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ABSTRACT

In this paper we propose a Multi-Agent version of UCT
Monte Carlo Go. We use the emergent behavior of a great
number of simple agents to increase the quality of the Monte
Carlo simulations, increasing the strength of the artificial
player as a whole. Instead of one agent playing against it-
self, different agents play in the simulation phase of the al-
gorithm, leading to a better exploration of the search space.
We could significantly overcome Fuego, a top Computer Go
software. Emergent behavior seems to be the next step of
Computer Go development.

Categories and Subject Descriptors

1.2.1 [Artificial Intelligence|: Applications and Expert
Systems—Games

General Terms

Algorithms, Experimentation

Keywords

Emergent Behaviour, Collective Intelligence

1. INTRODUCTION

Go is a two-player turn-based strategy board game, that
is famous for being one of the main challenges in Artificial
Intelligence. A small set of simple rules' leads to a game
amazingly complex for a human being and a search tree
that is unbearably large for a computer. There are many
reasons for this difficulty of developing a strong artificial
player. First, Go is played in a large board, 19x19, with
361 intersections, creating difficulties for tree search based
algorithms. Second, generally most of the intersections are
valid movements, increasing the number of possible states
from a given state of the board. Third, the stones interact
in complex ways during the game; one stone may influence
a distant group, for example in situations where there is a
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ladder. Besides, building an evaluation function is not triv-
ial. Even end of game situations, that intuitively should be
simpler, were proved to be PSPACE-hard [31]. According
to [1], compared to the complexity of Chess (10°°), the com-
plexity of Go (10'®°) is bigger by a factor of 10''°. We can
see, therefore, how challenging it is to create an artificial
player of Go.

However, recently, with the development of evaluations
of the board state based on simulations (known as Monte
Carlo techniques), the strength of Computer Go players im-
proved significantly. Thanks to artificial players like MoGo,
Crazy Stone, Fuego, Many Faces of Go, and Zen, the best Go
programs are now considered amateur level 2 dan. Further
improvement was achieved by parallelization, as it increases
the computational power, allowing a deeper exploration of
the possible movements. In February 2009, Many Faces of
Go, running on a 32-core Xeon cluster, beat the professional
player James Kerwin, in a 19x19 board with a handicap of
7 stones. Many recent works are now investing in the par-
allelization of Monte Carlo techniques. However, there is
always a limit in the amount of speed-up that can be gained
in a parallelization design.

Generally, there are two ways to increase the strength
of an artificial player: advances in computational power,
which can be achieved by parallelization, and advances in
the theory, which can be achieved by new algorithms and
methods. Nowadays, the research in Monte Carlo techniques
seems to be focused on the parallelization of the current
approaches. However, it is always desirable to advance the
theory with the creation of better algorithms, that lead to
stronger players even when the computational power has not
necessarily increased. We believe that the next theoretical
step lies in the investigation of Multi-Agent methodologies.

Multi-Agent systems have been used to solve a great range
of problems in Artificial Intelligence. The emergent behavior
of a great number of simple agents have been applied in al-
gorithms like Ant Colony Optimization [11], Particle Swarm
Optimization [20], etc, in order to solve difficult optimiza-
tion problems. It is also notable how emergence can lead to
complex and intricate group behavior [21, 22, 23, 28].

Emergence is a powerful concept, not only in Computer
Science, but also in a variety of disciplines, like philosophy,
systems theory and art. The stock market and the Internet
are important systems to modern life that arise thanks to
the emergence of simple components. Emergence is also fun-
damental in biological systems. A notable example is an ant
colony. It is known that the queen does not order directly
the ants. Each ant is always reacting to stimuli generated



Figure 1: Water crystals, formed by a natural emer-
gent process (taken from www.wikipedia.org).

by chemical scent from larvae, other ants, intruders, food,
waste, etc, and they leave chemical that will be used as stim-
uli to other ants. Therefore, there is no centralized control,
but the ant colonies exhibit complex behavior and are able
to solve complex problems. Another example is the forma-
tion of water crystals on glass, a natural emergent process
created by the random motion of water molecules, that leads
to a highly-organized structure (Figure 1).

