
Complexity of coalition structure generation

Haris Aziz
Department of Informatics

Technische Universität München
85748 Garching bei München, Germany

aziz@in.tum.de

Bart de Keijzer
CWI Amsterdam

1098 XG Amsterdam, The Netherlands
B.de.Keijzer@cwi.nl

ABSTRACT
We revisit the coalition structure generation problem in
which the goal is to partition the players into exhaustive
and disjoint coalitions so as to maximize the social welfare.
One of our key results is a general polynomial-time algo-
rithm to solve the problem for all coalitional games pro-
vided that player types are known and the number of player
types is bounded by a constant. As a corollary, we obtain a
polynomial-time algorithm to compute an optimal partition
for weighted voting games with a constant number of weight
values and for coalitional skill games with a constant number
of skills. We also consider well-studied and well-motivated
coalitional games defined compactly on combinatorial do-
mains. For these games, we characterize the complexity
of computing an optimal coalition structure by presenting
polynomial-time algorithms, approximation algorithms, or
NP-hardness and inapproximability lower bounds.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity; I.2.11 [Distributed Artificial
Intelligence]: Multiagent Systems; J.4 [Computer Ap-
plications]: Social and Behavioral Sciences - Economics

General Terms
Economics, Theory and Algorithms

Keywords
Game theory (cooperative and non-cooperative), teamwork,
coalition formation, coordination, and computational com-
plexity

1. INTRODUCTION
Coalition formation is an important issue in multiagent

systems with cooperating agents. Coalitional games have
been used to model various cooperative settings in oper-
ations research, artificial intelligence and multiagent sys-
tems (see e.g, [5, 6, 11]). The area of coalitional game
theory which studies coalition formation has seen consider-
able growth over the last few decades.Given a set of agents

Cite as: Complexity of coalition structure generation, Haris Aziz and
Bart de Keijzer, Proc. of 10th Int. Conf. on Autonomous Agents
and Multiagent Systems (AAMAS 2011), Tumer, Yolum, Sonen-
berg and Stone (eds.), May, 2–6, 2011, Taipei, Taiwan, pp. 191-198.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

N , a coalitional game is defined by a valuation function
v : N → R where for C ⊆ N , v(C) signifies the value which
players in C can generate by cooperating.

In a coalitional game, a partition of the players into ex-
haustive and disjoint coalitions is called a coalition structure.
In the coalition structure generation problem, the goal is to
find a coalition structure π of N that maximizes the social
welfare

P
C∈π v(C). We will refer to this problem of find-

ing an optimal coalition structure as OptCS. In this paper,
we conduct a detailed investigation of computing optimal
coalition structures that give the maximum social welfare.
Computing optimal coalition structures is a natural problem
in which the aim is to utilize resources in the most efficient
manner.

OptCS has received attention in the artificial intelligence
community where the focus has generally been on computing
optimal coalition structures for general coalition formation
games [16, 20] without any combinatorial structure. Tradi-
tionally, the input considered is an oracle called a character-
istic function which returns the value for any given coalition
(in time polynomial in the number of players). In this set-
ting, it is generally assumed that the value of a coalition does
not depend on players who are not in the coalition. Comput-
ing optimal coalition structures is a computationally hard
task because of the huge number of coalition structures. The
total number of coalition structures for a player set of size n
is Bn ∼ Θ(nn) where Bn is the nth Bell number. A number
of algorithms have been developed in the last decade which
attempt to satisfy many desirable criteria, e.g. outputting
an optimal solution or a good approximation, the ability
to prune, the anytime property, worst case guarantees, dis-
tributed computation etc. [16, 18, 20, 21]. In all of the cases,
the algorithms have a worst-case time complexity which is
exponential in n. In this paper, we show that the picture
is not that bleak if player types are known and the number
of player types is bounded by a constant. In fact for such a
condition, there is a polynomial-time algorithm for OptCS
for coalitional games. In many multiagent systems, it can be
reasonable to assume that the agents can be divided into a
bounded number of types according to the player attributes.

We also study the complexity of OptCS for a number of
compact coalitional games. Coalitional games can be repre-
sented compactly on combinatorial domains where the val-
uation function is implicitly defined [9, 10]. Numerous such
classes of coalitional games have been the subject of recent
research in multiagent systems: weighted voting games [11];
skill games [5]; multiple weighted voting games [4]; network
flow games [6]; spanning connectivity games [3]; and match-

191

ing games [13]. Apart from some exceptions (skill games [7]
and marginal contribution nets [17]), most of the algorithmic
research for these classes of games has been on computing
stability-based solutions. In the paper, we characterize the
complexity of OptCS for many compact games by present-
ing polynomial-time exact algorithms, approximation algo-
rithms, or NP-hardness and inapproximability lower bounds.
Throughout the paper, we assume familiarity with funda-
mental concepts in computational complexity [1].

Contribution.
In this paper, we undertake a detailed and systematic

study of computing optimal coalition structures for many
important combinatorial optimization coalitional games.

Our most important result is a general polynomial-time
algorithm to compute an optimal coalition structure for any
coalitional game when the player types are known and the
number of player types is bounded by a fixed constant. As a
corollary, we obtain a polynomial-time algorithm to compute
an optimal coalition structure for weighted voting games
with a constant number of weight values, linear games with a
constant number of desirability classes, and all known coali-
tional skill games with a constant number of skills.

In contrast to our general algorithmic result, we show that
finding the player types is intractable in general from a com-
munication and computational complexity point of view.

