
Ties Matter: Complexity of Voting Manipulation Revisited

Svetlana Obraztsova
School of Physical and
Mathematical Sciences
Nanyang Technological
University, Singapore

SVET0001@ntu.edu.sg

Edith Elkind
School of Physical and
Mathematical Sciences
Nanyang Technological
University, Singapore

eelkind@ntu.edu.sg

Noam Hazon
Robotics Institute

Carnegie Mellon University,
USA

noamh@cs.cmu.edu

ABSTRACT
In their groundbreaking paper, Bartholdi, Tovey and Trick [1] ar-
gued that many well-known voting rules, such as Plurality, Borda,
Copeland and Maximin are easy to manipulate. An important as-
sumption made in that paper is that the manipulator’s goal is to
ensure that his preferred candidate is among the candidates with
the maximum score, or, equivalently, that ties are broken in favor
of the manipulator’s preferred candidate. In this paper, we exam-
ine the role of this assumption in the easiness results of [1]. We
observe that the algorithm presented in [1] extends to all rules that
break ties according to a fixed ordering over the candidates. We
then show that all scoring rules are easy to manipulate if the win-
ner is selected from all tied candidates uniformly at random. This
result extends to Maximin under an additional assumption on the
manipulator’s utility function that is inspired by the original model
of [1]. In contrast, we show that manipulation becomes hard when
arbitrary polynomial-time tie-breaking rules are allowed, both for
the rules considered in [1], and for a large class of scoring rules.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems;
F.2 [Theory of Computation]: Analysis of Algorithms and Prob-
lem Complexity

General Terms
Algorithms, Theory

Keywords
voting, manipulation, tie-breaking rules, complexity

1. INTRODUCTION
Computational social choice is an actively growing subarea of

multiagent systems that provides theoretical foundations for pref-
erence aggregation and collective decision-making in multiagent
domains. One of the most influential early contributions to this
area is the paper by Bartholdi, Tovey, and Trick entitled “The com-
putational difficulty of manipulating an election” [1]. In this paper,
the authors suggested that computational complexity can serve as
a barrier to dishonest behavior by the voters, and proposed clas-
sifying voting rules according to how difficult it is to manipulate
Cite as: Ties Matter: Complexity of Voting Manipulation Revisited,
S. Obraztsova, E. Elkind, N. Hazon, Proc. of 10th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2011), Tumer,
Yolum, Sonenberg and Stone (eds.), May, 2–6, 2011, Taipei, Taiwan, pp.
71-78.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

them. In particular, they argued that such well-known voting rules
as Plurality, Borda, Copeland and Maximin are easy to manipulate,
yet a variant of the Copeland rule known as second-order Copeland
is computationally resistant to manipulation. In a subsequent pa-
per, Bartholdi and Orlin [2] showed that another well-known voting
rule, namely, STV, is NP-hard to manipulate as well.

Since then, the computational complexity of manipulation under
various voting rules, either by a single voter or by a coalition of
voters, received considerable attention in the literature, both from
the theoretical and from the experimental perspective (see, in par-
ticular, [20, 19] and the recent survey [9] for the former, and [17, 5]
for the latter). While it has been argued that worst-case complex-
ity does not provide adequate protection against malicious behavior
(see, e.g. [15, 18, 10, 13]), determining whether a given voting rule
is NP-hard to manipulate is still a natural first step in evaluating its
resistance to manipulation in realistic scenarios.

An important property of the voting rules discussed in [1] is that
they may produce multiple winners, i.e., they are, in fact, voting
correspondences (see Section 2 for the formal definitions). It is
not immediately clear what it means for manipulation to be suc-
cessful in such a case. Bartholdi, Tovey and Trick take a rather
liberal approach in their paper: they define a manipulation to be
successful if, as a result, the manipulator’s preferred candidate is
one of the election winners. This approach is equivalent to assum-
ing that ties are broken in favor of the manipulator. Now, a careful
examination of the algorithm in [1] shows that it works as long as
ties are broken either adversarially to the manipulator or accord-
ing to an arbitrary fixed lexicographic order over the candidates.
However, in real-life settings, when an election ends in a tie, it
is not uncommon to choose the winner using a tie-breaking rule
that is non-lexicographic in nature. Indeed, perhaps the most com-
mon approach is to toss a coin, i.e., select the winner uniformly at
random among all tied alternatives. A more sophisticated exam-
ple is provided by the second-order Copeland rule studied in [1],
which is effectively the Copeland rule combined with a rather in-
volved tie-breaking method. Despite its apparent complexity, the
second-order Copeland is the voting rule of choice for several or-
ganizations [1]. Thus, it is natural to ask under what conditions on
the tie-breaking rule the voting correspondences considered in [1]
remain easy to manipulate.

In this paper, we make two contributions towards answering this
question. We first consider the randomized tie-breaking rule, which
chooses the winner uniformly at random among all tied candidates.
Now, to formalize the notion of a successful manipulation under
this rule, we need additional information about the manipulator’s
preferences: knowing the manipulator’s preference order is insuffi-
cient for determining whether he prefers a tie between his top can-
didate and his least favorite candidate to his second choice becom-

71

ing the unique winner. Thus, following [6], we endow the manip-
ulator with utilities for all candidates, and seek a manipulation that
maximizes his expected utility, where the expectation is taken over
the random bits used to select the winner. We demonstrate that for
all scoring rules such a manipulation can be found in polynomial
time. This is also true for Maximin as long as the manipulator’s
utility function has a special form that is inspired by the notion of
manipulation employed in [1]: namely, the manipulator values one
of the candidates at 1 and the rest of the candidates at 0.

Given these easiness results, it is natural to ask whether all (ef-
ficiently computable) tie-breaking rules produce easily manipula-
ble rules when combined with the voting correspondences consid-
ered in [1]. Now, paper [1] shows that for Copeland this is not the
case, by proving that the second-order Copeland rule is hard to ma-
nipulate. However, prior to our work, no such result was known
for other rules considered in [1]. Our second contribution is in
demonstrating that Maximin and Borda, as well as many families
of scoring rules, become hard to manipulate if we allow arbitrary
polynomial-time tie-breaking rules. This holds even if we require
that the tie-breaking rule only depends on the set of the tied al-
ternatives, rather than the voters’ preferences over them; we will
refer to such tie-breaking rules as simple. Our proof also works
for Copeland, thus strengthening the hardness result of [1] to sim-
ple tie-breaking rules. One can view these results as a continua-
tion of the line of work suggested in [3, 7], namely, identifying
minor tweaks to voting rules that make them hard to manipulate.
Indeed, here we propose to “tweak” a voting rule by combining it
with an appropriate tie-breaking rule; arguably, such a tweak af-
fects the original rule less than the modifications proposed in [3]
and [7] (i.e., combining a voting rule with a preround or taking a
“hybrid” of the rule with itself or another rule). We remark, how-
ever, that our hardness result is not universal: Plurality and other
scoring rules that correspond to scoring vectors with a bounded
number of non-zero coordinates are easy to manipulate under any
polynomial-time simple tie-breaking rule, However, if non-simple
tie-breaking rules are allowed, Plurality can be shown to be hard to
manipulate as well.