However, emergence is generally not a clear concept. In
this paper we define emergence as a great number of sim-
ple iterations that occur in a system, leading to a complex
result. We can model the Monte Carlo evaluations as one
agent that repetitively plays against itself using a playout
strategy. Although the playout strategy might be simple,
the combination of a great number of games with a tree
exploration phase makes intelligent game play emerge in a
Monte Carlo Tree Search algorithm (MCTS). In this paper
we explore this further, by evaluating the effects of having
not only one, but many different agents at the playout phase
of a MCTS.

At each stage of the Go board, one agent is selected to gen-
erate a movement, leading the board to the next stage. The
agents act in turn, therefore there is no spatial organization,
but a temporal organization. However, each agent acts in
the environment that was left by the previous one, and this
interaction seems to lead to a higher playing strength. As
the interactions are simple, but they lead to something com-
plex (high-level go), we believe emergence is a good concept
to define our idea.

Our proposed algorithm is also inspired by the advantages
of diversity. It is currently believed by some social scientists
and economists that the best teams are not necessarily com-
posed of the best individuals. In order to build a team that
is effective in solving problems, it is also important to look
for diversity, to bring together people with different perspec-
tives and solution strategies [27]. By using different agents
during the simulation process, we are also exploring this
concept, but in a Multi-Agent context.

We modify Fuego [13], an open source implementation of
a powerful MCTS algorithm: UCT Monte Carlo Go. There-
fore, the contribution of this paper is to offer a new paradigm
for the exploration of Monte Carlo Go. Our experimental
analysis show that we could significantly overcome Fuego,
and produce a stronger Computer Go program.
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2. RELATED WORK

A great variety of approaches have been proposed in the
literature in order to tackle with the complexity of Go. The
problem is too difficult for a conventional a-3 search, forcing
the researchers to try many different methods. An interest-
ing survey of the literature can be found in [6]. Classical
works used abstractions [15] and patterns [4]. Other impor-
tant approaches that have been explored include learning [8],
cognitive modeling [5] or combinatorial game theory [24].

Generally, in the classical way to develop a Go program,
specific game knowledge has to be implemented. Therefore,
many algorithms were proposed to resolve specific subprob-
lems of the game [3]. However, the Monte Carlo approach
appeared, which originally used only the simple Go rules
to perform random simulations in order to discover good
positions to play [7]. Later, the Monte Carlo simulations
were used to evaluate leafs in tree search algorithms, and
the simulations started to use heuristics, which included
some Go knowledge, in order to improve their realism, as
in [12]. The state of the art was further advanced by the
UCT Monte Carlo algorithm [17], which contributed with
significant improvements in playing strength. The proposed
program, MoGo, won all the tournaments on the interna-
tional Kiseido Go Server? on October and November 2006.

In order to achieve further enhancements, parallel and
distributed versions of the game started to appear on the
literature. Generally, the idea is to use a great number of
machines or processors to increase computation power. Ac-
cording to [10], three different parallelization approaches are
possible in UCT Monte Carlo: root parallelization, leaf par-
allelization and tree parallelization. In root parallelization
each thread is responsible for one tree, and when the time is
finished, the results are merged. In leaf parallelization, many
simulations are executed to evaluate a single leaf, each one
by one thread. In tree parallelization, many threads execute
in a single, shared tree. In [16] it is proposed a straight algo-
rithm for multi-core parallelization, based on shared mem-
ory, and an algorithm for cluster parallelization that uses less
messages than a simple generalization of the multi-core al-
gorithm. The multi-core algorithm achieved a 63% percent-
age of victory by doubling the computational power and the
cluster algorithm achieved 83.8% percentage of victory by
using 9 machines. Some works propose distributed systems
based on a client/server architecture in order to increase the
number of available playouts [18]. Recently, a top Computer
Go program, Zen, was run in a large cluster of computers
[19]. A similar approach is also investigated by [9], where
a percentage of victory of 70.50% could be achieved against
GnuGo, using 16 slaves. However, the results do not improve
with a higher number of slaves, and even decreased in some
cases. Root parallelization in the Fuego system was studied
by [29], where experiments with 64 cores demonstrated that
although the program gets stronger, there are limitations in
the possible performance gain.

