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ABSTRACT
Strategyproof (SP) classification considers situations in which a
decision-maker must classify a set of input points with binary la-
bels, minimizing expected error. Labels of input points are reported
by self-interested agents, who may lie so as to obtain a classifier
more closely matching their own labels. These lies would create
a bias in the data, and thus motivate the design of truthful mecha-
nisms that discourage false reporting.

We here answer questions left open by previous research on strat-
egyproof classification [12, 13, 14], in particular regarding the best
approximation ratio (in terms of social welfare) that an SP mech-
anism can guarantee for n agents. Our primary result is a lower
bound of 3− 2

n
on the approximation ratio of SP mechanisms under

the shared inputs assumption; this shows that the previously known
upper bound (for uniform weights) is tight. The proof relies on a
result from Social Choice theory, showing that any SP mechanism
must select a dictator at random, according to some fixed distri-
bution. We then show how different randomizations can improve
the best known mechanism when agents are weighted, matching
the lower bound with a tight upper bound. These results contribute
both to a better understanding of the limits of SP classification, as
well as to the development of similar tools in other, related domains
such as SP facility location.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Multiagent Systems

General Terms
Theory, Algorithms, Economics

Keywords
Mechanism design, Classification, Game theory

1. INTRODUCTION
Approximate mechanism design without money (AMDw/oM) is

a rapidly growing area of research in game theory and multiagent
systems, whose goal is the design of mechanisms for multiagent
optimization problems (without the mechanisms’ use of payments).
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While the underlying problems (e.g., finding the median, or finding
the optimal classifier) typically have efficient algorithms, these al-
gorithms may fail in the presence of strategic behavior. Therefore
we seek mechanisms that have additional game-theoretic proper-
ties (usually strategyproofness) at the expense of a suboptimal, i.e.,
approximate, behavior.

One particularly interesting AMDw/oM problem is the design
of truthful learning algorithms, which incentivize experts to reveal
their true opinions, even in cases where they disagree with one an-
other. Within this framework, we focus on binary classification—
that is, there is a set of (known) data points that our mechanism
needs to classify as positive/negative. Data points can represent,
for example, medical records of tumors that an expert-system has
to classify as either malignant or benign. Following the standard
classification literature, the classifier is selected from a predefined
set of classifiers (e.g., linear separators in some space) known as
the concept class.

Our mechanism outputs a classifier based on labels collected
from n distinct experts. The goal of the mechanism is to maximize
social welfare, by selecting a classifier that is close on average to
the opinions of all experts. However, experts may disagree as to
the correct label of a specific point. Furthermore, they may behave
strategically, i.e., report false labels if this will bias the resulting
classifier to be closer to their opinion. We are therefore interested
in strategyproof (SP) classification mechanisms, where no agent
(expert) can “gain” by lying. As a result, the outcome is just an
approximation of the optimal classifier, i.e., the selected classifier
makes more errors than the optimal one. We seek the best possible
approximation ratio that can be guaranteed using SP mechanisms.

1.1 Motivation
Note that the restriction to a predefined concept class is an impor-

tant part of the problem. Without it, we could simply classify each
data point separately. However, as rigorously demonstrated in the
machine learning literature, it is precisely this restriction that en-
ables us to generalize, i.e., to apply the outcome classifier on new,
unseen, cases. Previous papers on SP classification and learning
(see the next section) cover real-world examples where the need to
generalize justifies this restriction.

Nevertheless, SP classification might be required also for one-
time decision making. The following is an example showing how
concept class restrictions can be derived from external constraints.

An example.
Consider a situation in which two or more parties (the agents of

our scenario) are in a conflict regarding the ownership of a certain
piece of land. The property is abundant with resources in various
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locations (the data points), and the parties may attribute different
(possibly negative) importance to each resource. A neutral arbi-
trator agrees to hear them out and divide the field between them
in a way that will maximize the average utility of all the involved
parties. It is reasonable to assume that this division has some con-
straints, for example, that the border has to be a straight line, or
that it has to pass through a specific location. This leaves us with
a (large, possibly infinite) set of borders, or classifiers, from which
the arbitrator may choose. Knowing how their reported preferences
affect the decision, each party may misreport its true evaluation of
each resource, in an attempt to achieve a favorable outcome.

1.2 Related Work

Strategyproof classification.
The first paper on SP classification was by Meir, Procaccia, and

Rosenschein [12], who studied a highly restricted case in which
only two classifiers are available. The authors proposed a sim-
ple deterministic 3-approximation mechanism, and proved that no
better (deterministic) SP mechanisms exist. They further demon-
strated a randomized SP mechanism that guarantees an approxima-
tion ratio of 2, and that this bound is also tight.

We follow an extension of this model outlined by the same au-
thors in [13], where arbitrary concept classes can be used, but the
same set of data points is still shared by all agents. Notably, no
bounded approximation ratio can be guaranteed by deterministic
SP mechanisms, but the authors show how selecting a random agent
as a dictator guarantees an approximation ratio of 3, and one that is
even better (3 − 2

n
) when agents are non-weighted. However, it is

unknown whether better randomized mechanisms exist.
A similar model without the shared inputs assumption has also

been studied, showing mainly negative results [14]. Using results
from social choice theory, the authors showed that deterministic
SP mechanisms cannot guarantee any useful approximation ratio.
They further conjectured that a similar reduction can be used to
supply a lower bound for randomized mechanisms, but failed to
supply one that does not require further technical assumptions.