We present a 2-approximation algorithm for the case of
weighted voting games and show that this approximation
bound is the best possible. Our approximation and inap-
proximability results concerning weighted voting games may
be of independent interest since they address a problem in
the family of knapsack problems [12] which has not been
studied before.

We also examine well-known coalitional games based on
graphs and characterize the complexity of computing the
optimal coalition structures. Interestingly for certain com-
binatorial optimization games for which the combinatorial
optimization problem is NP-hard, the problem of computing
an optimal coalition structure is easy.

2. PRELIMINARIES
In this section, we define several important classes of coali-

tional games and formally define the fundamental computa-
tional problem OptCS.

2.1 Coalitional games
We begin with the formal definition of a coalitional game.

Definition 1 (Coalitional games). A coalitional
game is a pair (N, v) where N = {1, . . . , n} is a set of
players and v : 2N → R is a characteristic or valuation
function that associates with each coalition C ⊆ N a
payoff v(C) where v(∅) = 0. A coalitional game (N, v) is
monotonic when it satisfies the property that v(C) ≤ v(D)
if C ⊆ D.

Throughout the paper, when we refer to a general coalitional
game, we assume such a coalitional game with transferable
utility. For the sake of brevity, we will sometimes refer to
the game (N, v) as simply v.

Definition 2 (Simple game). A simple game is a
monotonic coalitional game (N, v) with v : 2N → {0, 1} such

that v(∅) = 0 and v(N) = 1. A coalition C ⊆ N is winning
if v(C) = 1 and losing if v(C) = 0. A minimal winning
coalition (MWC) of a simple game v is a winning coalition
in which defection of any player makes the coalition losing.
A simple game can be represented by (N,Wm), where Wm

is the set of minimal winning coalitions.

For any monotonic coalitional game, one can construct a
corresponding threshold game. Threshold versions are com-
mon in the multiagent systems literature; see for instance
[6, 11].

Definition 3 (Threshold versions). For each
coalitional game (N, v) and each threshold t ∈ R+, the
corresponding threshold game is defined as the coalitional
game (N, vt), where

vt(C) =

(
1 if v(C) ≥ t,
0 otherwise.

It can easily be verified that if a game (N, v) is mono-
tonic, then for any threshold t ≤ v(N), the threshold ver-
sion (N, vt) is a simple game.

2.2 Coalitional game classes
We now review a number of specific classes of coalitional

games. Here we adopt the convention that if CLASS denotes
a particular class of games, we have T-CLASS refer to the
class of threshold games corresponding to games in CLASS,
i.e., for every threshold t, (N, vt) is in T-CLASS if and only
if (N, v) is in CLASS.

Weighted voting games are a widely used class of mono-
tonic games.

Definition 4 (Weighted voting games [11]). A
weighted voting game (WVG) is a simple game (N, v) for
which there is a quota q ∈ R+ and a weight wi ∈ R+ for
each player i such that

v(C) = 1 if and only if
X
i∈C

wi ≥ q.

The WVG with quota q and weights w1, . . . , wn for the play-
ers is denoted by [q;w1, . . . , wn], where we commonly assume
wi ≥ wi+1 for 1 ≤ i < n.

A multiple weighted voting game (MWVG) is the simple
game (N, v) for which there are WVGs (N, v1), . . . , (N, vm)
such that

v(C) = 1 if and only if vk(C) = 1 for 1 ≤ k ≤ m.

We denote the MWVG game composed of
(N, v1), . . . , (N, vm) by (N, v1 ∧ · · · ∧ vm).

Other important classes of games are defined on graphs.
Among these are spanning connectivity games, independent
set games, matching games, network flow games, and graph
games, where either nodes or edges are controlled by play-
ers and the value of a coalition of players depends on their
ability to connect the graph, enable a bigger flow, or obtain
a heavier matching or edge set.

Definition 5 (Spanning connectivity game [3]).
For each connected undirected graph G = (V,E), we define
the spanning connectivity game (SCG) on G as the simple
game (N, v) where N = E and for all C ⊆ E, v(C) = 1 if
and only if there exists some E′ ⊆ C such that T = (V,E′)
is a spanning tree.

192

Definition 6 (Independent set game [9]). For
each connected undirected graph G = (V,E), we define
the independent set game (ISG) on G as the game (N, v)
where N = V and for all C ⊆ V , v(C) is cardinality of the
maximum independent set on the subgraph of G induced on
C.

Definition 7 (Matching game [13]). Let
G = (V,E,w) be a weighted graph. The matching
game corresponding to G is the coalitional game (N, v) with
N = V and for each C ⊆ N , the value v(C) equals the
weight of the maximum weighted matching of the subgraph
induced by C.

Graph games are likewise defined on weighted graphs [10].

Definition 8 (Graph game [10]). For a weighted
graph (V,E,w), the graph game (GG) is the coalitional
game (N, v) where N = V and for C ⊆ N , v(C) is the
weight of edges in the subgraph induced by C. In this paper,
we sometimes assume that the graph corresponding to a
graph game has only positive edge weights and denote such
graph games by GG+. We denote the class of graph games
where negative edge weights are allowed by GG. Note that
for this latter general class of graph games, we allow the
characteristic function v to map to negative reals.

A flow network (V,E, c, s, t) consists of a directed graph
(V,E), with capacity on edges c : E → R+, a source vertex
s ∈ V , and a sink vertex t ∈ V . A network flow is a function
f : E → R+, which obeys the capacity constraints and the
condition that the total flow entering any vertex (other than
s and t) equals the total flow leaving the vertex. The value of
the flow is the maximum amount flowing out of the source.