Recently, distributed versions of the top Computer Go
programs have won against professional players in handi-
cap games. However, it is known that the overhead of the
parallelization imposes a limit to the possible improvement
in game strength. In [18], for example, in 9x9 boards the
system saturated with 7 servers, and the use of 4 servers
brought a speed-up factor of only 1.55. In [10], tree par-
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allelization only scaled well up to 4 threads. A lock-free
parallelization was proposed by [14], but it could not scale
beyond 7 threads.

The next step seems to be converging into Multi-Agent
System paradigms. Some works started to apply this idea,
but in order to play other games. In [25], a consultation sys-
tem to play Shogi is proposed. A set of players send their
opinion about what should be the next movement, and one
of the opinions is selected as the official movement. The
authors show that a consultation system composed of three
famous Shogi programs plays better than each software in-
dividually. In [30] the authors extend the last approach,
but this time they use the position evaluation of different
players in order to select a single movement. The number
of agents in these works was limited, though, with at most
6 agents. In [26], the authors explore a Swarm Intelligence
Algorithm, Stochastic Diffusion Search, to build an artifi-
cial Othello player. We believe that the use of Multi-Agent
Systems has to be further explored, and it can be the next
cornerstone in Computer Go development.

Some social scientists and economists currently believe
that teams of diverse people can have strong characteris-
tics for solving difficult problems [27]. By combining dif-
ferent perspectives and solution strategies, a diverse team
can explore a greater range of possible solutions for a prob-
lem; while a team with high-talented but similar individuals
might not be able to explore so many different solutions, as
each member will tend to have similar results as the other
members of the group. Therefore, a team of diverse members
might perform better than a team with the best individuals.
This concept is also an important point to be explored in the
development of Multi-Agent paradigms for Computer Go.

In this work we are going to extend the top MCTS al-
gorithm, UCT Monte Carlo Go, with a Multi-Agent Sys-
tem paradigm. Instead of showing the computational power
gains that can be obtained by parallelization or distribution,
we are going to show how the emergent properties of a great
number of simple (and diverse) agents, by itself, can enhance
the strength of an artificial Go player.

3. METHODOLOGY

First, we are going to introduce UCT Monte Carlo Go.
The algorithm is based on the multi-arm bandit problem.
A multi-arm bandit is like a traditional slot machine, but
with many arms. Each arm has a reward drawn from an
unknown probability distribution. The objective is to max-
imize the total sum of iterative plays. When choosing an
arm to play, there is a balance between selecting the best
arm found so far, or exploring other arms. In [2], it is pro-
posed a simple algorithm, called UCB1 in order to solve the
selection problem. Let’s define the K-armed bandit problem
by the random variables X, for 1 < ¢ < K and n > 1.
Each variable is the reward of arm ¢ when it is played at
time n. Given a certain arm i, the rewards X; , are inde-
pendent for all n, and are identically distributed according
to an unknown probability distribution. The rewards across
arms are also independent, but they might not be identically
distributed.

The algorithm selects the arm j, that maximizes X; +

2logn
Tj(n)?’

current iteration, Tj(n) is the number of times arm j has
been played after the first n plays, and X; is the mean of

where n is the overall number of plays up to the
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the values obtained so far when arm j was selected . In [2],
it is also introduced a slightly more complicated algorithm,
called UCB1-TUNED, that had better experimental results.
First, they calculate an estimation of the upper bound on
the variance of arm j, by:

1 Tj(n)
V==
! <Tj(n) ;

Then, they select the arm j that maximizes the following
equation:

2logn
T;(n)

Xf,y> -XZ+

- logn .
XJ + \/Tj(n)mzn{l/él,vj} (1)

In UCT Monte Carlo Go, each Go board situation is seen
as a bandit, and each possible move is seen as an arm with
unknown reward of a certain distribution. Generally, the
algorithm can be defined by two phases: tree search and
leaf evaluation (also known as playout). The tree search
phase starts at the root of the tree. At each node (Go board
situation), the child-node (possible move) that maximizes
Equation 1 (UCB1-TUNED) is selected as the next node
to be visited. This is executed recursively, always choosing
the child-node according to UCB1-TUNED. When a node is
selected that has never been visited before, the next phase
is executed: score estimation by Monte Carlo simulations,
where heuristic-driven random games are executed from the
state of the leaf until the end of the game. Generally the
heuristics are designed in a way that the end game can be
easily recognized, and the final score easily calculated. The
final score is used to estimate the value of the leaf. The
value of the nodes in the path are then updated iteratively,
from the father-node of the selected leaf to the root. Note
that the Go board states created during the Monte Carlo
simulations will not become part of the tree, they are used
only to estimate the value of the leaf. Improving the quality
of the simulations will improve the estimation of the score,
leading to a stronger player [32].