The rest of the paper is organized as follows. We cover the pre-
liminaries and introduce the necessary notation in Section 2. Sec-
tion 3 discusses the algorithm and the formal model of [1]. We
describe the algorithms for scoring rules and Maximin under ran-
domized tie-breaking in Section 4, and prove our hardness results
in Section 5. Section 6 concludes.

2. PRELIMINARIES
An election is specified by a set of candidatesC, |C| = m, and a

set of voters V = {v1, . . . , vn}, where each voter vi is associated
with a linear order Ri over the candidates in C; this order is called
vi’s preference order. We denote the space of all linear orderings
over C by L(C). For readability, we will sometimes denote Ri by
�i. When a �i b for some a, b ∈ C, we say that voter vi prefers
a to b. The vector R = (R1, . . . , Rn), where each Ri is a linear
order over C, is called a preference profile. A voting rule F is a
mapping that, given a preference profile R over C outputs a candi-
date c ∈ C; we write c = F(R). Many classic voting rules, such
as the ones defined below, are, in fact, voting correspondences, i.e.,
they map a preference profile R to a non-empty subset S of C.
Voting correspondences can be transformed into voting rules using
tie-breaking rules. A tie-breaking rule for an election (C, V) is a
mapping T = T (R, S) that for any S ⊆ C, S 6= ∅, outputs a can-
didate c ∈ S. A tie-breaking rule T is called simple if it does not
depend on R, i.e., the value of T (R, S) is uniquely determined by
S. Such rules have the attractive property that if a manipulator can-

not change the set of tied candidates, he cannot affect the outcome
of the election. Further, we say that T is lexicographic with respect
to a preference ordering � over C if for any preference profile R
over C and any S ⊆ C it selects the most preferred candidate from
S with respect to �, i.e., we have T (S) = c if and only if c � a
for all a ∈ S \ {c}.

A composition of a voting correspondence F and a tie-breaking
rule T is a voting rule T ◦ F that, given a preference profile R
over C, outputs T (R,F(R)). Clearly, T ◦ F is a voting rule and
T ◦ F(R) ∈ F(R).

We will now describe the voting rules (correspondences) consid-
ered in this paper. All these rules assign scores to candidates; the
winners are the candidates with the highest scores.
Scoring rules Any vector α = (α1, . . . , αm) ∈ Rm with α1 ≥
· · · ≥ αm defines a scoring rule Fα. Under this rule, each voter
grants αi points to the candidate it ranks in the i-th position; the
score of a candidate is the sum of the scores it receives from all
voters. The vector α is called a scoring vector. A scoring rule is
said to be faithful if α1 > · · · > αm. We are interested in scoring
rules that are succinctly representable; therefore, throughout this
paper we assume that the coordinates of α are nonnegative inte-
gers given in binary. We remark that scoring rules are defined for a
fixed number of candidates. Therefore, we will often consider fam-
ilies of scoring rules, i.e., collections of the form (αm)∞m=1, where
αm = (αm1 , . . . , α

m
m). We require such families to be polynomial-

time computable, i.e., we only consider families of voting rules
(αm)∞m=1 for which there exists a polynomial-time algorithm that
given an m ∈ N outputs αm1 , . . . , αmm. Two well-known exam-
ples of polynomial-time computable families of scoring rules are
Borda, given by αm = (m − 1, . . . , 1, 0), and k-approval, given
by αmi = 1 if i ≤ k, αmi = 0 if i > k. 1-approval is also known
as Plurality.
Copeland We say that a candidate a wins a pairwise election
against b if more than half of the voters prefer a to b; if exactly half
of the voters prefer a to b, then a is said to tie his pairwise election
against b. Given a rational value α ∈ [0, 1], under the Copelandα

rule each candidate gets 1 point for each pairwise election he wins
and α points for each pairwise election he ties.
Maximin The Maximin score of a candidate c ∈ C is equal to
the number of votes he gets in his worst pairwise election, i.e.,
mind∈C\{c} |{i | c �i d}|.

Given a preference profile R over a set of candidates C, for
any preference order L over C we denote by (R−i, L) the pref-
erence profile obtained from R by replacing Ri with L. We say
that a voter vi can successfully manipulate an election (C, V) with
a preference profile (R1, . . . , Rn) with respect to a voting rule F
if F(R−i, L) �i F(R). We will now define the computational
problem that corresponds to this notion.

An instance of the F -MANIPULATION problem is given by a set
of candidates C, a set of voters V , a preference profile R, and the
manipulating voter vi. It is a “yes”-instance if there exists a vote L
such that F(R−i, L) �i F(R) and a “no”-instance otherwise.

3. THE MODEL AND THE ALGORITHM
OF BARTHOLDI, TOVEY AND TRICK

Before we describe the algorithm presented in [1], we remark
that the definition of successful manipulation given in [1] differs
from our definition of F -MANIPULATION (which is modeled after
the standard social choice definition, see, e.g. [12, 16]), even if we
assume that F is a voting rule rather than a voting correspondence.
Specifically, in [1] it is assumed that the manipulator has a pre-
ferred candidate p, and his goal is to make p elected; we will refer

72

to this problem asF -MANIPULATION(p). However, a polynomial-
time algorithm for F -MANIPULATION(p) can be converted into a
polynomial-time algorithm for F -MANIPULATION: we can sim-
ply run F -MANIPULATION(p) on all candidates ranked by the ma-
nipulator above the current winner, and pick the best among the
candidates for which F -MANIPULATION(p) outputs “yes”. Thus,
if F -MANIPULATION is hard, F -MANIPULATION(p) is hard, too.
Moreover, all of our hardness reductions directly show hardness of
both variants of the problem.

The algorithm for F -MANIPULATION(p) proposed in [1] as-
sumes that the voting rule assigns scores to all candidates, and the
winners are the candidates with the highest scores. Let v be the
manipulator, and let p be her preferred candidate. The algorithm
places p first, and then fills in the remaining positions in the vote
from top to bottom, searching for a candidate that can be placed in
the next available position in v’s vote so that his score does not ex-
ceed that of p. This approach works as long as the rule is monotone
and we can determine a candidate’s final score given his position
in v’s vote and the identities of the candidates that v ranks above
him. It is not hard to show that Plurality and Borda (and, in fact, all
scoring rules), as well as Copeland and Maximin have this property.

We can easily modify this algorithm for the setting where the ties
are broken adversarially to the manipulator: in that case, when the
manipulator fills a position i in his vote, i > 1, he needs to ensure
that the score of the candidate in that position is strictly less than
that of p. Generally, if ties are broken according to a lexicographic
ordering � over the candidates, when placing a candidate c with
c � p, the manipulator needs to make sure that c’s score is less
than that of p, and when placing a candidate c with c ≺ p, he needs
to make sure that c’s score does not exceed that of p.