Definition 9 (Network flow game [6]). For a
flow network (V,E, c, s, t), the associated network flow
game (NFG) is the coalitional game (N, v), where N = E
and for each C ⊆ E the value v(C) is the value of the
maximum flow f with f(e) = 0 for all e ∈ E \ C.

Definition 10 (Path coalitional games). For an
unweighted directed/undirected graph, G = (V ∪ {s, t}, E),

• the corresponding Edge Path Coalitional Game
(EPCG) is a simple coalitional game (N, v) such that
N = E and for any C ⊆ N , v(C) = 1 if and only if C
admits an s-t path.

• the corresponding Vertex Path Coalitional Game
(VPCG) is a simple coalitional game (N, v) such that
N = V and for any C ⊆ N , v(C) = 1 if and only if C
admits an s-t path.

Finally, we define the class of skill games, which were re-
cently introduced by Bachrach and Rosenschein [5].

Definition 11 (Coalitional skill games [5]). A
coalitional skill domain is composed of players N , a set of
tasks T = {t1, . . . , tm} and a set of skills S = {s1, . . . , sk}.
Each player i has a set of skills S(i) ⊆ S, and each task
tj requires a set of skills S(tj) ⊆ S. The set of skills a
coalition C has is S(C) =

S
i∈C S(i). A coalition C can

perform task tj if S(tj) ⊆ S(C). The set of tasks a coalition
C can perform is T (C) = {tj | S(tj) ⊆ S(C)}. A task
value function is a monotonic function u : 2T → R. A

coalitional skill game (CSG) in a coalitional skill domain is
a game (N, v) such that for all C ⊆ N , v(C) = u(t(C)). A
weighted task skill game (WTSG) is a CSG where each task
tj ∈ T has a weight wj ∈ R+ and the task value function
u(T ′) =

P
j|tj∈T ′ wj. A threshold version of WTSG can be

defined according to Definition 3.

Definition 12 (Linear games [23]). On a coali-
tional game (N, v), we define the desirability relation �D
as follows: we say that a player i ∈ N is more desirable than
a player j ∈ N (i �D j) if for all coalitions C ∈ N\{i, j}
we have that v(C ∪ {i}) ≥ v(C ∪ {j}). The relations
�D (“strictly more desirable”), ∼D (“equally desirable”),
and �D and ≺D (“(strictly) less desirable”) are defined in
the obvious fashion. Linear games are monotonic simple
games with a complete desirability relation, i.e. every pair
of players is comparable with respect to �D. Weighted
voting games form a strict subclass of linear games. A
linear game on players N = {1, . . . , n} is canonical iff
∀i, j ∈ N, i < j : i �D j. A right-shift of a coalition C is a
coalition that can be obtained by a sequence of replacements
of players in C by less desirable players. A left-shift of
a coalition C is defined analogously. Canonical linear
games can be represented by listing their shift-minimal
winning coalitions: minimal winning coalitions for which
it holds that any right-shift is losing. Similarly they can be
represented by listing their shift-maximal losing coalitions,
defined as obvious.

2.3 Problem definition
We formally define coalition structures and OptCS.

Definition 13 (Optimal coalition structure).
A coalition structure for a game (N, v) is a partition of
N . The social welfare attained by a coalition structure
π, denoted v(π) (we overload notation), is defined asP
C∈π v(C). A coalition structure π is optimal when

v(π) ≥ v(π′) for every coalition structure π′.

We consider the following standard computational prob-
lem in our paper.

Definition 14 (Problem OptCS). For any class of
coalitional games X, and its associated natural representa-
tion, the problem OptCS(X) is as follows: given a coali-
tional game (N, v) ∈ X, compute an optimal coalition struc-
ture.

3. GAMES WITH FIXED PLAYER TYPES
We study the problem of computing an optimal coalition

structure for a coalitional game in the case that the number
of player types is fixed. Shrot et al. [22] considered player
types and showed that some intractable problems become
tractable when only dealing with a fixed number of player
types. They did not address coalition structure generation
in their paper.

Definition 15 (Player type). For a coalitional
game (N, v), we call two players i, j ∈ N strategically
equivalent iff for every coalition C ∈ N\{i, j} it holds that
v(C ∪ {i}) = v(C ∪ {j}). When two players i, j ∈ N are
strategically equivalent, we say that i and j are of the same
player type.

193

Definition 16 (Valid type-partition). A valid
type-partition for a game (N, v) is a partition P of N such
that for each player set C ∈ P , all players in C are of the
same player type.

Let OptCS(k-types) be the problem where the goal is
to compute an optimal coalition structure for a coalitional
game (N, v), given as input a partition P of N with |P | ≤ k
and the characteristic function v. Note that if all players
are different, then |P | = n. In general it is not easy to
verify that a given partition for a simple game is a valid
type-partition. But under the assumption that we are given
a valid type-partition, and v is easy to compute, it turns
out that an optimal coalition structure can be computed in
polynomial time.

3.1 A general algorithm
Now we will show that there exists a general polynomial-

time algorithm to compute an optimal coalition structure
for any coalitional game when we are given a valid type-
partition with a number of player types bounded by a con-
stant. Our algorithm utilizes dynamic programming to com-
pute an optimal coalition structure provided there are a con-
stant number of player types.

Theorem 1. There is a polynomial-time algorithm for
OptCS(k-types), provided that querying v takes at most
polynomial time, and the given input partition is a valid
type-partition.

Proof. Let N = {1, . . . , n} be the player set and
P = {T1, . . . , Tk} be the input type-partition. We de-
fine coalition-types as follows: for non-negative integers
t1, . . . , tk, the coalition-type T (t1, . . . , tk) is the set of coali-
tions {C | ∀i ∈ {1, . . . , k} : |C ∩ Ti| = ti}. In words, coali-
tions in coalition-type T (t1, . . . , tk) have ti players of type
Ti, for 1 ≤ i ≤ k. Note that v maps all coalitions of the
same coalition-type to the same value.