We can model the random simulations as one agent play-
ing against itself using its available heuristics (Figure 2(a)).
In this work, we investigate the effects of having not only
one, but several agents playing against each other (Figure
2(b)). Each agent has a different playing style, increasing
the range of exploration of the search space. As will be fur-
ther explained, at every stage of the simulation process, a
different agent will be selected in an agent database, and this
agent will be responsible for selecting the next movement.
Note, therefore, that (contrary to our first idea) in our ap-
proach we are not executing a tournament between different
agents, as one agent does not play a full game against an-
other.

We based our implementation on Fuego, an open source
UCT Monte Carlo Go algorithm. The Fuego system exe-
cutes several heuristics hierarchically. It starts by selecting
the first heuristic. In case it cannot generate a movement,
it proceeds by selecting the next one on the hierarchy. The
process repeats until a heuristic generates a movement. If
no heuristic can generate a movement, a random move is se-
lected from the board. Generally the heuristics are applied
in the neighborhood of the last movement. The current ver-
sion of Fuego (0.4) has mainly five heuristics: Nakade If
there is a region of three empty points, generates a move-



@oies
(a) (b)

Figure 2: Original single-agent Monte Carlo (a) and
proposed Multi-Agent Monte Carlo (b). The colors
represent different agents, and the arrows represent

interaction.
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Figure 3: Original Fuego agent (a) and new agent
database (b).

ment in the center of this region; Atari Capture Captures
an Atari; Atari Defend Defends an Atari; Lowlib Move
generator for 2-liberty blocks; Pattern Uses a set of 3x3
patterns, this heuristic is applied in the neighborhood of the
two last moves.

The hierarchical order of the heuristics is fixed. A rep-
resentation of the Fuego original agent can be seen in Fig-
ure 3(a), where each symbol represents a different heuristic,
and the order of the symbols represent the order that each
heuristic will be applied. We created several new agents
in the Fuego system by changing the order of the default
heuristics of the original agent. Therefore, each agent will
give a different priority to the heuristics; which will make
each agent have a different playing style (Figure 3(b)). The
set of all agents implemented in the system form an agent
database.

Every time one movement will be generated during the
Monte Carlo simulations, one agent is randomly selected in
the agent database and this agent will be responsible for
selecting the movement. Therefore, at each step in the sim-
ulation process, a different agent is going to decide the next
movement on the board (Figure 4). This approach allows
the Monte Carlo method to explore better the search space,
using the same amount of computation time. The intuition
behind this idea is simple. Although some Go movements,
such as the capture of a stone, can seem to be quite strong for
a beginner, an experienced player knows that preferring ap-
parently “strong” movements all the time will lead to a poor
and unnatural game. Therefore, in order to simulate more
realistic Go games, it is necessary to diversify the movement
generation process.

However, although we can use 120 different agents, we em-
pirically found out that using all of them does not lead to a
stronger player (see Section 4). It is necessary to select a set
of agents that effectively lead to better playing abilities. As
testing all possible combinations of agents is very expensive,
we executed a simple greedy learning algorithm. We start
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Monte Carlo
Simulation

Figure 4: Agent selection in the Monte Carlo simu-
lation process.

with only the original Fuego agent in the database. Then,
we perform a series of games against Fuego. The result (per-
centage of victory) is saved. We then add one more agent in
the database. A series of games is again performed against
Fuego. If the result is better than the best result found so
far, the agent will remain in the database. If the result gets
worse, the agent will be removed from the database, and will
not be tested anymore. The algorithm proceeds by testing
all the remaining possible agents. Note that every time a
“good agent” is found, it will be permanently inserted in the
agent database, and it will be used in all the following iter-
ations of the learning process. Also note that the original
Fuego agent will always be in the agent database, because it
is used in the first iteration.

