‖r‖εB
(1−γ)2

µB . However, if we plan over the entire distribution µ, H-PI

yields a tighter error-bound, i.e., ε/2 + ‖r‖
(1−γ)2

· εB · µB .
This error-bound also suggests that H-PI can tightens the error

even more when its distributions setB is uniformly dense in the set
of reachable distributions4H̄ . Selecting the best distribution set in
this sense would require the generation of all possible distributions
given all possible decision rule and the distributions at hand. As
it current stands, we do not address this problem. The selection
of our distribution set, is based on trajectories of distributions. We
create trajectories based on the current value function. Each such
trajectory starts with the initial distribution µ0, we then executes
the greedy decision rule specified by the current value function,
and finally select the successor distribution.

5. EMPIRICAL EVALUATIONS
We now evaluate the performance of H-PI in comparison with

other recent approximate solvers, such as NLP and BPI. Experi-
ments have been run on Intel Core Duo 1.83GHz CPU processor
with 1Gb main memory.

5.1 Results
We begin by demonstrating the advantage of H-PI with respect

to NLP and BPI. As we can see in graphs in Figure 5, H-PI out-
performs NLP and BPI in all tested DEC-POMDP domains and in
both computation time and solution quality.

As we explain above, H-PI plans only over a small set of se-
lected distributions experienced by the agents during the offline
planning stage. Such distributions often lie near a structured, low-
dimensional subspace. For example, in the boxpushing domain, we
only consider 6 distributions since the domain is very structured

953

MABC RECLYCLING-ROBOT MEETING-GRID COOPERATIVE BOX-PUSHING

 0

 2

 4

 6

 8

 10

 0 50 100 150 200

Ex
pe

ct
ed

 V
al

ue
 V

(b
0)

CPU Time (sec.)

H-PI
H-PI2

NLP
BPI

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 1000 2000 3000 4000 5000 6000

E
x
p

e
c
te

d
 V

a
lu

e
 V

(b
0

)

CPU Time (sec.)

H-PI
H-PI2

NLP
BPI

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

 6.5

 0 100 200 300 400 500 600 700 800

Ex
pe

ct
ed

 V
al

ue
 V

(b
0)

CPU Time (sec.)

H-PI
H-PI2

NLP
BPI

-20
-10

 0
 10
 20
 30
 40
 50
 60
 70

 0 2000 4000 6000 8000 10000 12000

Ex
pe

ct
ed

 V
al

ue
 V

(b
0)

CPU Time (sec.)

H-PI
H-PI2

NLP
BPI

Figure 5: Performance results for DEC-POMDP benchmark problems from the literature

– more precisely often there is only a single possible next obser-
vation for a given history, this considerably limits the number of
possible next distributions.While NLP and BPI compute the pol-
icy based on a continuum, by planning over this low-dimensional
subspace, H-PI saves considerable computational efforts – thus in-
creasing its ability to find good solutions very quickly. Further-
more, it builds the best possible joint-policy graph – assigning a
single policy node for each individual history. This tightens the
size of the solution produced. Notice, however, that the size of
the solution is not bounded by B. Indeed, in the infinite-horizon
case the policy nodes are interconnected – that is by keeping policy
node x we also keep policy nodes that are reachable starting from
x. Finally, because of all its enhancements, H-PI does not need
to bound the size of the solution produced – it is able to provide
larger policy graphs for problems that require such policies so as
to achieve reasonable performances. For example, in the reclycing
robot domain, H-PI produces twice the expected value produced
using either NLP or BPI but it requires policies that are 250 times
larger than those in either NLP or BPI. It is worthwhile to notice
that policy graphs produced by NLP and BPI are stochastic – thus
even though the number of policy nodes is reduced, the equivalent
deterministic policy graph would be much larger.

We continue to study the performance of H-PIwith respect to the
distribution set B. When we plan other belief states corresponding
to histories where µ(h) > 0, H-PI is referred to as H-PI2, other-
wise we use H-PI. When evaluating the performance of H-PI in
comparison with H-PI2 – see graphs Figure 5, we note that H-PI2

is faster but keeps too much joint policy nodes – this limits its per-
formances in comparison to H-PI. This is mainly because, H-PI2

often keeps many policy nodes of each individual history, while H-
PI only keeps a single one. Moreover, as we already discussed,
by planning over belief states rather than distributions over histo-
ries the error-bound is larger. This explains why the expected value
produced by H-PI is always superior to the one produced using
H-PI2. However, by increasing the number of belief states consid-
ered we may increase the expected value. As illustrated in Figure 6,
as the number of belief states grows the solution quality improves
and the computation time also grows (and vice versa). Even more
importantly, at some point increasing the number of belief states do
not provide significant improvement in the solution quality. These
observations support the theoretical results on the error produced
by H-PI, that is a denser sampling of the set 4H̄ produces more
distributions and results in a tighter error bound. It also highlights
the impetus of using a sampling method that selects good distribu-
tions or belief states.