First our algorithm computes a table V of values for each
coalition type. In order to do this we need to query v at
most nk times, since 1 ≤ ti ≤ n for all i, 1 ≤ i ≤ k. Let
time(v) denote the time it takes to query v, then computing
V takes O(nk·time(v)) time.

We proceed with a dynamic programming approach in or-
der to find an optimal coalition structure: Let f(a1, . . . , ak)
be the optimal social welfare attained by an optimal coali-
tion structure on a game (N ′, v) with N ′ ∈ {N ′ | ∀i ∈
{1, . . . , k} : |N ′ ∩ Ti| = ai}. Note that it does not mat-
ter which N ′ we choose from this set: the choice of N ′ has
no effect on the optimal social welfare since all N ′ are of
the same coalition-type. We are interested in computing
f(|T1|, . . . , |Tk|). By γ(G), we signify those type-partitions
which generate the same total utility as the empty set.

Since v(∅) = 0, the following recursive definition of
f(a1, . . . , ak) follows:

f(a1, . . . , ak) =

8><>:
0 if ai = 0 for 1 ≤ i ≤ k,
max{f(a1 − b1, . . . , a1 − bk) + v(b1, . . . , bk)

| ∀i ∈ {1, . . . , k} : bi ≤ ai} otherwise.

(1)
The recursive definition of f(a1, . . . , ak) directly implies

a dynamic programming algorithm. The dynamic program-
ming approach works by filling in a |T1| × · · · × |Tk| ta-
ble Q, where the value of f(a1, . . . ak) is stored at en-
try Q[a1, . . . , ak]. Once the table has been computed,

f(|T1|, . . . , |Tk|) is returned. The entries of Q are filled in
according to (1). In order to utilize (1), “lower” entries are
filled in first, i.e. Q[a1, . . . , ak] is filled in before Q[a′1, . . . , a

′
k]

if ai ≤ a′i for 1 ≤ i ≤ k. Evaluating (1) then takes O(nk)
time (due to the“otherwise”-case of (1), where the maximum
of a set of at most nk elements needs to be computed). There
are O(nk) entries to be computed, so the algorithm runs in
O(nk·time(v) + n2k) time.

It is straightforward to extend this algorithm so that it
(instead of outputting only the optimal social welfare) also
computes and outputs an actual coalition structure that at-
tains the optimal social welfare. To do so, maintain another
table |T1| × · · · × |Tk| table R. At each point in time that
some entry of Q is computed, say Q[a1, . . . , ak], now we also
fill in R[a1, . . . , ak]. R[a1, . . . , ak] contains a description of
a set C of coalitions such that

P
C∈C v(C) = f(a1, . . . , an)

and
S C ∈ T (a1, . . . , ak). It suffices to describe C by sim-

ply listing the type of each C ∈ C, and it is straight-
forward to verify that we can set R(a1, . . . , ak) to ∅ if
(a1, . . . , ak) ∈ γ(G), and otherwise we set R(a1, . . . , ak) to
(P (a1 − b1, . . . , a1 − bk), (b1, . . . , bk)), where (b1, . . . , bk) is
the argument in the max-expression of (1).

3.2 Difficulty of finding types
The polynomial-time algorithm given in Theorem 1 relies

on the promise that the type-partition given in the input is
valid. A natural question is now whether it is also possible
to efficiently compute the type-partition of a game in poly-
nomial time when given only the weaker promise that the
number of player types is constant k. We answer this ques-
tion negatively. For randomized algorithms, we show high
communication complexity is necessary, i.e. we show that an
exponential amount of information is needed from the char-
acteristic function v when we are given no information on
the structure of the characteristic function and we rely only
on querying v. In fact, the theorem states that this is the
case even when v is simple and k = 2. It should be noted
that this result also holds for deterministic algorithms, since
they are a special case of randomized algorithms. Despite
this negative result, we show in Section 3.3 that we can do
better for some subclasses of games, when we are provided
information on the structure of function v.

Theorem 2. Any randomized algorithm that computes a
player type-partition when given as input a monotonic simple
game (N, v) that has 2 player types, requires at least Θ(2n√

n
)

queries to v.

Proof. We use Yao’s minimax principle [24], which
states that the expected cost of a randomized algorithm on
a given problem’s worst-case instances is at least the low-
est expected cost among all deterministic algorithms that
run on any fixed probability distribution over the problem
instances.

Consider the following distribution over the input, where
the player set is N = {1, . . . , n} and n is even, the number
of player types is always k = 2, and the given game (N, v)
is simple and monotonic. Valuation v is drawn uniformly at
random from the set V = {vC | C ⊂ N, |C| = n/2} where in
vC , we call C the critical coalition. Function vC is specified
as follows:

• vC(D) = 0 when |D| < n/2;

• vC(D) = 1 when |D| > n/2;

194

• vC(D) = 1 when D = C, i.e. D is the critical coalition;

• vC(D) = 0 otherwise.