Approximate mechanism design without money.
Mechanisms that deal with strategic behavior of agents have been

proposed recently for a large range of applications. While certain
restrictions may allow the design of optimal SP mechanisms [19],
often this is not the case, and approximation is a must. Outside the
classification domain, SP learning algorithms were studied for both
clustering [17] and regression [16, 4]. Other mechanisms have been
proposed for facility location (see e.g., [1, 11], and [18], which also
provides a clear overview of the field), matching [2, 6], resource al-
location [8, 9] and more. As our motivating example shows, prob-
lems in one domain can sometimes be formalized in other domains
as well. There are also interesting similarities between some of the
results and techniques in those various domains.

Other related work.
A closely related, yet different, challenge is adversarial classi-

fication [10, 3, 5]. Here the underlying assumption is that labels
are chosen intentionally to hamper the mechanism (for example to
avoid spam detection), whereas in our setting the agents are ratio-
nal, rather than adversarial. Another difference is that the goal of
SP classification is to preclude untruthful behavior in the first place,
and not to cope with it.

1.3 Our Contribution
We close the gap left open by [13], matching their 3 − 2

n
upper

bound for the non-weighted case with an equal lower bound, thus
proving its tightness. The proof relies on the fact that every SP
mechanism must be (randomly) dictatorial on a subdomain, thereby
showing that the technical assumptions in [14] can be eliminated.

We then consider the weighted case, giving three different SP
mechanisms for two agents that beat the known upper bound of
3. While the approximation ratio of the first mechanism is still
suboptimal (

√
5), it is based on simple heuristics, and shows an

interesting relation to the golden ratio. The other two mechanisms
guarantee 2-approximation, thereby matching both the upper and
lower bounds for two non-weighted agents. Finally, we present a
new mechanism for any set of weighted agents, with a guaranteed
approximation ratio of 3 − 2

n
, thereby improving the previously

known upper bound and matching it with the lower bound.
Omitted proofs are available in the full version of this paper.1

2. MODEL AND NOTATIONS

2.1 Classification
We adopt the shared input model presented in [13], being con-

sistent where possible with their notations. We refer the reader to
previous work on SP classification [12, 13, 14] for more details.

We typically denote sets and their elements byA= {a1, a2, . . .},
and vectors by a = (a(1), a(2), . . .). ∆(A) contains all probabil-
ity distribution vectors over the set A. JEK denotes the indicator
variable of the expression E. To facilitate reading, subscripts are
sometimes omitted when clear from the context.

Classifiers.
A classification setting is a pair 〈X , C〉, where X (the input

space) is some finite set, and C (the concept class) contains func-
tions of the form c : X → {−,+}. In the land-ownership problem
for example, C contains all the allowed partitions of the territory.

An instance of the setting 〈X , C〉 is a tuple defined as S =
〈X, I, {Yi}i∈I ,w〉, where X ∈ X k is the (public) set of data
points to be classified, I is the set of n ≥ 2 agents, Yi : X →
{−,+} is the “correct” labeling according to agent i, and wi ∈ R
is her weight (

∑
i∈I wi = 1). Yi is referred to as agent i’s type,

and it is private information. We denote the partial dataset of agent
i by Si = 〈X,Yi〉. S contains all possible datasets over the input
space X . Let Sn,k be the set of all possible datasets S such that
|I| = n, |X| = k. We also allow the limit case k = ∞, in which
case Yi : X → [0, 1]Q states the (rational) positive fraction on each
input point. S contains all datasets (finite and infinite).

The private risk of a classifier c ∈ C is defined as the fraction of
agent i’s dataset that is misclassified by c, i.e.,

Ri(c, S) =
1

k

∑
〈x,y〉∈Si

Jc(x) 6=yK =
1

k

∑
x∈X

Jc(x) 6=Yi(x)K .
As Ri(c, S) can be seen as a measure of dissatisfaction that i suf-
fers due to outcome c, the global risk RI(c, S) measures the social
welfare, i.e. the (dis)satisfaction of the entire society. It is defined
as a weighted average over all agents,

RI(c, S) =
∑
i∈I

wi · Ri(c, S) =
1

k

∑
i∈I

∑
x∈X

wiJc(x) 6= Yi(x)K .
Let p ∈ ∆(C) be a lottery over the concept class C, that assigns

the probability p(w) to the concept cw. For simplicity we treat p
as if it is a classifier, and extend the risk to lotteries linearly, i.e.,
R(p, S) =

∑
w∈X p(w) · R(cw, S).

1
ftp://ftp.cs.huji.ac.il/users/jeff/aamas11meir.pdf

320



We denote by ERM(S) ∈ C (for Empirical Risk Minimizer)
the concept that makes the smallest number of errors on S. ci is a
shorthand for ERM(Si) when S is clear from the context.

Mechanisms.
A randomized mechanism is a function M : S → ∆(C), i.e.,

that for every input dataset of any size, outputs a lottery over clas-
sifiers. We denote byM(S) or pM(S) (or just p whenM, S are
clear from the context) the outcome of the randomized mechanism
M on the input dataset S.

Note that we can define a mechanism using a lottery d over
several other mechanisms M1,M2, . . ., where pM(S)(c) equals∑
d(j)pMj(S)(c). We define the following properties:

A dictator mechanism is identified with a single agent i. For any
S,M returns ci(S) with probability 1.

A duple is a mechanism that assigns probability 0 to all concepts,
except (at most) two.

A random-dictator (RD) mechanism is identified with a lottery
d ∈ ∆(I) over dictator mechanisms. This distribution may depend
on agent weights, if relevant. The two following RD mechanisms
are notable special cases:

• The weighted random dictator (WRD) mechanism returns
ci(S) w.p. wi.

