
Multiagent Argumentation for Cooperative Planning in
DeLP-POP

Pere Pardo
IIIA - CSIC

Campus UAB, s/n
08193 Bellaterra, Spain
pardo@iiia.csic.es

Sergio Pajares
Univ. Politècnica de València

Camino de Vera, s/n
46022 Valencia, Spain

spajares@upv.dsic.es

Eva Onaindia
Univ. Politècnica de València

Camino de Vera, s/n
46022 Valencia, Spain

onaindia@upv.dsic.es
Lluís Godo
IIIA - CSIC

Campus UAB, s/n
08193 Bellaterra, Spain
godo@iiia.csic.es

Pilar Dellunde
IIIA - CSIC and Univ.

Autònoma de Barcelona
08193 Bellaterra, Spain

pilar@iiia.csic.es

ABSTRACT
This contribution proposes a model for argumentation-based
multi-agent planning, with a focus on cooperative scenarios.
It consists in a multi-agent extension of DeLP-POP, par-
tial order planning on top of argumentation-based defeasible
logic programming. In DeLP-POP, actions and arguments
(combinations of rules and facts) may be used to enforce
some goal, if their conditions (are known to) apply and ar-
guments are not defeated by other arguments applying. In
a cooperative planning problem a team of agents share a set
of goals but have diverse abilities and beliefs. In order to
plan for these goals, agents start a stepwise dialogue consist-
ing of exchanges of plan proposals, plus arguments against
them. Since these dialogues instantiate an A∗ search al-
gorithm, these agents will find a solution if some solution
exists, and moreover, it will be provably optimal (according
to their knowledge).

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

General Terms
Algorithms, Theory

Keywords
Argumentation, Multiagent Planning, Cooperation

1. INTRODUCTION
The present contribution proposes a formal model of argu-

mentative dialogues for multi-agent planning, with a focus
on cooperative planning. It consists in a multi-agent exten-
sion of the DeLP-POP framework in [5], where it is shown

Cite as: Multiagent Argumentation for Cooperative Planning in DeLP-
POP, Pere Pardo, Sergio Pajares, Eva Onaindia, Lluís Godo and Pilar Del-
lunde, Proc. of 10th Int. Conf. on Autonomous Agents and
Multiagent Systems (AAMAS 2011), Tumer, Yolum, Sonenberg
and Stone (eds.), May, 2–6, 2011, Taipei, Taiwan, pp. 971-978.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

how to adapt partial order planning (POP) to model a plan-
ner agent able to reason defeasibly (DeLP). This framework
combines POP’s minimal constraints on execution ordering
(see [9]), with DeLP inference based on interactions between
arguments (see [4]). A DeLP-POP planner can enforce goals
with a combination of actions and undefeated arguments, if
their conditions (are known to) apply1. Arguments, though,
are not like actions in that they apply even if unintended.
Thus, arguments will not only occur to intentionally support
some step of a plan, but also they will happen to defeat or
defend some such supporting argument and the plan con-
taining it.

The main challenge presented by cooperative multi-agent
DeLP-POP is plan evaluation and search. We present some
results2 about dialogues for argumentative plan search that
apply to cooperative scenarios. In these scenarios, we have
a team of agents aware of a common set of goals (hence
trustable), but ignorant of others’ abilities and beliefs, who
must find a plan. An obvious solution, centralized planning
carried by some planner with knowledge of these agents’ be-
liefs and actions, would arise questions of efficiency and pri-
vacy loss (beyond necessity). Instead we will use centralized
DeLP-POP just for comparison with dialogues proposed. A
dialogue consists in a series of exchanges3 of (1) plan propos-
als addressing the current goal, plus (2) potential arguments
against (1). Atomic information (facts, rules, actions) con-
tained in others’ messages (1) and (2) will be extracted and
adopted to devise new ideas for both (1) and (2).

The main result of this contribution is that such a dia-
loguing team of planner agents actually implements an A∗

1The advantages of DeLP-POP towards reasoning about ac-
tions are clear: if planning techniques prevent the well-
known frame problem, by getting rid of the need to explicitly
represent what does not change after an action, DeLP-POP
succeeds against the qualification problem as well, since
DeLP-rules can be used to encode defeasible effects of ac-
tions, as shown in Section 2.2.
2The proofs of these formal results can be found in
http : //www.iiia.csic.es/files/pdfs/AAMAS11ppogd.pdf.
3Dialogues are turn-based, since this choice models typically
cooperative scenarios where all agents are treated in a uni-
form way, but also can (by adding some restrictions) model
agents with power to veto information or decisions.

971

search procedure. Thus, the team of agents need not search
the full space of plans: the dialogue terminates at a solution
(if some solution exists) which is provably optimal.

2. PRELIMINARIES
Notation: Throughout the paper we make use of these

conventions: the projection functions are πk(〈a0, . . . , an〉) =
= ak (for k ≤ n), and πk̂(〈a0, . . . , ak−1, ak, ak+1, . . . , an〉) =
= 〈a0, . . . , ak−1, ak+1, . . . an〉. Given propositional variables
p, . . . ∈ Var, and a negation ∼, we define the set of literals
` ∈ Lit = Var∪{∼ p | p ∈ Var}. Also, define ` as p =∼ p, and
∼ p = p, for any p ∈ Var; and for X ⊆ Lit, X = {` | ` ∈ X}.
In general, if F : X → Y is a function and X ′ ⊆ X, we
denote F [X ′] = {f(x) | x ∈ X ′}. The transitive closure of a
relation R is denoted tc(R). The size of a set X is denoted
|X|. If X is a set, P(X) denotes its power set, and X

(
στ...
σ′τ ′...

)
denotes the set obtained by replacing σ by σ′, τ by τ ′, . . . in
set X.

2.1 Defeasible Logic DeLP

In [4], the authors propose a non-monotonic consequence
relation, called warrant, built upon the relation of defeat
between constructible arguments for or against a literal. A
defeasible logic program (or de.l.p., henceforth) is a pair
T = (Ψ,∆) consisting of a strict and a defeasible part:

• a consistent set Ψ ⊆ Lit of facts, and

• a set ∆ of defeasible rules δ = `−� `0, . . . , `k
where `, `0, . . . , `k ⊆ Lit. Rule ` −� `0, . . . , `k expresses:
warrant for `0, . . . , `n provide a (defeasible) reason for `
to be warranted4. We denote body(δ) = {`0, . . . , `n} and
head(δ) = ` as, respectively, the body and head of δ.