Observe that there are exactly two player types in any
instance that has non-zero probability of being drawn un-
der this distribution: when vC is drawn, the type-partition
is (C,N\C). Also observe that for coalitions C of size n

2
,

v(C) = 1 with probability 1

(n
n/2)

, because v is drawn uni-

formly at random from V .
Now let us consider an arbitrary deterministic algorithmA

that computes the type-partition for instances in this input
distribution by queries to v. Let C be the critical coalition
of n/2 players such that v(C) = 1. A will have to query
v(C) in order to know which characteristic function from
V has been drawn, and thus determine the type-partition
correctly. Let Q(v) be the sequence of queries to v that A
generates. Let Q′(v) be the subsequence obtained by remov-
ing from Q(v) all queries v(D) such that |D| 6= n/2 and all
queries that occur after v(C). Because A is deterministic,
the query sequence of A is the same among all instances up
to querying the critical coalition, since the critical coalitions
are the only points in which the characteristic functions of
V differ from each other. Therefore the expected length of
Q′(v) is

`
n
n/2

´
/2. Because A was chosen arbitrarily, we con-

clude that also the most efficient deterministic algorithm is
expected to make at least

`
n
n/2

´
/2 = Θ(2n√

n
) queries to v,

and the theorem now follows from Yao’s principle.

Shrot et al. [22] showed that checking whether two players
are of the same type is NP-hard for coalitional games defined
by Conitzer and Sandholm [8]. But the games are such that
even computing the value of a coalition is NP-hard. One can
say something stronger.

Proposition 1. There exists a representation of coali-
tional games for which checking whether two players are of
the same type is coNP-complete even if the value of each
coalition can be computed in polynomial time.

Proof. A coalition C ⊆ N \{i, j} such that v(C∪{i}) 6=
v(D ∪ {j}) is a polynomial-time certificate for membership
in coNP. Also, it is well known that checking whether two
players in a WVG have the same Banzhaf index is coNP-
complete [15]. Since two players in a WVG are of the same
type if and only if they have same the Banzhaf index, we
are done.

3.3 Applications of Theorem 1
Theorem 2 and Proposition 1 indicate that finding player

types is in general a difficult task. Despite these negative
results, Theorem 1 still applies to all classes of coalitional
games and many natural settings where the type-partition
is implicitly or explicitly evident:

Corollary 1. There exists a polynomial-time algorithm
that solves OptCS(WVG) in the following cases: 1.) in the
input game (given in weighted form), the number of distinct
weights is constant; 2.) in the input game (given in weighted
form) the number of distinct weight vectors for the players
is constant.

Proof. When two players have the same weight (in the
case of WVGs) or weight vectors (in the case of MWVGs),
they are strategically equivalent. Therefore we can type-
partition the players according to their weights and apply
Theorem 1.

There exists a polynomial-time algorithm for computing
the desirability classes, when given the list of shift-minimal
winning coalitions of a linear game [2]. This immediately
yields the following corollary:

Corollary 2. In the following cases, there exists a
polynomial-time algorithm that computes an optimal coali-
tion structure for linear games with a constant number of
desirability classes: 1.) the input game is represented as a
list of (shift-)minimal winning coalitions; 2.) the input game
is represented as a list of (shift-)maximal losing coalitions;

Bachrach et al. [7] proved that OptCS(CSG) is
polynomial-time solvable if the number of tasks is constant
and the ‘skill graph’ has bounded tree-width. As a corollary
of Theorem 1, we obtain a complementing positive result
which applies to all of the coalitional skill games defined in
[5].

Corollary 3. There exists a polynomial-time algorithm
that computes an optimal coalition structure for WTSGs and
T-WTSGs with at most a fixed number of player types or a
fixed number of skills.

Proof. Assume that there the number of skills is a con-
stant k′. Then there is a maximum of 2k

′
player types. A

polynomial-time algorithm that computes an optimal coali-
tion structure now follows from Theorem 1.

4. WEIGHTED VOTING GAMES AND
SIMPLE GAMES

In this section, we examine weighted voting games
(WVGs) and, more generally, simple games. Weighted vot-
ing games are coalitional games widely used in multiagent
systems and AI. We have already seen that there exists a
polynomial-time algorithm to compute an optimal coalition
structure for WVGs with a constant number of weight val-
ues. We show that if the number of weight values is not a
constant, then the problem becomes strongly NP-hard.

Proposition 2. For a WVG, checking whether there is
a coalition structure that attains social welfare k or more is
NP-complete.

Proof. We prove this by a reduction from an instance
of the classical NP-hard Partition problem to checking
whether a coalition structure in a WVG gets social wel-
fare at least 2. An instance of the problem k-Partition
is a set of n integer weights A = {a1, . . . , an} and the ques-
tion is whether it is possible to partition A, into k subsets
P1 ⊆ A,. . .Pk ⊆ A such that Pi∩Pj = ∅ and

S
1≤i≤k Pi = A

and for all i ∈ {1, . . . , k}, Paj∈Ai aj =
P

1≤j≤n aj/k.

Without loss of generality, assume that W =
P
ai∈A ai

is a multiple of k. Given an instance of k-Partition
I = {a1, . . . , ak}, we can transform it to a WVG v =
[q;w1, . . . , wk] where wi = ai for all i ∈ {1, . . . , k} and
q = W/k. Then the answer to I is yes if and only if there
exists a coalition structure π for v such that v(π) = k.

Since 3-Partition is strongly NP-complete, it follows that
OptCS(WVG) is strongly NP-hard. This is contrary to the
other results concerning WVGs where computation becomes
easy when the weights are encoded in unary [15]. Note that
any strongly NP-hard optimization problem with a polyno-
mially bounded objective function cannot have an FPTAS

195

unless P = NP. Proposition 2 does not discourage us from
seeking an approximation algorithm for WVGs. We show
that there exists a 2-optimal polynomial-time approxima-
tion algorithm:

Proposition 3. There exists a 2-optimal polynomial-
time approximation algorithm for OptCS(WVG).