• The heaviest dictator (HD) mechanism always returns ch(S),
where h = argmaxi∈Iwi. Ties are broken in favor of the
agent with the higher index, thus h is uniquely defined.

A random-dictator-duple (RDD) mechanism is a lottery over
dictators and duples.

A mechanism is said to be an L-approximation mechanism if its
expected risk is at most L times the optimal risk. Formally, for
every dataset S

RI(M(S), S) ≤ L · RI(c∗(S), S).

A mechanism is said to be strategyproof (SP), if no agent can
gain (in expectation) by lying. Formally, for every dataset S, agent
i, and alternative labels Si = 〈X,Y i〉,

Ri(M(S), S) ≤ Ri(M(S−i, Si), S).

Note that duples and dictator mechanisms are always SP. Moreover,
RDs and RDDs are also SP.2

Intuitively, good mechanisms are both SP and have a low approx-
imation ratio; thus, we are interested in the best possible approxi-
mation ratio that can be achieved by randomized SP mechanisms.
The following bounds are known:

THEOREM 1 (MEIR, PROCACCIA AND ROSENSCHEIN [12]).
If |C| = 2, then there is a randomized SP mechanism that guaran-
tees a 2-approximation ratio. Furthermore, no SP mechanism can
do better.

Thus for classes of two functions, SP mechanisms are thoroughly
understood. For general concept classes, there are upper bounds:

THEOREM 2 (MEIR, PROCACCIA AND ROSENSCHEIN [13]).
For any concept class C, the WRD mechanism guarantees a 3-
approximation ratio. If all agents have equal weight, then the ap-
proximation ratio is 3− 2

n
.

2This is since duples and dictators are SP in dominant strategies,
not just in expectation, and therefore any combination of them (as
long as it does not depend on labels) is still SP.

There are examples showing that these are the best approxima-
tion ratios that WRD can guarantee. However, it has been unknown
whether there are other SP mechanisms that are better. Our work
comes to answer this question. We make use of two additional
properties of classification mechanisms.

Let a ·S be a duplication of S, i.e., every data point in S appears
exactly a times in a · S, with the same labels. A mechanism is
consistent if for all a ∈ N, S ∈ S,M(S) =M(a · S).

A probability distribution p is µ-granular if all probabilities p(c)
are multiples of µ, i.e., if there is some integer vector q such that
q · µ = p. A mechanism is said to be µ-granular if for all S,
M(S) is µ-granular. Note that when we deal with mechanisms
that are implemented on digital computers, it is useful to assume
that they will be µ-granular for some µ.

2.2 Voting
Our proofs make extensive use of voting functions and their rela-

tions with classification mechanisms. We bring here the definitions
relevant to our needs. For a more detailed background on voting,
see e.g., [15].

In a voting scenario there is a set of voters (agents) I , and a finite
set of candidates C. Each voter has a strict preference orderRi over
all candidates. We denote by c �i c′ the fact that voter i prefers
c over c′. A preference profile R = (R1, . . . , Rn) contains the
preference order of each voter (agent). Let Rn be the set of all
possible preference profiles for n voters,R =

⋃
n≥2Rn.

A randomized voting rule is a function f : R → ∆(C). Note
that preferences are private, thus the voting rule must use the orders
reported by the agents. The definitions of a duple, RD and RDD
also apply to voting rules. While the definition of manipulation in
deterministic voting rules is straightforward (i.e., there is an agent
that can gain by reporting false preferences), it does not apply as-is
to randomized rules. This is since the preferences of agent i over
lotteries of candidates are not uniquely defined by Ri. To that end,
we must introduce cardinal (dis)utilities.3

A utility scale ui ∈ R|C| fits order Ri if for all c, c′ ∈ C,

ui(c) < ui(c
′) ⇐⇒ c �i c′.

We adopt the same notation to classification settings, meaning that
the risk of c is higher than the risk of c′.

A manipulation in f (by Gibbard) consists of a profileR, a utility
scale ui that fits Ri, and an alternative order R′i, such that i gains
according to ui (formally, that ui(f(R)) > ui(f(R−i, R′i))). A
voting rule is strategyproof (SP) if there are no manipulations in f .

THEOREM 3 (GIBBARD [7]). Let f be a randomized voting
rule. If f is SP, then it is a lottery over duples and dictatorial rules.

3. RESULTS

3.1 Multiple Agents with Uniform Weights
In this section we match the upper bound of 3− 2

n
with a lower

bound, thus proving it is tight.
We use a simple input space with three input pointsX ={x, y, z}.

There are 3 classifiers, C = {cx, cy, cz}, where cw(w′) =“+” for
w = w′ and “-” otherwise. When both the agent and the dataset are
clear from the context, we use the shorthand r(w) = Ri(cw, S).

THEOREM 4. LetM be an SP mechanism for the scenario
〈X , C〉. Then for any ε̃ > 0 and any |I| = n ≥ 2, there is an

3For consistency with the risk, we treat lower utility as better.
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instance S with uniform weights such that

RI(M(S), S) >

(
3− 2

n
− ε̃
)

RI(c∗(S), S).

Also, ifM is either consistent or µ-granular, then we can find such
a dataset which is finite, and has k = O

(
1
ε̃
, 1
µ

)
data points.

We will restrict the allowed datasets as follows. First,X contains
exactly k data points on each input point, i.e., 3k data points in to-
tal. We denote by ki(w), ki(w) the number of positive and negative
labels for each point. We further restrict the labels of each agent,
such that: one input point of X is all negative (i.e., ki(·) = 0); one
is all positive (i.e., ki(·) = k); and the third has at least one label
of each (i.e., 1 ≤ ki(·) ≤ k − 1).