4. RANDOMIZED TIE-BREAKING RULES
In this section, we consider a very common approach to tie-

breaking, namely, choosing the winner uniformly at random among
all tied candidates. In this case, knowing the manipulator’s prefer-
ence ordering is not sufficient to determine his optimal strategy.
For example, suppose that voter v prefers a to b to c, and by voting
strategically he can change the output of the voting correspondence
from b to {a, c}. It is not immediately clear if this manipulation is
beneficial. Indeed, if v strongly prefers a, but is essentially indif-
ferent between b and c, then the answer is probably positive, but if
v strongly dislikes c and slightly prefers a to b, the answer is likely
to be negative (of course, this also depends on v’s risk attitude).

Thus, to model this situation appropriately, we need to know the
utilities that the manipulator assigns to all candidates. Under the
natural assumption of risk neutrality, the manipulator’s utility for a
set of candidates is equal to his expected utility when the candidate
is drawn from this set uniformly at random, or, equivalently, to his
average utility for a candidate in this set. Since we are interested
in computational issues, it is reasonable to assume that all utilities
are rational numbers; by scaling, we can assume that all utilities are
positive integers given in binary.

Formally, given a set of candidates C, we assume that the ma-
nipulator is endowed with a utility function u : C → N. This
function can be extended to sets of candidates by setting u(S) =
1
|S|
P
c∈S u(c) for any S ⊆ C. Given a voting correspondence

F and an election (C, V) with a preference profile R, we say
that a vote L is optimal for a voter vi ∈ V with a utility func-
tion ui : C → N with respect to F combined with the random-
ized tie-breaking rule if ui(F(R−i, L)) ≥ ui(F(R−i), L′) for all
L′ ∈ L(C). We say that vi has a successful manipulation if his op-
timal vote L satisfies ui(F(R−i, L)) > ui(F(R)). In the rest of

this section, we will explore the complexity of finding an optimal
vote with respect to scoring rules and Maximin.

4.1 Scoring rules
All scoring rules turn out to be easy to manipulate under ran-

domized tie-breaking.

THEOREM 4.1. For any election E = (C, V) with |C| = m,
any voter v ∈ V with a utility function u : C → N, and any
scoring vector α = (α1, . . . , αm), we can find in polynomial time
an optimal vote for v with respect to the scoring rule Fα combined
with the randomized tie-breaking rule.

PROOF. Fix a voter v ∈ V with a utility function u, and let R′

denote the preference profile consisting of all other voters’ pref-
erences. Let si denote the score of candidate ci after all voters
other than v have cast their vote. Let us renumber the candidates
in order of increasing score, and, within each group with the same
score, in order of decreasing utility. That is, under the new order-
ing we have s1 ≤ · · · ≤ sm and if si = sj for some i < j then
u(ci) ≥ u(cj). We say that two candidates ci, cj with si = sj
belong to the same level. Thus, all candidates are partitioned into
h ≤ m levels H1, . . . , Hh, so that if ci ∈ Hk and cj ∈ H`, k < `,
then si < sj .

Consider first the vote L0 given by c1 � . . . � cm, and let T
be the number of points obtained by the winner(s) in (R′, L0). We
claim that for any L ∈ L(C), in the preference profile (R′, L)
the winner(s) will get at least T points. Indeed, let ci be the last
candidate to get T points in (R′, L0), and suppose that there exists
a vote L such that ci gets less than T points in (R′, L). By the
pigeonhole principle, this means that L assigns at least αi points to
some cj with j > i, and we have sj+αi ≥ si+αi = T , i.e., some
other candidate gets at least T points, as claimed. We will say that
a vote L is conservative if the winners’ score in (R′, L) is T .

We will now argue that ifLmaximizes v’s utility, then eitherL is
conservative or it can be chosen so thatFα has a unique winner un-
der (R′, L). Indeed, suppose that this is not the case, i.e., any vote
L that maximizes v’s utility is such that the set S = Fα(R′, L) is
of size at least 2, and all candidates in S get T ′ > T points. Let
ci be v’s most preferred candidate in S; we have u(ci) ≥ u(S).
Suppose that L grants αj points to ci. Since we have ci+αj > T ,
it follows that j < i. Now, consider the vote obtained from L0

by swapping ci and cj . Clearly, all candidates in C \ {ci, cj} get
at most T points, and ci gets T ′ > T points. Further, cj gets
sj + αi ≤ sj + αj ≤ T points. Thus, in this case ci is a unique
winner and u(ci) ≥ u(S), a contradiction.

Therefore, to find an optimal manipulation, it suffices to (i) check
for each candidate c ∈ C whether c can be made the unique winner
with a score that exceeds T and (ii) find an optimal conservative
vote. The optimal manipulation can then be selected from the ones
found in (i) and (ii).

Step (i) is easy to implement. Indeed, a candidate ci can be
made the unique winner with a score that exceeds T if and only
if si + α1 > T . To see this, observe that if si + α1 > T , we can
swap c1 and ci in L0: ci will get more than T points, and all other
candidates will get at most T points. Conversely, if si + α1 ≤ T ,
then the score of ci is at most T no matter how v votes.

Thus, it remains to show how to implement (ii). Intuitively, our
algorithm proceeds as follows. We start with the set of winners
produced by L0; we will later show that this set is minimal, in
the sense that if it contains x candidates from some level, then for
any vote the set of winners will contain at least x candidates from
that level. Note also that due to the ordering of the candidates we
select the best candidates from each level at this step. We then try

73

to increase the average utility of the winners’ set. To this end, we
order the remaining candidates by their utility, and try to add them
to the set of winners one by one as long as this increases its average
utility. We will now give a formal description of our algorithm and
its proof of correctness.

Let S0 = Fα(R′, L0). We initialize S and L by setting S = S0,
L = L0. Let �∗ be some ordering of the set C that ranks the can-
didates in S0 first, followed by the candidates in C \S0 in the order
of decreasing utility, breaking ties arbitrarily. We order the can-
didates from C \ S0 according to �∗, and process the candidates
in this ordering one by one. For each candidate ci, we check if
u(ci) > u(S); if this is not the case, we terminate, as all subse-
quent candidates have even lower utility. Otherwise, we check if
we can swap ci with another candidate that is currently not in S
and receives T − si points from L (so that ci gets T points in the
resulting vote). If this is the case, we update L by performing the
swap and set S = S ∪ {ci}. We then proceed to the next candidate
on the list.

We claim that the vote L obtained in the end of this process is
optimal for the manipulator, among all conservative votes. We re-
mark that at any point in time S is exactly the set of candidates that
get T points in (R′, L). Thus, we claim that any conservative vote
L̂ satisfies u(Fα(R′, L̂)) ≤ u(S).