Proof. Consider the following algorithm: Let
[q;w1, . . . , wn] be the input (so N = {1, . . . , n}). We
assume without loss of generality that wi ≤ q for all i. The
algorithm first sets p[0] := 0, and then computes for some
number c the values p[1], . . . , p[c] using the rule

p[i] :=

8><>:
n if

Pn
k=p[i−1]+1 wk < q,

min{j | Pj
k=p[i−1]+1 wk ≥ q,

(p[i− 1] + 1) ≤ j ≤ n} otherwise,

(2)

where c is taken such that p[c] = n. The algorithm outputs
the coalition structure {C1, . . . , Cc}, where for 1 ≤ i ≤ c,
Ci = {p[i− 1] + 1, . . . , p[i]}.

Observe that the coalitions C1 to Cc−1 are all winning and
Cc is not necessarily winning, so the value of the computed
coalition structure is at least c − 1 By our assumption, the
total weight of any of the coalitions C1, . . . , Cc−1 is less than
2q, and the total weight of Cc is less than q. Therefore, the
total weight of N is strictly less than q(2c−1), so the optimal
social welfare is at most 2c− 2 = 2(c− 1). This is two times
the social welfare of the coalition structure computed by the
algorithm.

A tight example for the algorithm described in the proof of
Theorem 3 would be [q; q − ε, q − ε, ε, ε], where q is a fixed
constant and ε is any positive real number strictly less than
q/2. On this input, the algorithm outputs a coalition struc-
ture that attains a social welfare of 1, while the optimal
social welfare is clearly 2. The following proposition shows
that there does not exist a better polynomial-time approxi-
mation algorithm under the assumption that P 6= NP.

Proposition 4. Unless P = NP, there exists no
polynomial-time algorithm which computes an α-optimal
coalition structure for a WVG where α < 2.

Proof. We would be able to solve the NP-complete
problem Partition in polynomial time if there existed
a (< 2)-optimal polynomial-time approximation algorithm
for OptCS(WVG). We could reduce a partition instance
(w1, . . . , wn) to a weighted voting game [q;w1, . . . , wn] where

q =
Pn
i=1 wn

2
. Because the sum of all weights of the players is

2q, a (< 2)-optimal approximation algorithm would output
an optimal coalition structure when provided with this in-
stance. The output coalition structure directly corresponds
to a solution of the original Partition instance, in case it
exists. Otherwise, the social welfare attained by the output
coalition structure is 1.

Simple games that are not necessarily weighted, and are
represented by the list of minimal winning coalitions, are
even harder to approximate.

Proposition 5. OptCS(MWC), i.e. OptCS for simple
games represented as a list of minimal winning coalitions,
cannot be approximated within any constant factor unless
P = NP.

Proof. This can be proved by a reduction from an in-
stance of the classical NP-hard maximum clique (Max-
Clique) problem. It is known that MaxClique cannot be
approximated within any constant factor [14].

Consider the instance I of MaxClique represented by an
undirected graph GI = (V,E). Transform I into instance
I ′ = (N,Wm) of OptCS(MWC) in the following way. De-
fine N = {{v, v′} : v ∈ V, v′ ∈ V } to be all subsets of V
of cardinality 2. Next, set Wm = {Ci : i ∈ V }, and for
all i ∈ V define Ci = {{i, j} | {i, j} 6∈ E}. Now two coali-
tions Ci and Cj are disjoint if and only if {i, j} ∈ E. Then
the maximum clique size is greater than or equal to k if and
only if there is a coalition structure for (N,Wm) that attains
social welfare k. Now assume that there exists a polynomial-
time algorithm which computes a coalition structure π which
gets social welfare within a constant factor α of the maxi-
mum possible social welfare k. Then we can use π to get
a constant-factor approximation solution to instance I in
polynomial time in the following way. Consider the set of
vertices {i : Ci ∈ π}. Since for Ci, Cj ∈ π, Ci and Cj are dis-
joint, then we know that (i, j) ∈ E. Therefore the vertices
{i : Ci ∈ π} form a clique of size k/α.

5. GAMES ON GRAPHS
Numerous classes of coalitional games are based on

graphs. We characterize the complexity of OptCS for many
of these classes in the section. We first turn our attention
to one such class for which the computation of cooperative
game solutions is well studied [10]. We see that that OptCS
is computationally hard in general for graph games:

Proposition 6. For the general class of graph games
GG, the problem OptCS is strongly NP-hard.

Proof. We prove by presenting a reduction from the
strongly NP-hard problem MaxCut. Consider an instance
I of MaxCut with a connected undirected graph G =
(V,E,w) and non-negative weights w(i, j) for each edge
(i, j). Let W =

P
(i,j)∈E w(i, j) and define P (i) as the

vertices on the same side as as vertex i. We show that
if there is a polynomial-time algorithm which computes an
optimal coalition structure, then we have a polynomial-time
algorithm for MaxCut. There exists a polynomial-time re-
duction that reduces I to an instance I ′ = (V ′, E′, w′) of
OptCS for graph games where V ′ = V ∪ {x1, x2} and E′ =
E ∪ {{x1, i} : i ∈ N} ∪ {{x2, i} : i ∈ N} ∪ {{x1, x2}}. The
weight function w′ is defined as follows: w′(a, b) = −w(a, b)
if a, b ∈ V , w′(a, b) = W + 1 if a ∈ {x1, x2} and b ∈ V ,
w′(a, b) = −(|V |+ 1)W if a = x1 and b = x2.