We refer to this third point as the contingent point.4 Clearly,M
is still SP w.r.t. the restricted case.

The risk of each classifier can be simply written (e.g., for cx) as

r(x) = Ri(cx, S) =
1

3k

(
ki(x) + ki(y) + ki(z)

)
.

Note that every partial dataset Si is now identified with a strict
preference order Ri over C (for ease of exposition, assume Ri =
(cx �i cy �i cz)), and a rational number αi ∈ (0, 1) which is the
fraction of negative labels on the contingent point y.

To see this, observe that

r(x) =
1− αi

3
; r(y) =

1 + αi
3

; r(z) =
3− αi

3
. (1)

Consequently, cx, cz classify the contingent point (which is y in this
case) as negative, and cy classifies it as positive.

We can therefore write each Si as 〈Ri, αi〉.
Our proof sketch can be summarized as follows:

1. Give a simpler, normalized presentation of the risk scale.

2. Show thatM is monotonic.

3. Show that any (monotonic) SP mechanism must ignore the
value of α.

4. ThusM is actually a randomized voting rule over C.

5. SinceM is SP, it is an RDD.

6. Duples are bad, soM is almost entirely an RD.

7. We show a dataset S on which RD mechanisms have a close
to 3− 2

n
approximation ratio.

Crucially, all steps except the last one (Lemma 11) are indepen-
dent of agent weights.

Proof of Theorem 4. The preference order of agent i over lotteries
in a given setting S, is completely defined by her risk scale, i.e., by
the vector r = (r(x), r(y), r(z)). Note that the risk of lottery p
according to risk scale r is the inner product Ri(p, S) = r · p.

DEFINITION 1. Two risk scales r, t are equivalent, if for any
two outcomes p,p′ ∈ ∆(C),

r · p < r · p′ ⇐⇒ t · p < t · p′,
i.e., if they induce the same order over outcomes.

4For infinite datasets with k = ∞ this means that the contingent
point must have a non-zero fraction of each sign.

LEMMA 5 (NORMALIZATION). Let Si = 〈Ri, αi〉, then the
risk scales r = (r(x), r(y), r(z)) and t = (0, αi, 1) are equiva-
lent.

Proof. We denote by δ(w) = p(w)− p′(w). Note that

δ(x) + δ(y) + δ(z) = 0. (2)

In addition, it holds from (1) that

r(y)− r(x)

r(z)− r(x)
=

1 + αi − (1− αi)
3− αi − (1− αi) =

2αi
2

= αi. (3)

p · r < p′ · r ⇐⇒
0 >p(x)r(x) + p(y)r(y) + p(z)r(z)

− (p′(x)r(x) + p′(y)r(y) + p′(z)r(z))

=δ(x)r(x) + δ(y)r(y) + δ(z)r(z)

=δ(x)r(x) + δ(y)r(y) + δ(z)r(z)

− (δ(x) + δ(y) + δ(z))r(x) (from (2))
=δ(y) (r(y)− r(x)) + δ(z) (r(z)− r(x)) ⇐⇒

0 >δ(y)
r(y)− r(x)

r(z)− r(x)
+ δ(z) (division by a positive number)

=δ(y)αi + δ(z) (from (3))

=δ(x)t(x) + δ(y)t(y) + δ(z)t(z) = p · t− p′ · t,
thus p · t < p′ · t, as required. �

Due to Lemma 5, we can work with the normalized risk scale t
instead of r. This also holds for utility scales of voting functions.

REMARK 1. Normalization only works for a fixed scale r. If t
is the normalized scale of r, it is not true for example that p · t >
p · t′ derives p · r > p · r′.

The following notations are used in our next two lemmas. Let
Si = 〈Ri, α〉, S′i = 〈Ri, α′〉. Assume w.l.o.g. that Ri = (x �i
y �i z) (i.e., x has the lowest risk for i). Let p =M(S) and p′ =
M(S′) denote the outcome of the mechanism on both datasets. Let
t and δ(w) as in Lemma 5.

SinceM is SP, we have the following constraints:

1. Ri(p, S) ≤ Ri(p′, S) (otherwise, i can easily gain by re-
porting S′i instead of Si).

2. Ri(p, S′) ≥ Ri(p′, S′) (otherwise, i can gain by reporting
Si instead of S′i).

We use r(w) and r′(w) as shorthand for Ri(w, S) and Ri(w, S′),
respectively.

The next lemma shows that SP mechanisms must be “mono-
tone”, i.e., adding more positive labels to a point can only increase
the probability that it will be classified as positive.

LEMMA 6 (MONOTONICITY). If α < α′, then p(y) ≥ p′(y).

Proof. From the first constraint we have that p · r ≤ p′ · r. From
Lemma 5 we can replace r with the normalized risk t, and thus

p · t ≤ p′ · t ⇒
p(y)α+ p(z) ≤ p′(y)α+ p′(z) ⇒
δ(y)α ≤ −δ(z) (4)

Similarly, from the second constraint we have that

δ(y)α′ ≥ −δ(z) (5)
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Taking the two inequalities together,

δ(y)α ≤ −δ(z) ≤ δ(y)α′ ⇒
αδ(y) ≤ α′δ(y) ⇒

δ(y) ≤ α′

α
δ(y) ⇒ (since α′

α
> 1)

δ(y) ≥ 0 ⇒ p(y) ≥ p′(y) �

OBSERVATION 7. If there is a manipulation under utility scale
(0, α, 1), the same manipulation must work either for any 1 > t >
α, or for any 0 < t < α. This follows directly from (4), since the
inequality must hold as we change α in one of the directions.