Derivability in T = (Ψ,∆) is closure under modus ponens:
literals in Ψ are derivable and, given a rule δ, if each ` ∈
body(δ) is derivable, then head(δ) is derivable.
An argument A for ` in a de.l.p. (Ψ,∆), denoted 〈A, `〉 or
simply A, is a set of rules A ⊆ ∆ such that (i) ` is derivable
from (Ψ,A), (ii) the set Ψ∪A is non-contradictory, and (iii)
A is a minimal subset of ∆ satisfying (i) and (ii).

We also define, for an argument A for `

concl(A) = `,
base(A) = (

⋃
body[A]) r head[A], and

literals(A) = (
⋃

body[A]) ∪ head[A]

A derivation of -or argument for- a literal ` from (Ψ,∆),
still, does not suffice for its being warranted in (Ψ,∆). The
latter depends on the interaction among arguments, which
will grant consistency.

Given two arguments A,B, we say A attacks B if the
conclusion of A contradicts some fact used in B, that is, if
concl(A) ∈ literals(B). This attack relation may roughly be
seen as symmetric, in the sense that each attacked argument
B contains a sub-argument B′ attacking A. (A sub-argument
of B is a subset B′ ⊆ B supporting some inner conclusion `′

of B, i.e. with `′ ∈ literals(B).) To decide which contend-
ing argument prevails, a notion for preference among pairs
of conflicting arguments is needed. The formal criterion for
preference here adopted lies in a comparison of information
used in each argument: an attacking argument which makes
use of more precise rules (or more premises) is a proper de-
feater for -is preferred to- the contending argument. If two

4Strict rules, introduced in [11], [4], have not been consid-
ered in planning, see [5].

contending arguments are not comparable in these terms,
they are a blocking defeater for each other5.

Given an argument A0 for `, an argumentation line Λ =
[A0, . . . ,An] in (Ψ,∆) is a sequence of arguments constructi-
ble in (Ψ,∆), where each argument Ak+1 is a defeater for
its predecessor Ak. Some further conditions are needed to
rule out circular or inconsistent argumentation lines; briefly,
arguments supporting (resp. interfering with) A0, i.e. of the
form A2n (resp. A2n+1) must form a consistent set, and no
sub-argument A′ of an argument Am ∈ Λ may appear later
in Λ (i.e. it cannot be that A′ = Am′ with m′ > m); see [4]
and [5].

Since in a de.l.p. (Ψ,∆) an argument can have several de-
featers, different argumentation lines rooted in A0 can exist.
Their union gives rise to a tree-like structure, the dialectical
tree for A0, denoted TA0(Ψ,∆). To check whether A0 is de-
feated or undefeated, the following procedure on TA0(Ψ,∆)
is applied: label with a U (for undefeated) each terminal
node in the tree (i.e. each argument with no defeaters at
all). Then, in a bottom-up fashion, we label a node with:{

U if each of its successors is labeled with a D

D (for defeated) otherwise

Finally, we say a literal ` is warranted in (Ψ,∆), denoted
` ∈ warr(Ψ,∆), iff there exists an argument A in (Ψ,∆) with
concl(A) = ` and A labeled U in TA(Ψ,∆). Henceforth, B
defeats A will stand for: Λ = [. . . ,A,B, . . .] is acceptable.

2.2 A DeLP extension for POP planning
We briefly recall here state-based and POP planning meth-

ods, before introducing DeLP-POP. A planning domain is a
tuple M = (Ψ, A,G) where Ψ ⊆ Lit represents initial atomic
facts, A is a set of actions and G ⊆ Lit is the set of goals of
an agent. Here, an action α = 〈P(α),X(α)〉 is a set of pre-
conditions (for α to be applicable) and effects. A solution
is a plan Π leading a Ψ-world into a G-world by means of
actions AΠ ⊆ A.

In state-based planning, a plan Π is a linear sequence of
actions, and thus before each action αk in AΠ, we know
which consistent state σk ⊆ Lit will hold, with σk consistent.

In contrast, a partial order plan (henceforth: plan) Π is
a set of actions whose execution ordering ≺Π (i.e. links
on action pairs) is only partially specified (thus encoding
multiple linear plans). In POP, Ψ and G are encoded as
dummy actions αΨ ≺Π αG with X(αΨ) = Ψ, P(αG) = G
and P(αΨ) = X(αG) = ∅. Partial orderings give rise to the
notion of threat in Π: an action step potentially interfering
with (applicability of) some other action step. The set of
all threats to a plan Π will be denoted AllThreats(Π). When
detected, threats are to be solved by some threat resolu-
tion step. Thus in POP, the set of flaws to be solved in
a plan Π includes threats and pending goals(initially being
AllThreats(Π) = ∅ and goals(Π) = P(αG)). The partial order
of Π determines, for each α ∈ AΠ, a (possibly inconsistent)
set of facts potentially planned to occur before α (i.e. the
threats to this α). This set, called here the proto-state of α
(in Π), will be denoted SΠ

α .
An extension of POP with DeLP-style argumentation, de-

noted DeLP-POP, was introduced in [5]. A DeLP-POP plan-

5Or, less abstractly, one could instead specify some par-
ticular preference between rules and then induce a defeat
relation for arguments out of it. See [11] for details.