We now show that a solution to instance I ′ of
OptCS(GG) can be be used to solve instance I of Max-
Cut. Assume that π′ is an optimal coalition structure for
I ′. Then we know that π is of the form {{x1, A

′}, {x2, B
′}}

where (A′, B′) is a partition of V . We also know thatP
a/∈π′(b) w

′(a, b) is minimized in π′. Therefore, we have a

corresponding partition π of V such that
P
a/∈π(b) w(a, b) is

maximized.

Observation 1. It is clear that for GG+, the coalition
structure containing only the grand coalition is the optimal
coalition structure.

We now present some positive results concerning OptCS
for other games on graphs:

196

Proposition 7. OptCS(SCG) can be solved in polyno-
mial time.

Proof. For a SCG, OptCS is equivalent to computing
the maximum number of edge disjoint spanning subgraphs.
Clearly, the maximum number of edge disjoint spanning
trees is greater than or equal to the maximum number of
spanning subgraphs. Since the spanning trees are also span-
ning subgraphs, the problem reduces to computing the max-
imum number of disjoint spanning trees. The problem is
solvable in O(m2) [19].

Proposition 8. For EPCGs and VPCGs, OptCS can
be solved in polynomial time.

Proof. The problems are equivalent to computing the
maximum number of edge disjoint and vertex disjoint s-
t paths respectively. There are well-known algorithms to
compute them. For example, the maximum number of edge-
disjoint s-t paths is equal to the max flow value of the graph
in which each edge has unit capacity. The problem of maxi-
mizing the number of of vertex disjoint paths can be reduced
to maximizing the number of of vertex disjoint paths in the
following way: duplicate each vertex (apart from s and t)
with one getting all ingoing edges, and the other getting all
the outgoing edges, and an internal edge between them with
the node weight as the edge weight.

Proposition 9. The coalition structure containing only
the grand coalition is an optimal coalition structure for: 1.)
NFGs and 2.) Matching games.

Proof. 1.) Assume there is a coalition structure π of
the edges which achieves the total social welfare of s. This
means that the sum of the net flow for each E′ ∈ π totals
s. Since each member of π is mutually exclusive, for any
A,B ∈ π, the flows in A and B do not interact with each
other. Now, consider the coalition structure π′ = {E} which
consists of the grand coalition. Then E can achieve a net-
work flow of at least s by having exactly the same flows as
that of π, we know that v(π′) ≥ s. Therefore, the coalition
structure consisting of only the grand coalition attains a so-
cial welfare that is at least the social welfare attained by any
other coalition structure.

2.) Assume there is a coalition structure π = {V1, . . . , Vk}
of the vertices that attains a social welfare of s. Let the
maximum weighted matching of the graphG[Vi] restricted to
vertices Vi be mi. Then we know that

P
1≤i≤kmi = s. Since

each member of π is mutually exclusive, for any Vi, Vj ∈ π,
the matchings in G(Vi) and G(Vj) have no intersection with
each other. Now, consider the coalition structure π′ = {E}
which consists of the grand coalition. Then V can achieve a
maximum matching of at least s by having exactly the same
matchings as that of vertex sets in π. This implies that
that v(π′) ≥ s. Therefore, the coalition structure consisting
of only the grand coalition attains a social welfare that is
at least the social welfare attained by any other coalition
structure.

On the other hand, the threshold versions of certain games
are computationally harder to solve because of their similar-
ity to WVGs [4]. As a corollary of Prop. 4, we obtain the
following:

Corollary 4. Unless P = NP, there exists no
polynomial-time algorithm which computes an α-optimal

coalition structure for α < 2 and for the following classes
of games: 1. T-NFG. 2. T-Matching game and 3. T-GG+.

In some cases, OptCS may be expected to be intractable
because the coalitional game is defined on a combinatorial
optimization domain which itself is intractable. We observe
that even if computing the value of coalitions is intractable,
solving OptCS may be easy:

Observation 2. Given an instance of maximum inde-
pendent set, graph G = (V,E), finding the value of the coali-
tion v(N) is NP-hard, but the optimal coalition structure is
all singletons.

6. CONCLUSIONS
Coalition structure generation is an active area of research

in multiagent systems. We presented a general positive al-
gorithmic result for coalition structure generation, namely
that an optimal coalition structure can be computed in poly-
nomial time if the player types are known and the number of
player types is bounded by a constant. In many large multi-
agent systems, it is a valid assumption that there are a lot of
agents but the agents can be divided into a bounded number
of strategic classes. For example, skill games are well mo-
tivated for coordinated rescue operation settings [5, 7]. In
these settings, there may be a large number of rescuers but
they can be divided into a constant number of types such
as firemen, policemen and medics. We have also undertaken
a detailed study of the complexity of computing an optimal
coalition structure for a number of well-studied games and
well-motivated games in AI, multiagent systems and opera-
tions research. The results are summarized in Table 1.

7. ACKNOWLEDGEMENTS
This material is based on work supported by the Deutsche

Forschungsgemeinschaft under grants BR-2312/6-1 (within
the European Science Foundation’s EUROCORES program
LogICCC) and BR 2312/7-1. We also thank Hans Georg
Seedig and the anonymous referees for helpful feedback.

REFERENCES
[1] S. Arora and B. Barak. Computational Complexity.

Cambridge University Press, 2009.

[2] H. Aziz. Complexity of comparison of influence of play-
ers in simple games. In Proceedings of the Second In-
ternational Workshop on Computational Social Choice
(COMSOC 2008), pages 61–72, 2008.

[3] H. Aziz, O. Lachish, M. Paterson, and R. Savani. Wire-
tapping a hidden network. In Proceedings of the 5th
International Workshop on Internet and Network Eco-
nomics (WINE), pages 438–446, 2009.