Therefore, our algorithm is a hill climbing in the space of
agent sets: we add one agent to the set and greedily keep it
if the new set performs better. We test each agent exactly
one time. The most natural way is to generate a random
list in which all agents appear exactly once, and follow the
order of the list. However, we also manually changed the list
in one of our experiments, in order to try to achieve a better
solution. As will be seen in the next section, our simple
learning algorithm led to a significant percentage of victory
against Fuego, showing that Multi-Agent Monte Carlo Go
can effectively be used to create stronger players.

4. RESULTS

In this section we are going to present the experiments
performed to validate our approach. They were all executed
in a 9x9 board, with the same time limit for both our system
and Fuego. We used Fuego’s default time limit and default
configuration for the number of playouts per leaf (1 playout
per leaf, for a 9x9 board). We executed 500 games with our
system playing as White, and 500 games with our system
playing as Black, giving a total of 1000 games per configura-
tion. The experiments were executed in a cluster of Intel(R)
Xeon(R) CPU E5530, at 2.4GHz and with 24GB of RAM.
Note that our algorithm is not parallel, but we used a clus-
ter in order to distribute the execution of the 1000 games,
decreasing significantly the time necessary to run the exper-
iments. The cluster used is part of the InTrigger ® platform,
a cluster of more than 13 clusters distributed across Japan.
They are intended to be used for information technology
research, both for system software and for large scale data

Shttp://www.intrigger.jp
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Figure 5: Percentage of victory for the selected

agent database.

processing researchers.

We first ran our algorithm with all the possible 120 agents.
It led to a relatively low percentage of victory: 41.20%
(£2.10%). After performing several experiments with the
database, we found out that some agents seemed to decrease,
while other agents seemed to increase the percentage of vic-
tory. Therefore, we created a simple learning algorithm,
that tries to add each agent in the database, and tests if
it increases or decreases the strength, as described in the
previous section.

First, we are going to show our results when the order in
which each agent is tested is random. Let N, AC, AD, L
and P be the Nakade, Atari Capture, Atari Defense, Lowlib
and Pattern heuristics, respectively. The agent database se-
lected by the learning algorithm is represented in Table 1,
where each line defines one agent and the columns defines
the order in which each heuristic is attempted. The first line
corresponds to the original Fuego agent. Our algorithm was
able to find a set of 5 agents that seems to increase playing
strength.

The result obtained with the addition of each new agent
can be seen in Figure 5. As can be observed, from a 48.55%
(£2.20%) percentage of victory with only Fuego’s original
agent, with 5 agents we could achieve 57.55% (£2.10%), a
gain of 9.00%. Therefore, our strategy seems to be effective
into improving the strength of Computer Go algorithms. We
performed a t—test analysis that showed that the result with
5 agents is better than the result with only Fuego’s original
agent with 99% of confidence.

The result of about 48% when our system has only the
Fuego original agent is a little bit different from the theo-
retically expected 50%. We believe this might happen be-
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Agent Number | Percentage of Victory
0 48.50% + 2.20%
5 () 52.85% + 2.15%
6 () 53.60% + 2.15%
64 57.30% £ 2.15%
70 29.60% =+ 1.90%

Table 2: Percentage of victory for each individual
agent.

cause the game with only one agent is not really “Fuego” vs.
“Fuego”; it is “Fuego” vs. “Fuego with a small overhead”,
as the algorithm for agent selection and agent execution is
still there, and it is ran in every step of the Monte Carlo
simulations. As the number of simulations is very high, we
believe this overhead might be responsible for the 48.55%
result, instead of 50%.

We also executed games with our system running with
a single agent (again, against Fuego). In each execution,
we used one of the agents that were selected for the agent
database, but only that one. The objective of these experi-
ments is to see if the result of the agents as a group is better
than the result of each individual agent. We can see the per-
centage of victory obtained for each agent in Table 2, where
the Agent Number represents the position of the agent in
the list (or, in other words, the number of the iteration in
which the agent was tested). We called agent 5 as « and
agent 6 as [ because they are going to appear again in our
next experiment.