972

ner can appeal both to arguments and actions as a way to
resolve goals or threats. The original DeLP or POP notions
of argument, planning domain, plan, link and threat must
be modified accordingly. An argument A ⊆ ∆ is consis-
tent if base(A) ∪ A is non-contradictory (instead of condi-
tion (ii) above for Ψ ∪ A, since now arguments may apply
everywhere, not just at Ψ). DeLP-POP planning domains
M = (T,A,G) contain now a de.l.p. T = (Ψ,∆), where
the set of initial facts Ψ ⊆ Lit induces αΨ as before and
the new element ∆ contains defeasible rules that may apply
anywhere in the plan. An action is a 3-tuple of the form
α = 〈P(α),C(α),X(α)〉, described by, resp., sets of precon-
ditions, constraints and effects. If literals in P(α) are en-
forced (or warranted) and those in C(α) fail to be enforced
(or warranted), then action α is applicable and its execution
will enforce each ` ∈ X(α) (thus deleting ` if holding pre-
viously). An argument A is applicable at SΠ

α if base(A) is
enforced in SΠ

α ; in this case concl(A) is derivable6.
Let ` be an open goal, motivated by some step β ∈ AΠ or
A ⊆ ∆; i.e. ` ∈ P(β) or ` ∈ base(A). If goal ` is planned
to be enforced by an action α, this is encoded as a causal
link of Π, in a set denoted by CL(Π): (α, `, κ) ∈ CL(Π) ⊆
AΠ × goals(Π) × (AΠ ∪ P(∆)), with κ = β or κ = A. If
goal ` ∈ P(β) is to be enforced by an argument, this is
encoded as a support link of Π, in a set denoted SL(Π):
(B, `, β) ∈ SL(Π) ⊆ P(∆) × goals(Π) × AΠ. (Note an ar-
gument B cannot support some other argument A as a link
in SL(Π). To get B to support step A, just replace step A
by A ∪ B.) Additional ordering constraints between action
steps are encoded simply as (α, β) ∈ OC(Π) ⊆ AΠ×AΠ. The
union of causal links, support links (ignoring their goals(Π)
component) and ordering constraints OC(Π) induce, by tak-
ing the transitive closure, the partial order of Π, i.e. the
order between its steps, denoted ≺Π:

≺Π= tc(OC(Π) ∪ π1̂(CL(Π)) ∪ π1̂(SL(Π)))

Now we define a DeLP-POP plan Π for M = ((Ψ,∆), A,G)
as a tuple Π = (AΠ, goals(Π),OC(Π), CL(Π),SL(Π)) con-
taining actions to be used AΠ ⊆ A, current open goals of Π,
and links or constraints on the execution ordering.

In DeLP-POP an agent with planning domain M builds
a plan incrementally: she keeps refining it with a new step
at a time until a solution (a plan with no unsolved flaws)
is found. The algorithm used in [5] is the following: For a
given ((Ψ,∆), A,G), plan search starts with the empty plan
Π∅, only containing dummy actions αΨ ≺Π αG. At each it-
eration, with current plan Π∅(ξ0, . . . , ξk), the algorithm non-
deterministically selects an unsolved flaw (a threat, prefer-
ably) and a refinement step ξk+1 for it (action-, argument-
or threat resolution step); after this refinement we obtain
plan Π∅(ξ0, . . . , ξk, ξk+1), and the algorithm updates the set
of detected unsolved flaws, so goals and threats are added (if
new) or deleted (if solved). If a failure occurs (no refinement
is available), the algorithms backtracks to the parent node.

We will denote by Plans(M) the graph whose nodes are
plans for M, related by is 1-step refinable into; the set of
solution plans will be denoted by Sol(Plans(M)).

Threat detection is based on proto-states, defined next.
For a fixed M = ((Ψ,∆), A,G), a plan Π and α ∈ AΠ, SΠ

α

6See [5]’s backward planning algorithm for a full description
of an instance κ of an action- or argument-steps, or an open
goal in a plan Π. Each such instance κ is labeled by its full
path of links up to some g ∈ G, i.e. 〈κ, . . . , g〉.

denotes the set of literals obtaining before α when we extend
≺Π with some new constraint7:

SΠ
α = {` ∈ Lit | ∃α′ ∈ AΠ s.t. ` ∈ X(α′) and ≺Π ∪{〈α′, α〉}

is consistent, and ∀β ∈ AΠ, if ` ∈ X(β) then
{〈α′, β〉, 〈β, α〉} * tc(≺Π ∪{〈α′, α〉})}

We use proto-state SΠ
α to compute which actions or unin-

tended arguments might be triggered by Π in a way inter-
fering with other steps of Π.

Three kinds of threats must be checked during plan con-
struction in DeLP-POP, see also Figure 1:

(a) action-action: (β, (α0, `, α1)) ∈ AΠ × CL(Π), s.t. ` ∈
X(β) and ≺ Π ∪ {〈α0, β〉, 〈β, α1〉} is consistent; here β
threatens the link between α0 and α1,

(b) action-argument: ((β, n), (B, b, α1)) ∈ (AΠ × Lit) ×
SL(Π), with X(β)∩ literals(B) ⊇ {n}, where ≺Π makes
β to supply n ∈ SΠ

α1 ; here β threatens some literal used
in B, and

(c) argument-argument: (C, (B, b, α1)) ∈ P(∆) × SL(Π),
with C defeating B and base(C) ⊆ SΠ

α1 , C undefeated

in SΠ
α1 .

Figure 1: Threat types: (a) action-action, (b)
action-argument and (c) argument-argument.

For each kind of threat, different maneuvers, inspired by
those in POP, may be tried: moving the cause of the threat
to a harmless position (with new ordering constraints; see
Figures 2 and 3(c’)); or eliminating the threat itself (with a
counter-argument8 or a new action step; see Figures 3(c”)-
(c”’) 9. We refer the reader to the algorithm in [5] for details.

Finally we describe how to model an action with defeasible
effects. Suppose action α has indisputable effects p0, p1, . . .
as well as n defeasible effects d0, d1, . . ., which are defeated

7Note that SΠ
α is computed as if α was already applicable.

In particular, arguments occurring before α play no role in
SΠ
α .

8Informally, we might see this threat detection-resolution
process as generating a dialectical tree T(SΠ

α ,∆)(A0) for each

(A0, ·, α) ∈ SL(Π). But now the tree is built w.r.t. varying
Π, due to new threat resolution refinements.
9Note a new precondition p and new link of type SL(Π)
or CL(Π) are needed to preserve these maneuvers’ effect in
future refinements.

973

Figure 2: Solutions to (a), (b). Demote: (a’), (b’);
and Promote: (a”), (b”).