Assume that this is not the case. Among all optimal conservative
votes, we will select one that is most “similar” to L in order to
obtain a contradiction. Formally, let L0 be the set of all optimal
conservative votes, and let L1 be the subset of L0 that consists
of all votes L′ that maximize the size of the set Fα(R′, L′) ∩ S.
The ordering�∗ induces a lexicographic ordering on the subsets of
C. Let L̂ be the vote such that the set Fα(R′, L̂) is minimal with
respect to this ordering, over all votes in L1. Set Ŝ = Fα(R′, L̂);
by our assumption we have u(Ŝ) > u(S).

Observe first that our algorithm never removes a candidate from
S: when we want to add ci to S and search for an appropriate swap,
we only consider candidates that have not been added to S yet.
Also, at each step of our algorithm the utility of the set S strictly
increases. These observations will be important for the analysis of
our algorithm.

We will first show that Ŝ \ S is empty.

LEMMA 4.2. We have Ŝ \ S = ∅.

PROOF. Suppose that the lemma is not true, and let ci be a can-
didate in Ŝ \ S. Suppose that ci appears in the j-th position in
our ordering of C \ S0. If our algorithm terminated at or be-
fore the j-th step, we have u(ci) < u(S) < u(Ŝ), and hence
u(Ŝ \ {ci}) > u(Ŝ), a contradiction with the optimality of L̂.

Thus, when our algorithm considered ci, it could not find a suit-
able swap. Since ci ∈ Ŝ, it has to be the case that there exists an
entry of the scoring vector that equals T − si; however, when our
algorithm processed ci it was unable to place ci in a position that
grants T − si points. This could only happen if all candidates that
were receiving T − si points from L at that point were in S at that
time; denote the set of all such candidates by Bi. Note that all can-
didates in Bi belong to the same level as ci. Also, all candidates
in Bi ∩ S0 have the same or higher utility than ci, because initially
we order the candidates at the same level by their utility, so that
L0 grants a higher score to the best candidates at each level. On the
other hand, all candidates inBi\S0 were added to S at some point,
which means that they have been processed before ci. Since at this
stage of the algorithm we order the candidates by their utility, it
means that they, too, have the same or higher utility than ci.

Now, since L̂ grants T −si points to ci, it grants less than T −si
points to one of the candidates inBi. Let ck be any such candidate,

and consider the vote L̂′ obtained from L̂ by swapping ci and ck.
Let Ŝ′ = Fα(R′, L̂′); we have Ŝ′ = (Ŝ \ {ci}) ∪ {ck}. By the
argument above, we have either u(ck) > u(ci) or u(ck) = u(ci).
In the former case, we get u(Ŝ′) > u(Ŝ). In the latter case, we get
u(Ŝ′) = u(Ŝ) and |Ŝ′ ∩ S| > |Ŝ ∩ S|. In both cases, we obtain a
contradiction with our choice of L̂.

Thus, we have Ŝ ⊆ S, and it remains to show that S ⊆ Ŝ. We
will first show that Ŝ contains all candidates in S0.

LEMMA 4.3. We have S0 ⊆ Ŝ.

PROOF. Suppose that |S0 ∩ Hk| = mk for k = 1, . . . , h. We
will first show that |Ŝ ∩Hk| ≥ mk for k = 1, . . . , h. Indeed, fix
a k ≤ h, and suppose that the first candidate in the k-th level is
ci. Then in (R′, L0) the scores of the candidates in Hk are si +
αi, . . . , si + αj for some j ≥ i. If si + αi < T , then mk = 0
and our claim is trivially true for this value of k. Otherwise, by the
pigeonhole principle, if it holds that in (R′, L̂) less than mk voters
in Hk get T points, it has to be the case that at least one candidate
in Hk+1 ∪ · · · ∪Hh receives at least αi points from L̂. However,
for any c` ∈ Hk+1 ∪ · · · ∪Hh we have s` > si, so s` + αi > T ,
a contradiction with our choice of L̂.

Now, suppose that S0 ∩ Hk 6⊆ Ŝ ∩ Hk for some k ≤ h, and
consider a candidate c` ∈ (S0 ∩Hk) \ (Ŝ ∩Hk). Since we have
argued that |Ŝ ∩ Hk| ≥ mk, it must be the case that there also
exists a candidate cj ∈ (Ŝ ∩Hk) \ (S0 ∩Hk). It is easy to see that
S0 contains the mk best candidates from Hk, so u(c`) ≥ u(cj).
The rest of the proof is similar to that of Lemma 4.2: Consider
the vote L̂′ obtained from L̂ by swapping c` and cj and let Ŝ′ =

Fα(R′, L̂′). Since c` and cj belong to the same level, we have
Ŝ′ = (Ŝ \ {c`}) ∪ {ck}. Thus, either u(Ŝ′) > u(Ŝ) or u(Ŝ′) =

u(Ŝ) and |Ŝ′ ∩S| > |Ŝ ∩S|. In both cases we get a contradiction.
Thus, we have S0∩Hk ⊆ Ŝ∩Hk. Since this holds for every value
of k, the proof is complete.

Given Lemma 4.2 and Lemma 4.3, it is easy to complete the
proof. Suppose that Ŝ is a strict subset of S. Observe first that for
any subset S′ of S there is a vote L′ such that Fα(R′, L′) = S′:
we can simply ignore the candidates that are not members of S′

when running our algorithm, as this only increases the number of
“available” swaps at each step. Now, order the candidates inC \S0

according to �∗. Let ci be the first candidate in this order that
appears in S, but not in Ŝ. If there is a candidate cj that appears
later in the sequence and is contained in both S and Ŝ, consider
the set S′ = Ŝ \ {cj} ∪ {ci}. As argued above, there is a vote
L′ such that Fα(R′, L′) = S′. Now, if u(ci) > u(cj), this set
has a higher average utility that Ŝ. Thus, this is a contradiction
with our choice of L̂. On the other hand, if u(cj) = u(ci), then
we have u(S′) = u(Ŝ), |S ∩ S′| = |S ∩ Ŝ|, and S′ precedes Ŝ
is the lexicographic ordering induced by �∗, a contradiction with
the choice of L̂ again. Therefore, none of the candidates in S that
appear after ci in the ordering belongs to Ŝ. Now, when we added
ci to S, we did so because its utility was higher than the average
utility of S at that point. However, by construction, the latter is
exactly equal to u(Ŝ). Thus, u(Ŝ ∪ {ci}) > u(Ŝ), a contradiction
again. Therefore, the proof is complete.

4.2 Maximin
For Maximin with randomized tie-breaking, we have not been

able to design an efficient algorithm for finding an optimal manip-
ulation in the general utility model. However, we will now present a

74

polynomial-time algorithm for this problem assuming that the ma-
nipulator’s utility function has a special structure. Specifically, re-
call that in the model of [1] the manipulator’s goal is to make a
specific candidate p a winner. This suggests that the manipula-
tor’s utility can be modeled by setting u(p) = 1, u(c) = 0 for all
c ∈ C \ {p}. We will now show that for such utilities there exists
a poly-time algorithm for finding an optimal manipulation under
Maximin combined with the randomized tie-breaking rule.