Many interesting observations can be drawn from these
experiments. First, as can be seen, the result of the group
(57.55%) was better than the result of each individual agent,
though the difference between the group and the agent 64
is quite small. However, even before adding agent 64, the
group already performed quite well (56.90%), a percentage
of victory higher than each member. Second, agent 70 is
clearly much weaker than the other agents, but when it was
added in the agent database the result improved 0.35%, in-
stead of decreasing. Therefore, it seems that there is a group
phenomena that makes the algorithm stronger.

The learning graph of our algorithm can be seen in Fig-
ure 6. After adding agent 5 and 6, the system fluctuates,
and is able to escape from the local minimum (lack of im-
provement) only with the addition of agent 64. After adding
agent 70, the system fluctuates again and is not able to find
a better solution.

We ran our algorithm a second time, but now we tested the
agents in a different order. Before we developed our learning
algorithm, we had a list of 15 agents that we believed to be
strong (by intuition and trial an error experiments), and we
moved those agents to the beginning of the list. Our original
intention, when we developed the learning algorithm, was to
test this set of agents. The rest of the agents followed the
same order as the previous experiment. The agents that
compose the new solution found by the learning algorithm
can be seen in Table 3. The result obtained with the addition
of each new agent is represented in Figure 7, and the learning
graph can be seen in Figure 8. This time, we found a slightly
better result, of 59.15% (+2.10%).

We executed games with our system running with a sin-
gle agent. The percentage of victory obtained for each agent
can be seen in Table 4. The Agent Number of each agent is
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Figure 6: Learning graph, as the algorithm tries to
add each agent in the database.

N [AC|AD | L P
AD | N | AC| P L
AD | N P |AC| L
AD | P L N | AC
AC| N |AD| L P

Table 3: Selected agent database, in the not random
order.

different than last time, as the order changed, but agent 1
and 2 are the same as agent 5 and 6 of the last experiment,
respectively. Therefore, we named them « and (. Again,
the result of the group was better than the result of each
individual agent (although the difference between the group
and agent 3 is small). This time, the difference between the
group and the best agent seems to be higher than in the
previous experiment. And, for the second time, agents that
are weaker were able to increase the percentage of victory
when they were added to the group. Agent 42 had a per-
centage of victory of only 50.90%, but was able to increase
the percentage of victory of the system in 1.20% when it was
added in the group. Therefore, with this new agent order,
we were also able to show that we can increase the strength
of Monte Carlo Go using the emergent behavior of a group
of agents, this time with a slightly better result.

As can be seen, we could find two agent sets that perform
quite well against the original Fuego. After analyzing the
result of our experiments, we think we have strong indica-
tions that the emergent behavior of a group of agents can

Table 4: Percentage of victory for each individual

Agent Number | Percentage of Victory
0 48.55% + 2.20%
1 (o) 54.40% + 2.15%
2 (B) 54.55% + 2.15%
3 57.05% + 2.15%
42 50.90% =+ 2.20%

agent, in the not random order.
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Figure 7: Percentage of victory for the selected
agent database, in the not random order.
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lead to higher quality simulations, creating stronger players.
It is notable that we could obtain a percentage of victory of
around 59% against Fuego, in its default configurations for
time limit and number of playouts per leaf.

S. DISCUSSION

In this paper we opened a new path for Computer Go:
emergent behavior. In our approach, different agents play in
the simulation phase of UCT Monte Carlo Go, which allows
a greater diversity, increasing the quality of the simulations,
and of the artificial player as a whole. It is possible to argue
that other MCTS programs also have emergent behavior, as
intelligent game play emerges from a playout strategy exe-
cuted repetitively by a single agent. However, this work is
the first to put Multi-Agent Systems and emergent behavior
into perspective, showing new paths that can be explored to
improve the current algorithms.