Figure 3: Solutions to (c): Delay (c’), Defeat (c”)
and Disable (c”’).

by conditions d′0, d
′
1, . . . respectively. At its turn, the lat-

ter d′0, . . . can be defeated, resp., by d′′0 , . . ., and so on.
To represent this α, introduce an instrumental irrevoca-
ble effect µ′ (meaning α was just executed); then define
X(α) = {p0, p1, . . . , µ

′} and expand the set of rules ∆ with
{dk−�µ′}k<n∪{dk−�µ′, d′k}k<n∪.∪{dk−�µ′, d′k, d′′k}k<n
etc. This way DeLP-POP deals with the qualification prob-
lem.

3. ARGUING ON MULTI-AGENT PLANS
The purpose of multi-agent argumentative dialogues is to

let agents reach an agreement on (i) the evaluation of plans
(Section 4.1); and (ii) adoption of a plan in decentralized
plan search (Section 4.2), by allowing agents to refine or
revise other agents’ plans and defend one’s proposals. Be-
fore addressing (i) and (ii), though, several modifications of
single-agent DeLP-POP are in order.

First, each agent x ∈ Ag is initially endowed with a plan-
ning domain Mx = ((Ψx,∆x), Ax, Gx). Communication (of
facts, rules, actions) from agent x to an agent y will be ren-
dered as an expansion (resp., in Ψy,∆y, Ay) of My.

Second, towards collaborative discovery of potential ar-
gument steps or threats and their applicability, agents must
send each other known initial facts and pre-arguments; these

are like arguments but with partial knowledge of its base,
and can be expanded with others’ known rules and facts.
Given an agent x’s plan Π and some α ∈ AΠ, we define a pre-
argument A as a pair of literals and rules (X,A), where X ⊆
base(A) are literals known to hold before α, and base(A)rX
contains literals that may not be known that hold, or how to
derive them. We define the set of pre-arguments in a proto-
state SΠ

α as PArgs(SΠ
α ,∆x) := {(X,A) | X ⊆ SΠ

α ,A ⊆ ∆x}.
Third, we introduce the cost of an action, e.g. define ac-
tion α as 〈P(α),X(α), cost(α)〉 where cost(α) ∈ R+. This
induces an additive plan cost function cost(Π∅(ξ0, . . . , ξk) =
Σk′≤kcost(ξk′) that will guide plan search. Another modifi-
cation needed is the following.

Relativizing plans to domains:
Even if any plan Π originates from a fixed planning domain
M, we can think of so-originated Π also as a plan for some
other planning domain M′, and (re-)evaluate Π w.r.t. M′.
This is useful when an agent revises her beliefs or is com-
municated a plan. We denote by M v M′ that M′ is an
expansion of M, i.e. M′ is such that for all X ∈ M, its
counterpart X ′ ∈ M′ satisfies X ⊆ X ′. And similarly for
T v T ′. All these expansions may actually translate Π into
Π′ = Π

(
αΨαG
αΨ′αG′

)
.

Lemma 1. Proto-states SΠ
α are ⊆-monotonic under ex-

pansions of T : T v T ′ implies SΠ
α ⊆ SΠ′

α , where Π′ :=
Π
(
αΨ
αΨ′

)
.

Also, note that PArgs(SΠ
α , ·) is ⊆-monotonic under expan-

sions of ∆: ∆ ⊆ ∆′ makes PArgs(SΠ
α ,∆) ⊆ PArgs(SΠ

α ,∆
′).

Lemma 2. Action-action and action-argument threats (with
action 6= αΨ) do not increase after expansions of T .

In contrast, new (αΨ) action- and argument-argument threats
may appear after expansions of Ψ and, resp., Ψ-or-∆.

For expansions M′ w M a sufficient condition for M′ to
accept Π′ is that M′ at least contains the elements of Π
(and, for Ψ′, no more than Ψ).

Lemma 3. Let M = ((Ψ,∆), A,G) be a planning domain
and Π a plan for M. Define MΠ = ((Ψ?,∆?), A?, G?) as:
Ψ? = {` ∈ Lit | (αΨ, `, ·) ∈ CL(Π)}, ∆? =

⋃
π0[SL(Π)],

G? = Grgoals(Π) and A? = (AΠ r{αΨ, αG})∪{αΨ? , αG?}.
Then, for any M′ = ((Ψ′,∆′), A′, G′) with Ψ′ ⊆ Ψ,

Π
(
αΨαG
αΨ′αG′

)
is a plan for M′ iff MΠ v M′

Only these types of threats that may increase after ex-
pansions will be open to argumentation when evaluating the
plan’s flaws (or its planhood). These results justify the suf-
ficiency of the next relativizations10:

Definition 1. Let Π be a POP for a given ((Ψ,∆), A,G),
and let T ′ = (Ψ′,∆′) be another de.l.p.. We define the rela-

tivization of SΠ
α to Ψ′,as SΨ′

α = SΠ′
α , with Π′ = Π

(
αψ
αψ′

)
. We

denote by ThreatsT
′
(Π) the set of threats to argument steps

in Π according to T ′, as the set of tuples (κ, (A, g, α)) ∈
(P(∆) ∪ Lit)× SL(Π) such that either:

10Initial dummy action αΨ is also initially different to each
agent. We will assume each agent x, when speaking, uses
the convention of referring to her initial action, i.e. αψx , by
using the neutral symbol αΨ.

974

κ ⊆ ∆, base(κ) ⊆ SΨ′
α , κ defeats A, and undefeated in SΨ′

α ;

or κ = `, with ` ∈ X(αΨ′) ∩ literals(A), and αΨ′ makes

` ∈ SΨ′
α true.

4. COOPERATIVE PLANNING
In the following, we assume we have a set of agents Ag =
{1, . . . , k}, each one with a planing domain Mx = ((Ψx,∆x),
Ax, Gx). In purely cooperative scenarios, agents have no in-
dividual interests (i.e. Gi = Gj for any i, j ∈ Ag) and hence
no incentives to retain relevant information. Moreover, we
assume

⋃
i∈Ag Ψi is a consistent set. Also, a unique team

dialogue to find a solution would suffice. Before presenting
dialogues for cooperative plan search, we introduce first a
simpler dialogue to evaluate a fixed plan.