THEOREM 4.4. If the manipulator’s utility function is given by
u(p) = 1, u(c) = 0 for c ∈ C \ {p}, the problem of finding an op-
timal manipulation under Maximin combined with the randomized
tie-breaking rule is in P.

PROOF. Consider an election E = (C, V) with the candidate
set C = {c1, . . . , cm} and the voter set V = {v1, . . . , vn}, and let
vn be the manipulating voter. In this proof, we denote by s(ci) the
Maximin score of a candidate ci ∈ C in the electionE′ = (C, V ′),
where V ′ = {v1, . . . , vn−1}. Let s = maxci∈C s(ci).

For any ci ∈ C, the manipulator’s vote increases the score of
ci either by 0 or by 1. Thus, if s(p) < s − 1, the utility of the
manipulator will be 0 irrespective of how he votes.

Now, suppose that s(p) = s − 1. The manipulator can increase
the score of p by 1 by ranking p first. Thus, his goal is to ensure
that after he votes (a) no other candidate gets s + 1 point and (b)
the number of candidates in C \ {p} with s points is as small as
possible. Similarly, if s(p) = s, the manipulator can ensure that
p gets s + 1 points by ranking him first, so his goal is to rank the
remaining candidates so that in C \ {p} the number of candidates
with s + 1 points is as small as possible. We will now describe an
algorithm that works for both of these cases.

We construct a directed graph G with the vertex set C that cap-
tures the relationship among the candidates. Namely, we have an
edge from ci to cj if there are s(cj) voters in V ′ that rank cj above
ci. Observe that, by construction, each vertex in G has at least one
incoming edge. We say that ci is a parent of cj in G whenever
there is an edge from ci to cj . We remark that if the manipula-
tor ranks one of the parents of cj above cj in his vote, then cj’s
score does not increase. We say that a vertex ci of G is purple if
s(ci) = s(p) + 1, red if s(ci) = s(p) and ci 6= p, and green oth-
erwise; note that by construction p is green. Observe also that if
s(p) = s, there are no purple vertices in the graph. We will say
that a candidate cj is dominated in an ordering L (with respect to
G) if at least one of cj’s parents in G appears before cj in L. Thus,
our goal is to ensure that the set of dominated candidates includes
all purple candidates and as many red candidates as possible.

Our algorithm is based on a recursive procedure A, which takes
as its input a graph H with a vertex set U ⊆ C together with a
coloring of U into green, red and purple; intuitively, U is the set of
currently unranked candidates. It returns “no” if the candidates in
U cannot be ranked so that all purple candidates inU are dominated
by other candidates inU with respect toH . Otherwise, it returns an
ordered list L of the candidates in U in which all purple candidates
are dominated, and a set S consisting of all red candidates in U that
remain undominated in L with respect to H .

To initialize the algorithm, we call A(G). The procedure A(H)
is described below.

1. Set L = ∅.

2. If H contains p, set L = [p], and remove p from H .

3. While H contains a candidate c that is green or has a parent
that has already been ranked, set L :: [c] (where :: denotes
the list concatenation operation) and remove c from H .

4. If H is empty, return (L, ∅).

5. If there is a purple candidate in H with no parents in H ,
return “no”.

6. If there is a red candidate c inH with no parents inH , letH ′

be the graph obtained from H by coloring c green. Compute
A(H ′). If A(H ′) returns “no”, return “no”. Otherwise, if
A(H ′) returns (L′, S′), return (L :: L′, S′ ∪ {c}).

7. At this point in the algorithm, each vertex of H has a par-
ent. Hence, H contains a cycle. Let T be some such cycle.
Collapse T , i.e., (a) replace T with a single vertex t, and (b)
for each y 6∈ T , add an edge (t, y) if H contained an edge
(x, y) for some x ∈ T and add an edge (y, t) if H contained
a vertex z with (y, z) ∈ H . Color t red if T contains at least
one red vertex, and purple otherwise. LetH ′ be the resulting
graph and call A(H ′). If A(H ′) returns “no”, return “no”.
Now, suppose that A(H ′) returns (L′, S′).

Suppose that t ∈ S′. At any point in the algorithm, we only
put a vertex in S if it is red, so t must be red, and hence T
contains a red vertex. Let c be some red vertex in T , and let
L̂ be an ordering of the vertices in T that starts with c and
follows the edges of T . Let L′′ be the list obtained from L′

by replacing t with L̂ (i.e., if L′ = L1 :: [t] :: L2, then
L′′ = L1 :: L̂ :: L2). Return (L :: L′′, (S′ \ {t}) ∪ {c}).

If t 6∈ S′, then by Lemma 4.5 (see below) t is dominated
in H ′. Let a be a parent of t that precedes it in L′. Then
T contains a child of a. Let c be some such child, and let
L̂ be an ordering of the vertices in T that starts with c and
follows the edges of T . Let L′′ be the list obtained from L′

by replacing t wish L̂. Return (L :: L′′, S′).

We will now argue that our algorithm outputs “no” if and only if
no matter how vn votes, some candidate in C \ {p} gets s(p) + 2
points. Moreover, if A(G) = (L, S) and the set S contains r red
candidates, then whenever vn votes so that after his vote all other
candidates have at most s(p) + 1 points, there are at least r red
candidates with s(p) + 1 points.

We will split the proof into several lemmas.

LEMMA 4.5. At any point in the execution of the algorithm, if
A(H) = (L, S), then each candidate in U \ S is dominated in H .

PROOF. The proof is by induction on the recursion depth. Con-
sider a candidate x ∈ U \S. Clearly, if there are no recursive calls,
A ranks x at Step 3, and the claim is obviously true.

For the induction step, suppose that the claim is true if we have d
nested recursive calls, and consider an execution that makes d + 1
nested calls. Again, consider a candidate x ∈ U \S. As in the base
case, if x has been ranked in Step 3 the claim is clearly true. If x
was ranked in Step 6, it follows that x 6∈ S′, and the claim follows
by the inductive assumption. Now, suppose that x was ranked in
Step 7 when we collapsed some cycle T . If x 6∈ T , then x 6∈ S′

and the claim follows by the inductive assumption. In particular, if
x was ranked after t before the expansion, there is some vertex y in
T such that H contains the edge (y, x), so after expansion x will
be dominated by y.

Now, suppose that x ∈ T . If t was in S′, but x was not added
to S, it means that x was not the first vertex of T to appear in the
ranking, i.e., x was ranked after its predecessor in T . If t was not in
S′, then by the inductive assumption t was ranked after its parent
in H ′, i.e., there is a z ∈ H ′ \ {t} such that z is ranked before t
in L′ and there is an edge (z, t) in H ′. By construction of t, this

75

means that there is a vertex y ∈ T such that there is an edge (z, y)
in H . Thus, when we expanded t into T , the first vertex of T to be
ranked was placed after its parent, and all subsequent vertices of T
were placed after their predecessors in T . Thus, all vertices in T
and, in particular, x, are dominated.

We are now ready to prove that our algorithm correctly deter-
mines whether the manipulator can ensure that no candidate gets
more than s(p) + 1 points.