Our next lemma shows that the size of the positive fraction on
the contingent point is irrelevant, as long as the preference order
Ri is kept.

LEMMA 8 (INVARIANCE OF LABELS).

M(S−i, Si) =M(S−i, S
′
i).

Proof. We need to show that the constraints induced by strate-
gyproofness become inconsistent unless the outcomes p and p′ co-
incide. Unfortunately, the constraints that follow from α and α′

will not suffice, and it is in fact possible to find a pair of outcomes
that hold them. The crux lies in adding a third point β between the
first two, showing that new constraints reach a contradiction.

We rename α′ to γ, so that we have α < β < γ. We denote the
outcome of M on each dataset as pα, pβ , and pγ , where pα =
M(S−i, 〈Ri, α〉), etc. Rewriting (4) and reversing pα, pγ ,

(pγ(y)− pα(y))α ≥ pα(z)− pγ(z) (6)

Using β, we similarly derive the constraints:

(pβ(y)− pα(y))β ≤ pα(z)− pβ(z) (7)

(otherwise reporting (Ri, α) is a manipulation in β), and

(pγ(y)− pβ(y))γ ≤ pβ(z)− pγ(z) (8)

(otherwise reporting 〈Ri, β〉 is a manipulation in γ).
Now, assume (towards a contradiction) that pα(y) 6= pγ(y).

From monotonicity we have that pα(y) > pγ(y), and strict in-
equality also holds for at least one of the subintervals, i.e., either
pα(y) > pβ(y) or pβ(y) > pγ(y).

(pγ(y)− pα(y))α ≥ pα(z)− pγ(z) (from (6))
= (pα(z)− pβ(z)) + (pβ(z)− pγ(z))

≥ (pβ(y)− pα(y))β + (pγ(y)− pβ(y))γ (from (7),(8))
> (pβ(y)− pα(y))α+ (pγ(y)− pβ(y))α

(from monotonicity and α < β, γ)

= (pβ(y)− pα(y) + pγ(y)− pβ(y))α

= (pγ(y)− pα(y))α, which is a contradiction.

Thus pα(y) = pγ(y), i.e., δ(y) = 0. From (4) and (5) it follows
that δ(z) = 0. Finally, from (2) we have that δ(x) = 0 as well, and
thereforeM(S−i, Si) = p = p′ =M(S−i, S′i).

A subtle issue lies in the finite k case, since the proof works only
for pairs α, γ that differ by at least 2 points (so there is β between
them). However, for k ≥ 5, take any α < α′ < γ < γ′. We then
have that pγ = pα = p′γ = p′α, i.e., the same distribution must be
used at every point. �

LEMMA 9 (REDUCTION). M is an RDD.

Proof. This lemma completes the argument thatM is effectively
a voting rule, and therefore subject to the known limitations of SP
voting rules. It must use our assumptions onM in order to bound
the sample size; however, we first prove the lemma without these
assumptions, for the limit case of k =∞.

We define a voting rule f as follows. For any profileR, construct
the corresponding dataset S by setting Si = 〈Ri, αi〉 for some
arbitrary αi ∈ (0, 1). The (randomized) outcome of f is defined
to beM(S). From Lemma 8, the choice of αi does not affect the
outcome of f .

Assume (towards a contradiction) that there is a collection of
datasets Ŝ on whichM is not an RDD. Let R̂ be the corresponding
preference profiles to Ŝ; thus f is not an RDD on these profiles.
From Theorem 3, f is not SP, and thus has a manipulation.

W.l.o.g., there is a manipulation (in f ) for voter i, such that
x �i y �i z. By scaling ui, we can further assume that ui(x) =
0, ui(y) = β, ui(z) = 1.5

From Observation 7 we can assume that the same manipulation
works with β = 1

k′ for some k′ ∈ N (or β = 1− 1
k′ , which is the

symmetric case).
It is easy to see that if Si = 〈Ri, β〉, then reporting the false

labeling S′i = 〈R′i, αi〉 is a manipulation for agent i inM:

ui(f(R)) > ui(f(R−i, R
′
i))⇒

Ri(M(S), S) > Ri(M(S−i, S
′
i), S),

since ui is also the normalized risk scale for Si. This is in contra-
diction toM being SP; therefore,M is an RDD.

Since 1
β

is not bounded, we allow ki(y)/k to take arbitrarily
small values, which is the limit case Sk=∞.

Bounding k under the consistency assumption.
We next show how the lemma still holds for any k, provided

that M is consistent. It holds from the previous paragraph that
M behaves as an RDD for all datasets of size k′ or more. Let
k′′ ≥ k such that k′′ = a · k for some integer a. Now consider all
a duplications of datasets of size k, i.e., all duplicated datasets a ·S
s.t. S ∈ Sk. SinceM is an RDD for Sk′′ , it is in particular an RDD
for the duplicated datasets a ·Sk ⊆ Sk′′ , and from consistency also
for Sk.

Bounding k under the µ-granularity assumption.
We show that under this assumption,M is RDD for all datasets

of size k′ ≥ 2
µ

. Denote by p,p′ the output ofM on the sets Si and
S′i, respectively, and let δ = p − p′. Recall that the normalized
utility scale of i is (0, β, 1). Since R′ is a manipulation, we have
that

ui(f(R))− ui(f(R−i, R
′
i)) = βδ(y) + δ(z) > 0. (9)

We wish to show that there exists β′ ∈ [µ
2
, 1− µ

2

]
such that

if we take β = β′, then R′ remains a manipulation (and then k′

samples suffice).