4.1 Argumentative Plan Evaluation.
We present now a turn-based dialogue (an agent talk-

ing only during her turns) permitting agents i, j to collab-
orate to discover threats to any argument step A, i.e. with
(A, ·, α) ∈ SL(Π). Here Π is a plan for some Mi made pub-
lic. (That is, we assume MΠ v Mx, x ∈ Ag.). All agents
may contribute to argue against A.

Agents are enumerated by function ε : N+ → Ag as: ε(i+
r · |Ag|) = i for any r, i ∈ N+ and i ≤ |Ag|; that is, ε assigns
turns to agents this way: 1, 2, . . . , k, 1, 2, . . . At each turn
n + 1, agent ε(n + 1) sends a set An+1 of pre-arguments11

(X,B) or initial facts (∅, `), against an argument A used in
some support link (A, ·, α). For each (X,B) ∈ An+1, any
other agent j 6= ε(n+ 1) learns as initial facts those literals
stated in X that are not in her view of the proto-state, i.e.

with ` ∈ X rS
ψnj
α . All rules from B which are novel to j are

learned as well. Formally,

Definition 2. For x ∈ Ag let Mx = ((Ψx,∆x), Ax, G)
be given, and ε : N+ → Ag as above. Let Π be a plan
communicated by, say, agent 1 to Ag. We define for each
x ∈ Ag, A0 = ∅, ψ0

x = Ψx, ∆0
x = ∆x and

An+1 = {(κ, (A, ·, α) ∈ P(Lit)× Threats
Tn+1
ε(n+1)(Π) |

either κ = (X,B) and X ⊆ base(B) ∩ Sψ
n+1
ε(n+1)

α ;
or κ = (∅, `) ∈ {∅} × X(α

ψn+1
ε(n+1)

)}
ψn+1
x = ψnx ∪

⋃{X r S
ψnx
α | ((X,B), (A, ·, α)) ∈ An+1}

∪{` ∈ Lit | ((∅, `), (A, ·, ·)) ∈ An+1}
∆n+1
x = ∆n

x ∪ (π1[An+1] r Lit)

Finally, let n? be the smallest number such that An
?

= . . . =
An

?+|Ag| = ∅. We define ψωx = ψn
∗

x , and ∆ω
x = ∆n∗

x .

First note that literals learned in ψn+1
x from some ((X,B), ·)

∈ An+1 really come from the agent n+ 1’s ψ-set and prop-
agated to this proto-state.

Lemma 4. If ` ∈ X r S
ψnx
α for some ((X,B), (A, ·, α)) ∈

An+1, then ` ∈ ψnε(n+1).

Also note that, since the de.l.p. of each agent is finite,
n? is finite, i.e. these dialogues will always terminate in
a finite number of steps. This dialogue is compared next
with centralized plan evaluation, where (a) we consider the

11By exchanging arguments only, an agent might fail to share
information, if unaware of its relevance.

fusion of agents’ initial de.l.p.’s TΣAg = (ΨΣAg,∆ΣAg) =
(
⋃
x∈Ag Ψx,

⋃
x∈Ag ∆x), and then (b) a central planner com-

putes arguments and threats in this new de.l.p. (ΨΣAg,∆ΣAg).
The next theorem, then, compares the result of any agent
after the evaluation dialogue for ThreatsT

ω
x (Π) with that of

centralized evaluation ThreatsTΣAg(Π). Even if Tωx < TΣAg

may hold, both evaluations agree on threats detected in Π
and whether Π is a plan.

Theorem 1. Given Mx = ((Ψx,∆x), A,G) for each x ∈
Ag, Π a plan for M1 communicated to Ag r {1}. Then,
for each x, Π is a plan for ((ψωx ,∆

ω
x), A,G) iff it is for

(TΣAg, A,G), and Threats(ψωx ,∆
ω
x)(Π) = Threats(ΨΣAg,∆ΣAg)(Π)

4.2 Dialogue-based A∗ plan search.
The next step is to use these dialogues as part of more

dynamic dialogues wherein new plans are proposed. The
main result of this paper is that we can decentralize multi-
agent planning, at least in cooperative scenarios, by using
a dialogue-based plan search procedure. This is done by
comparing these dialogues with centralized planning in the
fusion of agents’ planning domains MΣAg = (TΣAg, AΣAg, G),
where AΣAg =

⋃
x∈Ag Ax. But first, we recall A∗ search and

show it can be used in single-agent DeLP-POP.

4.2.1 A∗ search in DeLP-POP.
Search algorithms, in the literature, are abstractly defined

with non-deterministic choice. In DeLP-POP plan search we
saw two such places for non-deterministic choice exist: the
selection of the next flaw to be solved12 (this is optional)
and a selection function g for the next refinement, based on
minimizing some evaluation function f(Π) that estimates
the cost of a solution refining Π.

We opt for an A∗ search algorithm, based on delayed
termination and an additive evaluation function f(Π) =
cost(Π) + f ′(Π), where f ′(Π) is some heuristic estimation
of the cost of some best solution Π? extending Π.

Recall that A∗ procedure is as follows. Start with the
initial node Π∅, and define sets open = {Π∅} and closed =
∅. At each iteration, open is expanded with all generated
refinements of current node Π, while Π is sent to closed.
Then, we minimize f [open] to select a refinement Π(ξ).

Notice that A∗ does not terminate at the first solution,
but keeps exploring for less costly possibilities, guided by
g(open) = argmin(f(open)). If, moreover, f ′ is optimistic,
i.e. f ′(Π) ≤ f ′(Π?) = cost(Π?, then this A? search finds an
optimal solution (if a solution exists). Below we will consider
the particular case f ′(Π) = 0, so our next-refinement choice
function will be just g(open) := argmin(cost[open]).

For a given planning domain M, we define Plansg(M) as
the set of nodes in Plans(M) that are generated under A∗

search with g.

Proposition 1. If f ′ be optimistic, g is admissible for
DeLP-POP search: Sol(Plans(M)) 6= ∅ iff Sol(Plansg(M)) 6=
∅, and a solution Π? in the latter is optimal.