LEMMA 4.6. The algorithm outputs “no” if and only if for any
vote L there is a purple candidate that is undominated.

PROOF. Observe that the algorithm only outputs “no” if it finds
a purple candidate with no parents. Let c be some such candidate.
Now, in the original graph G each vertex has a parent. Further, if
there was an edge from some x to c, and we collapsed a cycle T
that contains x, but not c, there is still an edge from the resulting
vertex t to c. Thus, the only way to obtain a purple vertex with
no incoming edges is by collapsing a cycle T such that T contains
purple vertices only, and no vertex of T has an incoming edge. By
induction on the execution of the algorithm, it is easy to see that if
we obtained a purple vertex with no incoming edges at some point,
then in the original graph there was a group of purple vertices such
that there was no edge from any red or green vertex to any of the
vertices in the group. Now, in any ordering on C one of the candi-
dates in this group would have to be ranked first. By construction,
this candidate would be ranked before all its parents, so it is un-
dominated.

Conversely, suppose that the algorithm does not answer “no”,
and outputs a pair (L, S) instead. We have observed that S consists
of red vertices only. Thus, by Lemma 4.5 each purple vertex is
dominated.

It remains to show that the set S output by the algorithm contains
as few candidates as possible.

LEMMA 4.7. At any point in the execution of the algorithm, if
A(H) = (L, S), then in any ordering of the candidates in U in
which each purple vertex inU is dominated, at least |S| red vertices
in U are undominated.

PROOF. The proof is by induction on the recursion depth. Sup-
pose first that we make no recursive calls. Then our algorithm out-
puts S = ∅, and our claim is trivially true. Now, suppose that our
claim is true if we make d nested calls. Consider an execution of
A which makes d + 1 nested call, and suppose that when we call
A(H ′) within this execution, it returns (L′, S′).

Suppose first that we made the recursive call in Step 6 of the
algorithm, and therefore set S = S′ ∪ {c}. Suppose for the sake
of contradiction that there exists a ranking of the candidates in U
such that at most |S| − 1 candidate is undominated. Since c has
no parents in H , there are at most |S| − 2 other red candidates
that are undominated. In other words, if we recolor c green, in
the resulting instance (which is exactly the instance passed to A
during the recursive call), there are at most |S| − 2 undominated
red candidates. Since |S′| = |S| − 1, this is a contradiction with
the inductive assumption.

Now, suppose that we made the recursive call in Step 7 of the al-
gorithm, and collapsed a cycle T into a vertex t. Again, assume for
the sake of contradiction that there exists a ranking L̄ of the candi-
dates in U such that at most |S| − 1 candidates are undominated.
Let c be the first vertex of T to appear in L̄. Consider the ranking
of U ′ obtained by removing all vertices of T \ {c} from L̄ and re-
placing c with t; denote this ranking by L̄′. We claim that in L̄′ at

most |S| − 1 vertices of H ′ are undominated. Indeed, any parent
of c in H is a parent of t in H ′, so t is undominated if and only if
c was. On the other hand, if for some vertex x the only parent that
preceded it in L̄ was a vertex y ∈ T \ {c}, then in H ′ there is an
edge from t to x, i.e., x is preceded by its parent t in L̄′. For all
other vertices, if they were preceded by some parent z in L̄, they
are preceded by the same parent in L̄′. Since |S| = |S′|, we have
shown that U ′ can be ordered so that at most |S′| − 1 vertices are
undominated, a contradiction with the inductive assumption.

Combining Lemma 4.6 and Lemma 4.7, we conclude that if our
algorithm outputs (L, S), then L is the optimal vote for vn and if
our algorithm outputs “no”, then the manipulator’s utility is 0 no
matter how he votes. Also, it is not hard to see that the algorithm
runs in polynomial time. Thus, the proof is complete.

5. HARDNESS RESULTS
We will now demonstrate that if we allow arbitrary polynomi-

al-time tie-breaking rules, the algorithmic results presented in the
previous sections no longer hold. In fact the problem of finding a
beneficial manipulation becomes NP-hard. We will first present a
specific simple tie-breaking rule T . We will then show that ma-
nipulating the composition of this rule with Borda, Copeland or
Maximin is NP-hard.

Recall that an instance C of 3-SAT is given by a set of s variables
X = {x1, . . . , xs} and a collection of t clauses Cl = {c1, . . . , ct},
where each clause ci ∈ Cl is a disjunction of three literals over X ,
i.e., variables or their negations; we denote the negation of xi by xi.
It is a “yes”-instance if there is a truth assignment for the variables
in X such that all clauses in Cl are satisfied, and a “no”-instance
otherwise. This problem is known to be hard even if we assume
that all literals in each clause are distinct, so from now on we as-
sume that this is the case. Now, given s variables x1, . . . , xs, there
are exactly ` =

`
2s
3

´
3-literal clauses that can be formed from these

variables (this includes clauses of the form x1∧x1∧x2). Ordering
the literals as x1 < x1 < · · · < xs < xs induces a lexicographic
ordering over all 3-literal clauses. Let φi denote the i-th clause in
this ordering. Thus, we can encode an instance C of 3-SAT with s
variables as a binary string σ(C) of length `, where the i-th bit of
σ(C) is 1 if and only if φi appears in C.

We are ready to describe T . Given a set S ⊆ C of candidates,
where |C| = m, T first checks if m = ` + 2s + 4 for some
s > 0 and ` =

`
2s
3

´
. If this is not the case, it outputs the lexi-

cographically first candidate in S and stops. Otherwise, it checks
whether cm ∈ S and for every i = 1, . . . , s, the set S satisfies
|S ∩ {c`+2i−1, c`+2i}| = 1. If this is not the case, it outputs
the lexicographically first candidate in S and stops. If the condi-
tions above are satisfied, it constructs an instance C = (X,Cl)
of 3-SAT by setting X = {x1, . . . , xs}, Cl = {φi | 1 ≤ i ≤
`, ci ∈ S}. Next, it constructs a truth assignment (ξ1, . . . , ξs) for
C by setting ξi = > if c`+2i−1 ∈ S, c`+2i 6∈ S and ξi = ⊥
if c`+2i−1 6∈ S, c`+2i ∈ S. Finally, if C(ξ1, . . . , ξs) = >, it
outputs cm and otherwise it outputs the lexicographically first can-
didate in S. Clearly, T is simple and polynomial-time computable,
and hence the problem T ◦ F-MANIPULATION is in NP for any
polynomial-time computable rule F (and, in particular, for Borda,
Maximin and Copeland). In the rest of this section, we will show
that T ◦ F -MANIPULATION is NP-hard for all these rules.

5.1 Borda and other scoring rules
We will first consider the Borda rule. We will then show that

essentially the same proof works for a large class of scoring rules.
To simplify notation, in the proof of Lemma 5.1 and Theorem 5.2

76

we will denote the Borda score of a candidate x in a preference
profile R by s(R, x).