6. CONCLUSION
We have introduced a new algorithmic framework (β-PI) that

exploits the scalability of the approximate methods while preserv-
ing the theoretical properties of the near-optimal techniques. In
particular, it provides the ability to bound the error produced when
we approximate the solution using the sufficient statistic in gen-

-20

-15

-10

-5

 0

 5

 0 20 40 60 80 100

Ex
pe

ct
ed

 V
al

ue
 V

(b
0)

CPU Time (sec.)

H-PI
H-PI2

NLP
BPI

-20

-15

-10

-5

 0

 5

 0 5 10 15 20 25 30 35

Ex
pe

ct
ed

 V
al

ue
 V

(b
0)

CPU Time (sec.)

|B|=20
|B|=18
|B|=15
|B|=11

Figure 6: Performance results of the H-PI algorithm for the multi-
agent tiger domain, and different belief space sizes.

eral DEC-POMDPs. We introduce a heuristic derivation of β-PI,
namely H-PI. We have demonstrated how H-PI outperforms state-
of-the-art infinite-horizon DEC-POMDP solvers in all tested do-
mains. In this paper we identify the general requirements from
a β-PI solver, and suggested a possible implementation for DEC-
POMDPs. In the future, we will investigate the integration of meth-
ods for the selection of good distributions. We also intend to ap-
ply β-PI to factored domains such as fire-fighting or network dis-
tributed sensors [14], reducing the dimensionality of the sufficient
statistic – thus enabling us to scale to even larger domains.

7. REFERENCES
[1] C. Amato, D. S. Bernstein, and S. Zilberstein. Optimizing memory-bounded

controllers for decentralized pomdps. In UAI, 2007.
[2] C. Amato, J. S. Dibangoye, and S. Zilberstein. Incremental policy generation

for finite-horizon dec-POMDPs. in ICAPS, 2009.
[3] R. Aras and A. Dutech. An investigation into Mathematical Programming for

Finite Horizon Decentralized POMDPs. in JAIR, 2010. to appear.
[4] D. S. Bernstein, C. Amato, E. A. Hansen, and S. Zilberstein. Policy iteration for

decentralized control of Markov Decision Processes. JAIR, 34:89–132, 2009.
[5] D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein. The complexity of

decentralized control of Markov Decision Processes. Math. Oper. Res., 27(4),
2002.

[6] A. Boularias and B. Chaib-draa. Exact dynamic programming for decentralized
POMDPs with lossless policy compression. In ICAPS, pages 20–27, 2008.

[7] A. Carlin and S. Zilberstein. Value-based observation compression for
DEC-POMDPs. In AAMAS, 2008.

[8] J. S. Dibangoye. Contribution à la résolution des problèmes décisionnels de
Markov centralisés et décentralisés: algorithmes et théorie. PhD thesis.

[9] J. S. Dibangoye, B. Chaib-draa, and A.-I. Mouaddib. Policy iteration algorithms
for DEC-POMDPs with discounted rewards. in MSDM, 2009.

[10] J. S. Dibangoye, A.-I. Mouaddib, and B. Chaib-draa. Point-based incremental
pruning heuristic for solving finite-horizon DEC-POMDPs. in AAMAS, 2009.

[11] E. A. Hansen, D. S. Bernstein, and S. Zilberstein. Dynamic programming for
partially observable stochastic games. In AAAI, pages 709–715, 2004.

[12] A. Kumar and S. Zilberstein. Point-based backup for decentralized pomdps:
complexity and new algorithms. In AAMAS, pages 1315–1322, 2010.

[13] M. L. Putterman. Markov Decision Processes: Discrete Stochastic Dynamic
Programming. John Wiley and Sons, New York, NY, 1994.

[14] D. V. Pynadath and M. Tambe. Multiagent teamwork: analyzing the optimality
and complexity of key theories and models. In AAMAS, pages 873–880, 2002.

[15] Z. Rabinovich, C. V. Goldman, and J. S. Rosenschein. The complexity of
multiagent systems: the price of silence. In AAMAS, pages 1102–1103, 2003.

[16] S. Seuken and S. Zilberstein. Formal models and algorithms for decentralized
decision making under uncertainty. JAAMAS, 17(2):190–250, 2008.

[17] D. Szer and F. Charpillet. An optimal best-first search algorithm for solving
infinite horizon DEC-POMDPs. In ECML, pages 389–399, 2005.

[18] D. Szer and F. Charpillet. Point-based dynamic programming for
DEC-POMDPs. In AAAI, pages 16–20, July 2006.

954