The reason is as follows. Suppose M = (T,A,G) is a finite
domain, so that the cost of any action α ∈ A has positive
lower bound cost[A] ≥ δ > 0. Then if (T,A,G) is solvable,

12As examples of such heuristics: FAF, where flaws are ac-
cording fewer alternatives first, as [6]’s Z-LIFO. Or the
threat detect-&-solve order used in [5]’s algorithm.

975

a search algorithm guided by g is guaranteed to output an
optimal solution in Sol(Plansg(M)) if every infinite path has
unbounded cost (see [8]). To see this: if the path contains
infinite action steps then it is unbounded, since A is finite
implies that 0 < δ ≤ cost[A] for some δ. Now, if M is
finite, so is flaws(Π); hence null-cost threat resolution moves
must be finite. The same reasoning, plus the no-argument-
supports-argument policy, implies there can be no infinite
sequence of null cost argument steps so we are done.

Hence, A∗ can be applied to DeLP-POP plan search for
a fixed domain, e.g. centralized MΣAg. Below, we show
that A∗ is also applicable to dialogue-based multi-agent plan
search.

4.2.2 A∗ search in cooperative DeLP-POP.
Given agents Ag = {1, . . . , k}, decentralized plan search

is also realized as a turn-based dialogue. Turns are now of
the form (n,m) ∈ N × N, ordered lexicographically: (n,m)
occurs before (n′,m′) iff n < n′, or n = n′ and m < m′. The

agent speaking at (n,m) is ε(m), who sends a set Π(n,m) of
refinements of the plan selected at the n-th iteration of A∗,
and a set U (n,m) of potential threats to previous plans in

Π(n,m′) for m′ ≤ m. Potential threats are now labeled with
the link and the plan targeted, say Π′ in Π(n,m′). In terms
of evaluation dialogues, U (n,m) contains, for each such Π′,
the corresponding Am−m

′ × {Π′} (under some permutation

τ : Ag→ Ag and initial domains set at 〈M(n,m′)
τ(x) 〉x∈Ag).

Other agents x 6= ε(m) learn from U (n,m) and Π(n,m):
(1) literals from pre-arguments and causal links of the form
(αΨ, `, ·), (2) rules from pre-arguments and support links,
and (3) other agents’ actions from suggested plans. This

grants that each Π′ ∈ Π(n,m) is understood: MΠ′ v M(n,m)
x .

Only when, during |Ag| successive turns (n,m), . . . , (n,m+
|Ag|), agents do not submit more plans or possible threats,
we set ω(n) = m and move to turn (n + 1, 0). To do so,
the set of open nodes is updated with refinements for the
current plan: Π(n,ω(n)) = Π(n−1,ω(n−1)) ∪⋃m Π(n,m).

At (n+1, 0) agents select the best of open nodes: Π(n+1,0)

= {g(Π(n,ω(n))}. If this contains no flaw, the dialogue ter-
minates. Otherwise the procedure starts again for this plan.

Definition 3. Given Mx = ((ψx,∆x), Ax, G) as before,

we set M(0,0)
x := Mx and define Π(0,0) = U (0,·) = U (·,0) = ∅,

flaw(0) = h(G), and Π(0,1) = {Π∅}. And,

Π(n,m+1) = {Π(ξ) ∈ Plans(M(n,m)

ε(m+1)) | Π ∈ Π(n,0), and

flaws(Π(ξ)) r flaws(Π) 6= ∅}
Π(n+1,ω(n+1)) = (Π(n,ω(n)) r g(Π(n,ω(n)))) ∪Π(n,mn),

where mn = min m s.t. Π(n,m) = . . . = Π(n,m+|Ag|−1)

and U (n,m) = . . . = U (n,m+|Ag|−1) = ∅
Π(n+1,0) = {g(Π(n,ω(n)))}

U (n,m+1) = {(κ0, κ1), (κ′, `, κ′′),Π′) | Π′ ∈ Π(n,m+1) and

(κ1, (κ
′, `, κ′′)) ∈ Threats

T
(n,m)
ε(m+1)(Π′) and

κ0 ⊆ base(κ1) or (κ0, κ1) ∈ {∅} × Lit}

At turns of the form (n,m+ 1) agents learn as follows:

Definition 4. Each agent x 6= ε(m+ 1) updates, at turn
(n,m+ 1),

ψ
(n,m+1)
x = ψ

(n,m)
x ∪ (π1(U (n,m+1)) ∩ Lit)∪⋃{X r Sψ

(n,m)
x

α1 | ((X,B), (A, ·, α1)) ∈ U (n,m+1)}
∆

(n,m+1)
x = ∆

(n,m)
x ∪ {π0(ξ) | ξ ∈ SL[Π(n,m+1)] ∪ . . .

∪π1({(κ, . . .) ∈ U (n,m+1)) | π1(κ, . . .) /∈ Lit})
A

(n,m+1)
x = A

(n,m)
x ∪ {α ∈ AΠ(ξ) | Π(ξ) ∈ Π(n,m+1)}

For sets X
(n,·)
x defined here plus M(n,·)

x we define X
(n+1,0)
x =

X
(n,ω(n))
x =

⋃
mX

(n,m)
x , and Xω

x =
⋃
n∈ωX

(n,0)
x .

Theorem 2. Let 〈Mx〉x∈Ag and g be as above. Then,
Sol(Plansg(MΣAg)) 6= ∅ iff Sol(Plansg(Mω

x)) 6= ∅, for any x;
moreover, a solution Π? in the latter is optimal.

Thus, agents may safely use these dialogues to find an
optimal, cooperative plan which makes use of their abilities.