[4] H. Aziz, F. Brandt, and P. Harrenstein. Monotone
cooperative games and their threshold versions. In
Proceedings of the 9th International Joint Conference
on Autonomous Agents and Multi-Agent Systems (AA-
MAS), pages 1017–1024, 2010.

[5] Y. Bachrach and J. S. Rosenschein. Coalitional skill
games. In Proceedings of the 7th International Joint
Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS), pages 1023–1030, 2008.

197

Game class Complexity of OptCS

Coalition value oracle (valid type-partition with a const. no. of player types) P (Th. 1)
WVG (const no. weight values) P (Cor. 1)
(T-)WTCSGs (const. no. of skills or const. no. of player types) P (Cor. 3)
WCSG (const. tasks, bounded tree-width skill graph) P [7]
SCG P (Prop. 7)
EPCG and VPCG P (Prop. 8)
NFG and Matching Game P (Prop. 9)
Marginal Contribution Nets NP-hard [17]
GG+ P (Obs. 1)
Independent Set Game P (Obs. 2)
GG Strongly NP-hard (Prop. 6)
(N,Wm) NP-hard to approx. within const. factor (Prop. 5)
WVG Strongly NP-hard (Prop. 2);

NP-hard to approx. within factor < 2 (Prop. 4)
T-Matching; T-NFG; T-GG NP-hard to approx. within factor < 2 (Cor. 4)
CSG NP-hard even for SCSGs [7]

Table 1: Summary of complexity results for OptCS

[6] Y. Bachrach and J. S. Rosenschein. Power in threshold
network flow games. Journal of Autonomous Agents
and Multi-Agent Systems, 18(1):106–132, 2009.

[7] Y. Bachrach, R. Meir, K. Jung, and P. Kohli. Coali-
tional structure generation in skill games. In M. Fox and
D. Poole, editors, Proceedings of the 24th AAAI Con-
ference on Artificial Intelligence (AAAI). AAAI Press,
2010.

[8] V. Conitzer and T. Sandholm. Complexity of construct-
ing solutions in the core based on synergies among coali-
tions. Artificial Intelligence, 170:607–619, 2006.

[9] X. Deng and Q. Fang. Algorithmic cooperative
game theory. In A. Chinchuluun, P. M. Pardalos,
A. Migdalas, and L. Pitsoulis, editors, Pareto Opti-
mality, Game Theory And Equilibria, volume 17 of
Springer Optimization and Its Applications, pages 159–
185. Springer, 2008.

[10] X. Deng and C. H. Papadimitriou. On the complex-
ity of cooperative solution concepts. Mathematics of
Operations Research, 12(2):257–266, 1994.

[11] E. Elkind, L. A. Goldberg, P. W. Goldberg, and M. J.
Wooldridge. Computational complexity of weighted
threshold games. In Proceedings of the 22nd AAAI Con-
ference on Artificial Intelligence (AAAI), pages 718–
723. AAAI Press, 2007.

[12] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack
Problems. Springer, Berlin, Germany, 2004.

[13] W. Kern and D. Paulusma. Matching games: the least
core and the nucleolus. Mathematics of Operations Re-
search, 28(2):294–308, 2003.

[14] F. Maffioli and G. Galbiati. Approximability of hard
combinatorial optimization problems: an introduction.
Annals of Operations Research, 96(1):221–236, 11 2000.

[15] T. Matsui and Y. Matsui. A survey of algorithms for
calculating power indices of weighted majority games.
Journal of the Operations Research Society of Japan, 43
(1):71–86, 2000.

[16] T. Michalak, J. Sroka, T. Rahwan, M. Wooldridge,
P. Mcburney, and N. Jennings. A distributed algorithm
for anytime coalition structure generation. In Proceed-
ings of the 9th International Joint Conference on Au-
tonomous Agents and Multi-Agent Systems (AAMAS),
2010.

[17] N. Ohta, V. Conitzer, R. Ichimura, Y. Sakurai,
A. Iwasaki, and M. Yokoo. Coalition structure genera-
tion utilizing compact characteristic function represen-
tations. In 15th International Conference on the Prin-
ciples and Practice of Constraint Programming (CP),
pages 623–638, 2009.

[18] T. Rahwan, S. Ramchurn, N. Jennings, and A. Gio-
vannucci. An anytime algorithm for optimal coalition
structure generation. Journal of Artificial Intelligence
Research (JAIR), 34:521–567, 2009.

[19] J. Roskind and R. E. Tarjan. A Note on Finding
Minimum-Cost Edge-Disjoint Spanning Trees. Math-
ematics of Operations Research, 10(4):701–708, 1985.

[20] T. Sandholm, K. Larson, M. Andersson, O. Shehory,
and F. Tohmé. Coalition structure generation with
worst case guarantees. Artificial Intelligence, 111(1–2):
209–238, 1999.

[21] T. Service and J. Adams. Approximate Coalition Struc-
ture Generation. In Proceedings of the 24th AAAI Con-
ference on Artificial Intelligence (AAAI), 2010.

[22] T. Shrot, Y. Aumann, and S. Kraus. On agent types in
coalition formation problems. In Proceedings of the 9th
International Joint Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS), 2010.

[23] A. D. Taylor and W. S. Zwicker. Simple Games. Prince-
ton University Press, 1999.

[24] A. C.-C. Yao. Probabilistic computations: Toward a
unified measure of complexity. In Proceedings of the
18th Annual Symposium on Foundations of Computer
Science, pages 222–227, Washington, DC, USA, 1977.
IEEE Computer Society.

198