LEMMA 5.1. For any set of candidatesC = {c1, . . . , cm} with
m ≥ 4 and any vector (β1, . . . , βm−1) with βi ∈ {0, 1, . . . ,m}
for i = 1, . . . ,m − 1 and β1 > 0, we can efficiently construct a
preference profile R = (R1, . . . , Rn) with n = m(m − 1) voters
such that for some K ≥ m2 + m + 1 and some u ≤ m(m − 1)
the Borda scores of all candidates satisfy s(R, ci) = K + βi for
i = 1, . . . ,m− 1 and s(R, cm) = u.

The proof of Lemma 5.1 is similar to that of Theorem 3.1 in [5] and
is omitted due to space constraints.

THEOREM 5.2. T ◦ Borda-MANIPULATION is NP-hard.

PROOF. Suppose that we are given an instance C of 3-SAT with
s variables. Note that this instance can be encoded by a binary
vector (σ1, . . . , σ`), where ` =

`
2s
3

´
, as described in the construc-

tion of T : σi = 1 if and only if C contains the i-th 3-variable
clause with respect to the lexicographic order. We will now con-
struct an instance of our problem with m = `+ 2s+ 4 candidates
c1, c2, . . . , cm. For readability, we will also denote the first ` can-
didates by u1, . . . , u`, the next 2s candidates by x1, y1, . . . , xs, ys,
and the last four candidates by d1, d2, w, and c.

Let U = {u1, . . . , u`}, let Q = {ci ∈ U | σi = 1}, and let
q = |Q|. For convenience, we renumber the candidates in U so
that Q = {u1, . . . , uq}.

We will now use Lemma 5.1 to construct a preference profile
R = (R1, . . . , Rn) with the following scores:

• s(R, w) = K +m, s(R, c) = K + 1;
• s(R, ui) = K +m− i for i = 1, . . . , q;
• s(R, ui) = K for i = q + 1, . . . , `;
• s(R, xi) = s(R, yi) = K + i+ 1 for i = 1, . . . , s;
• s(R, d1) = K, s(R, d2) = u,

where K > m2 +m+ 1 and u ≤ m(m− 1).
Now, consider an election with the set of candidates C and a set

of voters V = {v1, . . . , vn+1}, where for i ≤ n the preferences of
the i-th voter are given by Ri, and the preferences of the last voter
(who is also the manipulating voter) are given by

c � w � x1 � y1 � . . . � xs � ys � u1 � . . . � u` � d1 � d2.

Observe that if vn+1 votes truthfully,w wins. Thus, a manipulation
is successful if and only if vn+1 manages to vote so that c gets
elected.

Suppose first that we have started with a “yes”-instance of 3-
SAT, and let (ξ1, . . . , ξs) ∈ {>,⊥}s be the corresponding truth
assignment. For i = 1, . . . , s, set zi = xi if ξi = > and zi = yi
if ξi = ⊥. Suppose that vn+1 submits a vote L in which he ranks
c, z1, . . . , zs in the top s+1 positions (in this order), uq, . . . , u1, w
in the bottom q+1 positions (in this order), and all other candidates
in the remaining positions in between.

It is not hard to see that in this case the candidates c,w, z1, . . . , zs
and all candidates in Q get K + m points, while all other candi-
dates get less than K +m points. Thus, the set of tied candidates
S is Q ∪ {c, w, z1, . . . , zs}. Therefore, given the set S, our tie-
breaking rule will reconstruct C, check whether z1, . . . , zs encode
a satisfying truth assignment for C (which is indeed the case), and
output cm = c. Thus, in this case L is a successful manipulation.

Conversely, suppose that vn+1 submits a vote L so that c gets
elected. Since we have s(R, w) − s(R, c) = m − 1, it follows
that L ranks c first and w last, and hence both of them get K +m

points. Similarly, we can show by induction on i that for all i =
1, . . . , q it holds that vn+1 ranks ui in the (m − i)-th position;
thus, each candidate in Q also gets K + m points. Moreover, all
other candidates in U \ Q get less than K + m points, i.e, the
manipulator cannot change the formula encoded by the set of tied
candidates. Let S be the set of all candidates with the top score.
Since c wins the election, it has to be the case that the set S ∩
{x1, y1, . . . , xs, ys} encodes a satisfying truth assignment for C,
i.e., C is satisfiable. Thus, the proof is complete.

Theorem 5.2 can be generalized to other families of scoring rules,
including k-approval, where k is polynomially related to m (i.e.,
m = poly(k)). Note, however, that we cannot hope to prove an
analogue of Theorem 5.2 for all scoring rules as long as we in-
sist that the tie-breaking rule is simple: we have to require that the
scoring vector has a superlogarithmic number of non-zero coordi-
nates. Indeed, if the number of non-zero coordinates k satisfies
k = O(logm), the manipulator can simply try all possible place-
ments of the candidates into the top k positions in polynomial time.
This strategy works for any simple polynomial-time tie-breaking
rule, since the set of tied candidates only depends on the top k po-
sitions in the manipulator’s vote. On the other hand, if we drop the
simplicity requirement, there are tie-breaking rules for which even
Plurality is hard to manipulate.

THEOREM 5.3. There exists a tie-breaking rule T ′ such that
T ′ ◦ Plurality-MANIPULATION is NP-complete.

We omit the formal proof of Theorem 5.3 due to space constraints;
intuitively, we can consider a tie-breaking rule T ′ that interprets the
set of winners as a boolean formula and views the manipulator’s
vote as a truth assignment.

5.2 Copeland and Maximin
We will now show that T ◦ Copeland and T ◦ Maximin are

hard to manipulate using essentially the same construction as in the
proof of the Theorem 5.2.

THEOREM 5.4. T ◦Maximin-MANIPULATION is NP-hard.

PROOF. Given a 3-SAT formula C, we construct an election
E = (C, V) where C, U , Q and q are as in the proof of Theo-
rem 5.2.

We can encode an election over a set of candidates C as a matrix
{a(i, j)}i,j∈C , where for all i 6= j the entry a(i, j) equals the
number of voters that prefer i to j. By McGarvey’s theorem [14],
for some n = poly(m) we can efficiently construct a preference
profile R = (R1, . . . , Rn) corresponding to the following matrix:

• a(ui, ui+1) = b+ 1 for i = 1, . . . , q;

• a(ui, ui+1) = b− 1 for i = q + 1, . . . , `;

• a(xi, yi) = a(yi, ui) = b for i = 1, . . . , s;

• a(c, w) = a(d1, c) = b, a(w, d1) = b+ 1;

• a(c, d2) = g + 1;

• a(x, y) = g+ b−a(y, x) if a(y, x) has been defined above;

• a(x, y) = b+g
2

for all other pairs (x, y) ∈ C × C,

where u`+1 := u1, b < m, g > 2m, and b + g = n. Now,
consider an election with the set of candidates C and a set of voters
V = {v1, . . . , vn+1}, where for i ≤ n the preferences of the i-th

77

voter are given by Ri, and the preferences of the last voter (who is
also the manipulating voter) are given by

c � w � d1 � d2 � x1 � y1 � . . . � xs � ys � u` . . . � u1.