Case 1 If δ(z) = 0, then from (9) we have δ(y) > 0. Thus, taking
β = µ still ensures that R′ is a manipulation, since µδ(y) +
δ(z) = µδ(y) > 0.

5More formally, if there is a manipulation according to ui, then
from Lemma 5 the same manipulation works with the utility scale
u′ = (0, β, 1), where β = ui(z)−ui(y)

ui(z)−ui(x) .
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S1 Sj , j 6= 1
x y z R1(c) x y z Rj(c)

ki(·)/k 1− ε 1 0 1 ε 0
err of cx ε 1 0 1 + ε 0 ε 0 ε
err of cy 1− ε 0 0 1− ε 1 1− ε 0 2− ε

Table 1: The first row shows the positive fraction on each point
in S. The next rows describe the errors that each classifier
makes on each point. Ri(c, S) is the sum of error fractions of c
over the three points in Si.

Case 2 If δ(z) > 0, then by the assumption of µ-granularity we have
that δ(z) ≥ µ. Also, we have the naïve bound of δ(y) ≥ −1.
By setting β = µ

2
we get µ

2
δ(y)+δ(z) ≥ −µ

2
+µ = µ

2
> 0.

Case 3 If δ(z) < 0 then by (9) we get δ(y) ≥ βδ(y) > −δ(z).
Thus, we can write −δ(z) = aµ and δ(y) = bµ for integers
1
µ
≥ b > a ≥ 0. From this we get

−δ(z)

δ(y)
=
aµ

bµ
≤ aµ

(a+ 1)µ
=

a

a+ 1
= 1− 1

a+ 1

≤ 1− 1
1
µ

+ 1
= 1− µ

1 + µ
< 1− µ

2
.

Thus, we have
(
1− µ

2

)
δ(y) + δ(z) > 0. �

We introduce a small constant ε > 0, whose value will be deter-
mined later. For now it is sufficient to require that the number of
samples k would be at least 1

ε
, so that the contingent point can have

a positive fraction of ε or less.

LEMMA 10. IfM returns a duple with some probability greater
than 3ε, then its approximation ratio is at least 3.

Proof. Suppose that with probability of at least 3ε, M returns a
duple over {cx, cy}. We define a dataset S, in which all agents label
z as positive ,x as negative, and y with a positive fraction of ε (i.e.,
ki(z) = k, ki(x) = 0, and ki(y) = 1).6 The optimal classifier
c∗(S) is of course cz, with a global risk of r∗ = 1

3k
.

However, M must return cy (or cx) w.p. of at least 3ε; thus its
risk is at least 3ε · RI(cy, S) = 3ε

(
1
3
(1 + 1

k
)
)
> ε ≥ 3 · r∗. �

We can therefore assume thatM returns a random dictator w.p.
of at least 1− 18ε (there are 6 different duples, and each one has a
probability of at most 3ε).

LEMMA 11. Assume all n agents have the same weight. IfM
returns a random dictator (i.e., some lottery d over agents), then
the approximation ratio ofM is at least 3 − 2

n
− ε′′, where ε′′ =

2nε+ 96ε > 0.

Proof. Let i (w.l.o.g. i = 1) be the agent selected with the highest
probability (i.e., d(1) ≥ 1

n
). We define the dataset S as follows:

S1 = 〈(y � x � z), 1 − ε〉, and for all j 6= 1, Sj = 〈(x � y �
z), ε〉. Thus the selected concept of agent 1 is c1 = cy, and the
selected concept of any other agent is cj = cx (which is also the
optimal concept). The construction of S is given in Table 1. To
simplify computations, we do not divide the risk by the number of
points and agents, and thus the global risk is in the range [0, 3n].
Thus,

6In the limit case replace 1
k

with ε, as any fraction is allowed.

r∗(S) = RI(cx, S) = R1(cx, S1)+(n− 1)Rj(cx, Sj) (10)
= 1 + ε+ (n− 1)ε = 1 + nε, whereas

RI(cy, S) = R1(cy, S1) + (n− 1)Rj(cy, Sj) (11)
= 1− ε+ (n− 1)(2− ε) = 2n− 1− nε.

Our RD mechanism returns c1 = cy w.p. of d(1) ≥ 1
n

, and the
best thing it can do is return c∗ = cx w.p. of 1− 1

n
. The risk of the

mechanism can be lower-bounded as follows:

RI(M) ≥ 1

n
RI(cy, S) +

n− 1

n
r∗

≥ 1

n
(2n− 1− nε) +

n− 1

n
(1 + nε) (from (10),(11))

= 2− 1

n
− ε+ 1 + nε− 1

n
− ε

= 3− 2

n
+ (n− 2)ε = 3− 2

n
+ (ε′′ − ε′′) + (n− 2)ε

= 3− 2

n
− ε′′ + (2nε+ 96ε) + nε− 2ε

> 3− 2

n
− ε′′ +

(
3− 2

n
− ε′′

)
nε

= (3− 2

n
− ε′′)(1 + nε) = (3− 2

n
− ε′′)r∗.

�
Finally, we bound the total risk of M. Due to Lemma 9, the

outcome of M is an RDD, i.e., a lottery over all 6 possible du-
ples, and n possible dictators. We denote by RD the event thatM
selected any of the dictators. Note that due to Lemma 10, either
Pr(RD) ≥ 1− 18ε, or the approximation ratio ofM is at least 3
(and thus we are done).