5. EXAMPLE OF APPLICATION
The next example (see Figure 413) shows a scenario to

Cooperative Planning. There are three different locations
in this scenario Bejing, Fuzhou and Taipei. Our multi-
agent systems is composed of two agents, Joe and Ann,
who wish to travel to Taipei to attend the AAMAS confer-
ence as invited speakers. As can be seen, there are several
direct or indirect connections between Bejing and Taipei:
via car and ship, train and ship, or plane. The agents, the
car, the train and the plane are initially located at Bejing,
and the goal (G = {(at Ag l3)}) is to have the two agents
at Taipei subject to the restriction that they must always
travel together. Literals and actions are the following14:

• l1, l2, l3 - Bejing, Fuzhou and Taipei,

• car, tra, pl, shi - a car, a train, a plane, a ship,

• r, rl, al, ml - a road, a railway, an airline company, a
maritime line,

• bw, sn, wg, ss - bad weather, snow, wind gusts, stormy
sea,

• br, ll, esf , aeo - bad railroad, landslides, electrical
supply failure, airplane engines work well (after test)

• va, ds, ip, gw - volcano ash cloud, dangerous situa-
tion, risk of increased pollution, contribution to global
warming,

• h, tj, kudTV , kudI - holidays, traffic jam, kept up to
date by TV news, kept up to date by Internet news,

• µC , µP , µT , µS - moved car, moved plane, moved train
and moved ship

1. mP (pl, j, k): moving plane ’pl’ from location ’j’ to ’k’.
It is necessary an airline company to travel from ’j’
to ’k’, the plane in ’j’ and both Joe and Ann in ’j’.
Moving a plane takes 2 time unit and 400 cost units.

2. mT (tra, j, k): moving train ’tra’ from location ’j’ to
’k’. This action takes 6 time units and 200 cost units.

3. mS(shi, j, k): moving ship ’shi’ from location ’j’ to
’k’. This action takes 3 time units and 100 unit cost.

4. fMc(car, j, k): fast-moving car ’car’ from location ’j’
to ’k’. This action takes 8 time units and 80 cost units.

13Get Directions on Google maps, http://maps.google.es
14We consider propositional STRIPS planning representa-
tion, and the default proposition (have p) to any literal p
that does not have an associated proposition.

976

Bejing

Taipei

Fuzhou

tra

car

pl

shi

Figure 4: Scenario of the application example

A
(0,0)
Joe =


1. {µC , ip} fMc←−−− {(link r l1 l2), (at car l1),
(at Ag l1)}
2. µP

mP←−− {(link al l1 l3), (at pl l1),
(at Ag l1)}



A
(0,0)
Ann =


3. µT

mT←−− {(link rl l1 l2), (at tra l1),
(at Ag l1)}
4. µS

mS←−− {(link ml l2 l3), (at shi l2),
(at Ag l2)}


Ψ

(0,0)
Joe =

{
wg; aeo; kudTV ; (at Ag l1);

(at pl l1); (link al l1 l3); (link r l1 l2);

}

Ψ
(0,0)
Ann =

{
kudI; (at Ag l1); (at tra l1); (at shi l2)

(link rl l1 l2); (link ml l2 l3)

}

Figure 5: Knowledge of actions and initial facts.

We describe next the initial planning domains: for x ∈
Ag = {Ann, Joe}, let M(0,0)

x = ((Ψ
(0,0)
x ,∆

(0,0)
x), A

(0,0)
x , G) be

defined as in Figures 5 and 6. Actions α = (P(α),X(α), ·)
are represented under the form X(α)

α←− P(α). Ann and Joe
have different knowledge so two pieces of derived informa-
tion from each agent can appear to be contradictory. Let’s
assume that Joe uses TV as a source of information, but
Ann prefers Internet to keep up to date, and both agree in
finding a plan that minimizes the time units.

In what follows, we explain how to obtain an optimal plan
Π? that satisfies the goal G = {(at Ag l3)}.

The planning process starts with Ann’s empty plan Π∅,
essentially, {α∅ ≺ αG} and U (0,1) = ∅. Joe learns noth-

ing from it; and both agents set g(Π(0,ω(0))) = Π∅. Then
flaws(Π) returns (at Ag l3). At turn (1,1) Ann suggests the
ship argument, while at next turn (1, 2), Joe puts forward
this argument step (Figure 7(a)):

Π∅(ξ
Joe) ∈ Π(1,2) where ξJoe = (AJoe, (at Ag l3), αG))

and AJoe = ({(at Ag l3)−�µP })
Ann learns the rule in AJoe. This is the plan with less

cost, so it selected at Π(2,0) with flaws(Π∅(ξ
Joe)) = {µP }.

At (2, 1) turn, Ann cannot refine this plan. This is done,

∆
(0,0)
Joe =



{(at pl l3), (at Ag l3)} −�µP ;
{(at car l2), (at Ag l2)} −�µC ;

{∼(at tra l2),∼(at Ag l2)} −�{µT , br};
{∼(at shi l3),∼(at Ag l3)} −�{µS , ss};
br −�ll; ll −�wg; br −�esf ; esf −�sn;
sn−�kudTV ; tj −�h; h−�kudTV ;
ss−�bw; bw −�wg; ∼va−�aeo;



∆
(0,0)
Ann =



{∼(at pl l3),∼(at Ag l3)} −�{µP , ds}
{∼(at car l2),∼(at Ag l2)} −�{µC , tj}
{(at tra l2), (at Ag l2)} −�µT ;
{(at shi l3), (at Ag l3)} −�µS ;

ds−�va; va−�kudI; ∼ss−� ∼bw;
∼bw −�h; h−�kudI; ∼ll −� ∼bw; ∼br −� ∼bw;
∼bw −�kudI; ∼sn−�kudI; gw −�ip;


Figure 6: Defeasible rules known by each agent.

at turn (2, 2) by Joe: Π∅(ξ
Joe, (mP,µP ,AJoe)) ∈ Π(2,2),

where he proposes the action mP (pl, l1, l3) to enforce µP
(Figure 7(b)). Let Π′ denote this plan. Each agent x learns

in (2, 2) that µP ∈ Sψ
(2,2)
x

αG . Ann learns action mP .
Now itsAnn’s turn (2, 3). She finds an argument-argument

threat to AJoe based on her initial knowledge of kudI. She
sends U (2,3) = {(({kudI},BAnn), (AJoe, at Ag l3, αG),Π′)}
where BAnn = { ∼(at Ag l3)−�{µP , ds}; ds−�va; va−�kudI}
(Figure 7(c)). The initial fact kudI and these rules are

learnt by Joe. Assume Joe’s plan is selected at Π(3,0) with
flaws(Π′) containing Ann’s threat based on BAnn.