We could not achieve a significant percentage of victory
against Fuego using the set of all possible 120 agents. How-
ever, we noticed that a selected set of agents could effectively
improve the solution, and overcome Fuego. This inspired us
to create a simple greedy learning algorithm, that tests if the
presence of each agent contributes to improve the strength
or not. With this algorithm, we could find a set of agents
that won about 59% of the games. In the not random order,
the first agents that the algorithm tried were already known
to be good, and they were immediately selected. However,
we had a set of 15 agents that we believed to be strong
(when all of them were in the agent database, we obtained
a percentage of victory of about 54%), and we were sur-
prised when the learning algorithm reduced this set to only
5 agents. And also, the learning process increased the per-
centage of victory of our system in about 5%, compared to
the solution that we could find manually. Therefore, it had
a significant impact in our results.

However, even though we could significantly overcome
Fuego with our agent set, it is still not so clear if the group
performs better than the best agents, as the difference be-
tween them was small. As the number of possible combina-
tions of agent sets is quite high, we believe there might be
agent sets that perform even better, and might clearly over-
come the best agents. Therefore, it is necessary to develop
better algorithms for finding strong agent sets.

We believe that our approach is in a good direction to
improve MCTS. However, even our straight O(n) learning
algorithm, executing in 104 cores, takes about 120 hours to
finish. This happens because it is necessary to perform a
great number of games in order to reach stable results, with
low standard deviations. With the problems of sharing a
cluster, like system maintenances, queues, machine reserva-
tion schedules, jobs being killed, etc, the whole execution
took about one week and a half. Therefore, finding good
agents is a difficult, computationally intensive problem.

Even though, we believe that much can still be discovered
in that direction. An immediate future work is to regener-
ate the random list of agents, and run the learning process
again. Would it select a similar set of agents? Could it
discover an even stronger group? Another question that
should be answered is the effect of adding not one agent to
the database, but a set of agents. In other words, does each
agent by itself contribute to the solution or is there improve-
ment only when a specific set of agents are all together in
the database? If so, how can that set be found? It is impos-
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sible to test all combinations of agents. One idea could be
to apply an algorithm like simulated annealing, and accept
agents that decrease the solution, in order to escape local
minima. In our experiments we could perceive that agents
that perform bad individually are able to increase the qual-
ity of a certain set, so the effect of one agent might depend
on the presence of other agents in the group. Unfortunately,
it does not seem to be possible to apply learning algorithms
like the evolutionary methods, due to the high cost of testing
each solution.

Another possible future research path is to study how to
apply Multi-Agent System paradigms in different ways. Our
system employs a great number of agents during the simula-
tions that are executed to evaluate the score of the leafs. It
is possible to experiment with different applications of the
paradigm. For example, what if different programs negotiate
about a single move, like in [25]? How can we know which is
the best movement among the ones suggested? In the case
of Shogi the number of possible movements is more limited,
and the convergence seems to be easier than in Go, allowing
the application of simple majority voting algorithms. With
the range of different possibilities allowed in a Go game,
how can we solve the selection problem? Other possible di-
rection is to try to apply Multi-Agent Systems in the tree
search phase. Which algorithms could be applied? What
benefits could we obtain? As can be seen, there is a great
range of ideas and algorithms that can be inspired by this
work.

6. CONCLUSION

In this paper we present a new paradigm to the state of the
art of Go: Multi-Agent Monte Carlo Go. In our approach,
different agents play in the simulation phase of UCT Monte
Carlo Go, increasing the realism and the quality of the sim-
ulations by their emergent behavior. We could not achieve a
significant result with all possible agents, but after selecting
a good set of agents by a learning algorithm, we could sig-
nificantly overcome the original system, Fuego. Therefore,
we effectively increased the strength of UCT Monte Carlo
Go. We present several discussions about our system, in-
cluding directions for further improvement and points that
should be better studied. We believe that our work presents
a new paradigm for Monte Carlo Go, and it can be used as
inspiration to a variety of different works.

We plan to further explore the research possibilities that
were discussed in this paper. Therefore, our future work
includes better exploring how to automatically learn good
sets of agents. After running again our learning algorithm,
but this time with different random agent lists, we plan to
explore the effect of probabilistically accepting agents that
decrease the solution, like simulated annealing algorithms.
Other directions of research can be also explored, for ex-
ample, discovering solutions of how to select the best move
when different programs cooperatively play Go. We believe
that much can still be researched, and Computer Go can
be greatly improved by exploring Multi-Agent System tech-
niques.
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