Assume therefore that Pr(RD) ≥ 1 − 18ε. From Lemma 11
we have that RI(M(S), S|RD) ≥ (3 − 2

n
− ε′′)r∗(S) (for S

as defined in the lemma). Denote ε′ = 18ε, ε̃ = ε′′ + 6ε′ =
(2n+ 200)ε.

RI(M(S), S) = Pr(RD)RI(M(S), S|RD)

+ Pr(¬RD)RI(M(S), S|¬RD)

≥Pr(RD)RI(M(S), S|RD)

≥(1− ε′)
(

3− 2

n
− ε′′

)
r∗(S) (from Lemmas 10,11)

>(1− ε′)
(

3− 2

n
− ε̃+ 6ε′ − 4

n
ε′ − 2ε̃ε′

)
r∗(S)

=(1− ε′)
(

3− 2

n
− ε̃
)

(1 + 2ε′)r∗(S)

=
(
1 + ε′ − 2(ε′)2

)(
3− 2

n
− ε̃
)
r∗(S)

>

(
3− 2

n
− ε̃
)
r∗(S).

This concludes our proof, as for any ε̃, we only need to set ε
small enough (i.e., k large enough). Specifically, k ≥ 1

ε
= 2n+200

ε̃
will suffice. �

3.2 Two Weighted Agents
In this section, we restrict our analysis to datasets that are com-

posed of just two partial datasets. Due to [13] we know that the
WRD mechanism guarantees a 3-approximation ratio in the worst-
case. Moreover, we know that for this mechanism the analysis is
tight when the smaller weight approaches 0. As for a lower bound,
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we know from [12] that it is at least 2. Theorem 4 does not con-
tribute anything in this case, both because weights are non-uniform,
and because 3− 2

n
for n = 2 is still 2.

Due to Lemmas 9 and 10, we know that in this case too, any
SP mechanism must be an RD (with high probability), but we still
have the freedom to define the probability of selecting each of the
two dictators, according to their weights.

Unless explicitly stated otherwise, we assume w.l.o.g. that w1 ≤
1
2
≤ w2, and denote w = w1. We consider the HD and WRD

mechanisms, as described in Section 2.1. Clearly both mechanisms
are SP.

Consider Theorem 2. A slight variation of its proof reveals a
more accurate bound. Let wmin = mini∈I wi be the weight of the
lightest agents (in the two agent case, wmin = w).

THEOREM 12. WRD has an approximation ratio of 3−2wmin,
and this bound is tight.

The following lemma will be useful in the analysis of our pro-
posed mechanisms. The proof is omitted due to space constraints.

LEMMA 13. Let S = 〈X, I, {Yi}i∈I ,w〉 be some instance with
n agents. Suppose we remove an agent (w.l.o.g. agent 1), thereby
creating an instance S′ = 〈X, I ′, {Yi}i∈I′ ,w′ = (w2, . . . , wn)〉.
Let c′ = c∗(S′) be the optimal classifier for S′; then

RI(c′, S) ≤ 1 + w1

1− w1
RI(c∗(S), S).

THEOREM 14. HD has an approximation ratio of 1+w
1−w , and

this bound is tight.

Proof. The upper bound follows immediately from Lemma 13, as c′

is selected by the remaining, heavier, agent. For tightness, consider
the following scenario. Let w ≤ 1

2
. There are 2 samples: X =

{x, y}. Agent 1 classifies both as “-”, and agent 2 classifies x as “+”
and y as “-”. There are two classifiers, C = {c+, c−}, that classify
both samples as “+” and “-”, respectively. The optimal classifier is
obviously c−, whose risk is 1− w. However, the heaviest dictator
is agent 2, who chooses c+ (we assume a bias for tie-breaking).
The risk of c+ is 2w + 1 − w = 1 + w. Thus, the approximation
ratio in this case is 1+w

1−w . �
Next, we combine HD and WRD into a better SP mechanism.

Let T = 3−√5
2

. We define the threshold dictator (TD) as follows.

• The TD mechanism behaves like WRD when w > T and
like HD otherwise.

COROLLARY 15. TD has a worst-case approximation ratio of√
5, and this bound is tight.

Proof. Suppose w ≤ T . Then from Theorem 14 the approximation
ratio of TD is 1+w

1−w ≤ 1+T
1−T =

√
5. Now supposew > T ; then from

Theorem 12 the approximation ratio of TD is 3− 2w ≤ 3− 2T =√
5. The lower bound is achieved for w = T . �
Curiously, the optimal threshold T is such that the ratio between

agents’ weights is exactly Φ, the golden ratio.
A natural question is whether even better SP mechanisms exist,

and in particular mechanisms that match the lower bound of 3 −
2
2

= 2. Interestingly, the answer is yes, and we now give two
examples of such mechanisms.

• The square-weight random dictator (SRD) mechanism re-
turns ci w.p. w2

i∑
j∈I w2

j
.

THEOREM 16. For two agents, the SRD mechanism has a worst-
case approximation ratio of 2.

Proof. We will use the following lemma, showing a reduction to a
simpler problem (proof omitted).

LEMMA 17. Consider a setting with only two concepts that dis-
agree on all points {c−, c+}, and letM be an RD mechanism for
two agents. If M guarantees L-approximation in this restricted
setting (for L ≥ 2), thenM is an L-approximation mechanism.

Due to Lemma 17, we can assume that c1, c2 completely disagree,
and that one of them is the optimal classifier c∗. Assume w.l.o.g.
that c∗ = c1, and denote the optimal risk by r∗.