At Ann’s turn (3, 1), she finds nothing else relevant to
Joe’s plan. Joe’s turn (3,2). To solve Ann’s threat, Joe
selects a Defeat move against ds, based on his knowledge.
Π(3,2) = {Π′(Defeat(CJoe,BAnn))} where CJoe = ({aeo}, {∼
va−�aeo}). It is a Defeat resolution move since: ∼concl(CJoe)
∈ literals(BAnn)) (Figure 8(d)).

In summary, Joe suggested to take the plane to arrive to
Taipei, but Ann attacked the proposal because the volcano
ashes are expected according to the Internet information,
and Joe replied that this situation will not affect the flight
between Beijing and Taipei (according to the results on
engine tests). For space reasons, we omit the rest of the
dialogue showing this is plan can be refined to an optimal
solution.

Figure 7: (a), (b): Joe’s turns and (c): Ann’s turn

977

Figure 8: (d): Joe’s turn

6. RELATED WORK
The work presented here is similar to several proposals

found in the literature: multi-agent argumentation (in non-
dynamic scenarios), cooperative planning (without defeasi-
ble argumentation) and centralized planning.

Some systems that build on argumentation apply theoreti-
cal reasoning for the generation and evaluation of arguments
to build applications that deal with incomplete and contra-
dictory information in dynamic domains. Some proposals
in this line focus on planning tasks, or also called practical
reasoning, i.e. reasoning about what actions are the best
to be executed by an agent in a given situation. Dung’s
abstract system for argumentation [3] has been used for rea-
soning about conflicting plans and generate consistent sets
of goals [1, 7]. Further extensions of these works present an
explicit separation of the belief arguments and goals argu-
ments and include methods for comparing arguments based
on the worth of goals and the cost of resources [10]. In any
case, none of these works apply to a multi-agent environ-
ment. A proposal for dialogue-based centralized planning is
that of [12], but no argumentation is made use of. The work
in [2] presents a dialogue based on an argumentation process
to reach agreements on plan proposals. Unlike our focus on
an argumentative and stepwise construction of a plan, this
latter work is aimed at handling the interdependencies be-
tween agents’ plans. On the other hand, we can also find
some systems that realize argumentation in multi-agent sys-
tems using defeasible reasoning but are not particularly con-
cerned with the task of planning [13]. All in all, the novelty
of our approach is the combination of all these aspects: de-
feasible reasoning, decentralized planning and multi-agent
systems.

7. CONCLUSIONS AND FUTURE WORK
We have presented a decentralized A∗ plan search algo-

rithm for multiagent argumentative planning in the frame-
work of DeLP-POP. This search is implemented as a dialogue
between agents, which cooperate to criticize or defend alter-
native plans by means of defeasible arguments. Only poten-
tially relevant information is exchanged in the dialogue pro-
cess, which terminates in a provably optimal solution upon
which agents cannot disagree.

For future work, several directions seem promising: ex-
tending the present approach to other multiagent scenarios,
like Argumentation-based Negotiation, or an extension into
Temporal Planning.

8. ACKNOWLEDGMENTS
The authors acknowledge partial support of the Spanish

MICINN projects CONSOLIDER-INGENIO 2010 Agreement
Technologies CSD2007-00022; TIN2009-14704-C03-03; LoMo-
ReVI FFI2008-03126-E/FILO (FP006); FPU grant AP2009-
1896; TIN2008-06701-C03-01; TIN2008-04446 and PROM-
ETEO/2008/051; and the Generalitat de Catalunya grant
2009-SGR-1434.

9. REFERENCES
[1] L. Amgoud. A formal framework for handling

conflicting desires. In Proc. of 7th European
Conference on Symbolic and Quantitative Approaches
to Reasoning with Uncertainty, ECSQARU 2003,
LNAI 2711, Springer, pp. 552–563, 2003.

[2] A. Belesiotis, M. Rovatsos, and I. Rahwan. Agreeing
on plans through iterated disputes. In Proc. of 9th
Conference on Autonomous Agents and MultiAgent
Systems, AAMAS 2010, pp. 765–772, 2010.

[3] P. Dung. On the acceptability of arguments and its
fundamental role in nonmonotonic reasoning, logic
programming and n-person games. Artificial
intelligence, 77(2):321–357, 1995.

[4] A. Garćıa and G. Simari. Defeasible logic
programming: An argumentative approach. Theory
and Practice of Logic Programming, 4:95–138, 2004.

[5] D. Garćıa, A. Garćıa, and G. Simari. Defeasible
reasoning and partial order planning. In Proc. of the
5th International Conference on Foundations of
information and knowledge systems, FoIKS 2008,
LNCS 4932, pp. 311–328, 2008.

[6] A. Gerevini and L. Schubert. Accelerating
partial-order planners: Some techniques for effective
search control and pruning. Journal of Artificial
Intelligence Research, 5:95–137, 1996.

[7] J. Hulstijn and L. van der Torre. Combining goal
generation and planning in an argumentation
framework. In Proc. of NMR 2004 Workshop on
Argument, Dialogue and Decision, J. P. Delgrande and
T. Schaub (Eds.), pp. 212-218, 2004.

[8] J. Pearl. Heuristics: Intelligent Search Strategies for
Computer Problem Solving. Addison-Wesley, 1984.

[9] J. Penberthy and D. Weld. Ucpop: A sound,
complete, partial order planner for adl. In Proc. of the
3rd International Conference on Knowledge
Representation and Reasoning (KR’92), pp. 103–114,
1992.

[10] I. Rahwan and L. Amgoud. An argumentation-based
approach for practical reasoning. In Proc. of 5th
Conference on Autonomous Agents and Multi-Agent
Systems, AAMAS 2006, pp. 347–354, 2006.

[11] G. Simari and R. Loui. A mathematical treatment of
defeasible reasoning and its implementation. Artificial
intelligence, 53:125–157, 1992.

[12] Y. Tang, T. Norman, and S. Parsons. A model for
integrating dialogue and the execution of joint plans.
In Proc. of ArgMAS 2009, P. McBurney et al. (Eds.),
LNAI 6057, pp. 60-78, 2010.

[13] M. Thimm. Realizing argumentation in multi-agent
systems using defeasible logic programming. In Proc.
of ArgMAS 2009, P. McBurney et al. (Eds.), LNAI
6057, pp. 175-194, 2010

978