Observe that if vn+1 votes truthfully, then a(w, d1) = b + 2,
a(w, x) > b + 2 for all x ∈ C \ {d1}, while the Maximin score
of any other candidate is at most b+ 1, so w is the election winner.
Hence, a manipulation is successful if and only if vn+1 manages
to vote so that c gets elected. It can be shown that this is possible
if and only if we have started with a “yes”-instance of 3-SAT; we
omit the proof due to lack of space.

THEOREM 5.5. T ◦ Copelandα-MANIPULATION is NP-hard
for any α ∈ [0, 1].

PROOF. Given a 3-SAT formula C, we construct an election
E = (C, V) where C, U , Q and q are the same as in the proof
of the Theorem 5.2. We say that x safely wins a pairwise election
against y (and y safely loses a pairwise election against x) if at least
n
2

+ 2 voters prefer x to y. For any candidate x ∈ C, let SW(x)
and SL(x) denote the number of pairwise elections that x safely
wins and safely loses, respectively. By McGarvey’s theorem [14],
we can construct a preference profile R = (R1, . . . , Rn) with the
following properties:

• SW(ui) = m+1
2

, SL(ui) = m−3
2

for i = 1, . . . , q;
• SW(ui) = m−1

2
, SL(ui) = m−1

2
for i = q + 1, . . . , `;

• SW(xi) = SW(yi) = m−1
2

for i = 1, . . . , s;
• SL(xi) = SL(yi) = m−3

2
for i = 1, . . . , s;

• SW(c) = m−1
2

, SL(c) = m−3
2

;
• SW(w) = m+1

2
, SL(w) = m−9

2
;

• SW(d1) =
¨
`−q+s−1

2

˝
, SL(d1) =

˚
`+q+3s+5

2

ˇ
;

• SW(d2) =
˚
`−q+s−1

2

ˇ
, SL(d2) =

¨
`+q+3s+5

2

˝
;

• there is a tie between c and w, w and d1, w and d2, and xi
and yi for i = 1, . . . , s.

It is easy to check that for each candidate the total number of wins,
losses and ties that involve him equals m−1; in particular, `− q+
s−1 and `+q+3s+5 have the same parity, so SW(d1)+SL(d1) =
SW(d2) + SL(d2) = ` + 2s + 2 = m − 2. Moreover, the total
number of wins equals the total number of losses. Thus, such a
profile can indeed be constructed.

Now, consider an election with the set of candidates C and a set
of voters V = {v1, . . . , vn+1}, where for i ≤ n the preferences of
the i-th voter are given by Ri, and the preferences of the last voter
(who is also the manipulating voter) are given by

c � w � d1 � d2 � x1 � y1 � . . . � xs � ys � u` . . . � u1.

If vn+1 votes truthfully, w wins. Hence, a manipulation is success-
ful if and only if vn+1 manages to vote so that c gets elected. It can
be shown that this is possible if and only if we started with a “yes”-
instance of 3-SAT; we omit the proof due to lack of space.

6. CONCLUSIONS AND FUTURE WORK
We have explored the complexity of manipulating many com-

mon voting rules under randomized tie-breaking as well as under
arbitrary polynomial-time tie-breaking procedures. Our results for
randomized tie-breaking are far from complete, and a natural re-
search direction is to extend them to other voting rules, such as
Copeland or Bucklin, as well as to the Maximin rule with general
utilities. Other interesting questions include identifying natural tie-
breaking rules that make manipulation hard and extending our re-
sults to multi-winner elections.

7. ACKNOWLEDGMENTS
This research was supported by National Research Foundation

(Singapore) under grant 2009-08, by NTU SUG (Edith Elkind),
and by SINGA graduate fellowship (Svetlana Obraztsova).

8. REFERENCES
[1] J. J. Bartholdi, III, C. A. Tovey, and M. Trick. The

computational difficulty of manipulating an election. Social
Choice and Welfare, 6:227–241, 1989.

[2] J. J. Bartholdi, III and J. B. Orlin. Single transferable vote
resists strategic voting. Social Choice and Welfare,
8(4):341–354, 1991.

[3] V. Conitzer and T. Sandholm. Universal voting protocol
tweaks to make manipulation hard. In IJCAI’03,
pp. 781–788, 2003.

[4] V. Conitzer, T. Sandholm, and J. Lang, When ere elections
with few candidates hard to manipulate?. J. ACM, 54:1–33,
2007.

[5] J. Davies, G. Katsirelos, N. Narodytska, and T. Walsh. An
empirical study of Borda manipulation. In COMSOC’10,
pp. 91–102, 2010.

[6] Y. Desmedt, E. Elkind. Equilibria of plurality voting with
abstentions. In ACM EC’10, pp. 347–356, 2010.

[7] E. Elkind, H. Lipmaa, Hybrid voting protocols and hardness
of manipulation. In ISAAC’05, pp. 206–215, 2005.

[8] P. Faliszewski, E. Hemaspaandra, and H. Schnoor. Copeland
voting: ties matter. In AAMAS’08, pp. 983–990, 2008.

[9] P. Faliszewski, A. Procaccia. AI’s war on manipulation: are
we winning? In AI Magazine, 31(4):53–64, 2010.

[10] E. Friedgut, G. Kalai, and N. Nisan. Elections can be
manipulated often. In FOCS’08, pp. 243–249, 2008.

[11] M. R. Garey, D. S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness, 1979.

[12] A. F. Gibbard. Manipulation of voting schemes: a general
result. Econometrica, 41:597–601, 1973.

[13] M. Isaksson, G. Kindler, and E. Mossel. The geometry of
manipulation—a quantitative proof of the
Gibbard–Satterthwaite theorem. In FOCS’10, pp. 319–328,
2010.

[14] D. C. McGarvey. A Theorem on the Construction of Voting
Paradoxes. Econometrica, 21(4):608–610, 1953.

[15] A. Procaccia, J. Rosenschein, Junta distributions and the
average-case complexity of manipulating elections. Journal
of AI Research 28:157–181, 2007.

[16] M. A. Satterthwaite. Strategy-proofness and Arrow’s
conditions: existence and correspondence theorems for
voting procedures and social welfare functions. Journal of
Economic Theory, 10:187–217, 1975.

[17] T. Walsh. Where are the really hard manipulation problems?
The phase transition in manipulating the Veto rule. In
IJCAI’09, pp. 324–329, 2009.

[18] L. Xia and V. Conitzer, A sufficient condition for voting rules
to be frequently manipulable. In EC’08, pp. 99–108, 2008.

[19] L. Xia, V. Conitzer, A. Procaccia. A scheduling approach to
coalitional manipulation. In EC’10, pp. 275–284, 2010.

[20] L. Xia, M. Zuckerman, A. Procaccia, V. Conitzer, and
J. Rosenschein. Complexity of unweighted coalitional
manipulation under some common voting rules. In IJCAI’09,
pp. 348–352, 2009.

78