Suppose first that w > 1−w. This is the easy case, as it implies
that the better classifier is selected with greater probability. Assume
therefore thatw ≤ 1−w, and consider mechanism HD. In the latter
case, we have that RI(HD(S), S) = 1 − r∗. From Theorem 14
we have that 1− r∗ ≤ 1+w

1−w r
∗, therefore

RI(SRD(S), S) =
w2RI(c1, S) + (1− w)2RI(c2, S)

w2 + (1− w)2

=
w2r∗ + (1− w)2(1− r∗)

w2 + (1− w)2
≤ w2r∗ + (1− w)2 1+w

1−w r
∗

w2 + (1− w)2

=
w2r∗ + (1− w)(1 + w)r∗

w2 + (1− w)2
=

1

2w2 − 2w + 1
r∗.

≤ 1

1/2
r∗ = 2r∗,

where the last inequality exists since 2w2−2w+1 has a minimum
in w = 1

2
. �

By considering Lemma 17 together with Theorem 1, it follows
directly that there is another 2-approximation mechanism, using the
same randomization suggested by Meir, Procaccia and Rosenschein
for the two-function setting [12]. We refer to this mechanism as
MPR8.7

3.3 More than Two Weighted Agents
In this final section we extend our results beyond the two-agent

setting, describing a worst-case optimal SP mechanism for any set
of weighted agents.

We first try the threshold approach. Theorem 12 supplies us with
an approximation ratio of 3−2wmin for the WRD mechanism. Sup-
pose we have some SP dn−1-approximation mechanismMn−1 for
n − 1 agents, where dn−1 < 3. We can derive an SP mecha-
nismMn for n agents as follows: set a threshold Tn ∈ (0, 1). If
all agents weigh more than Tn, use WRD. Otherwise, remove the
lightest agent and runMn on the remaining data.

THEOREM 18. MechanismMn is SP, and has an approxima-
tion ratio of max

{
3− 2Tn,

1+Tn
1−Tn dn−1

}
.

The proof follows directly from Lemma 13 and Theorem 12.
We can bound the worst-case approximation then, by setting Tn

such that 3 − 2Tn = 1+Tn
1−Tn dn−1. As a special case for n = 2,

we get the TD mechanism with
√

5 approximation (Theorem 15).
Also, we know that d2 = 2 (from Theorem 16), and thus by setting
the threshold for three agents to T3

∼= 3
20

, we get a (roughly) 3 −
6
20

= 2 7
10

approximation mechanism for three weighted agents.
Similar threshold mechanisms can be iteratively derived for any
7The mechanism, applied to our scenario, would select the lighter
and heavier agents w.p. of w

2−2w
and 2−3w

2−2w
, respectively.
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number of agents. While this mechanism already beats the upper
bound of 3, it does not match the lower bound of 3− 2

n
.

We finally turn to describing our last mechanism, which either
generalizes or beats all previous mechanisms for SP classification
with shared inputs. Let p′i = wi

2(1−wi) , and αw = 1∑
i∈I p′i

.

• The convex-weight random dictator (CRD) mechanism, re-
turns ci w.p. pi = αwp

′
i.

THEOREM 19. The CRD mechanism has an approximation ra-
tio of αw + 1, which is at most 3− 2

n
.

We omit the proof due to space constraints. However, we note that
it is based on the convexity of the weight function, giving rise to
the name of the mechanism. When applied to two agents, the CRD
mechanism is similar (but not identical) to the MPR8 mechanism,
and can therefore be seen as a generalization of it. Moreover, all the
upper bounds in [12, 13], as well as the ones in this paper, follow
as special cases from Theorem 19.

4. DISCUSSION
Our results have two primary implications on strategyproof clas-

sification. On the negative side, we have shown that the use of dic-
tators is necessary if one wants to maintain truthfulness in learning
algorithms, even when randomization is allowed. This means in
particular that the previously known bounds for SP classification
with uniform weights are tight.

On the positive side, we show that while dictators play a key role
in SP classification, non-trivial selection of the dictator can lead to
improvements in the approximation ratio of the mechanism. We
demonstrated how simple threshold heuristics can be used to safely
discard low-weight agents, thus improving the worst-case approx-
imation ratio (although it is still suboptimal). Our main positive
result is the CRD mechanism, which matches the lower bound for
SP classification and therefore cannot be further improved. In ad-
dition to generalizing all previously known upper bounds for the
shared input setting (from [12, 13]), our result shows that the uni-
form weight case is also the most difficult, and a better approxima-
tion ratio can be achieved as weights become more biased in favor
of some agents.

The learning-theoretic setting.
An important issue is the possibility to generalize from sampled

data, and apply the result classifier on unseen data from the same
distribution (a task known as supervised learning). It is shown in
Section 3 in [13] how the WRD mechanism can be extended in
such a way to a learning-theoretic setting. We note that all of our
mechanisms can be applied directly to the learning-theoretic set-
ting, making the same strategic assumptions described in [13].

Future research.
Perhaps more important than the specific bounds we proved, our

results and techniques may aid in improving the understanding of
randomized approximation mechanisms in other domains. Some
mechanisms for facility location [1] are based on ideas similar to
the WRD mechanism; our insights can be used to improve their
weighted versions. Also, our impossibility proof tackles rather gen-
eral issues, such as continuity and private information. This may
also help in the study of lower bounds in other domains.

Other future directions may include the study of new types of
strategic behaviors in learning problems, and providing a more for-
mal picture of the relations between seemingly unrelated Approxi-
mated Mechanism Design (without money) problems.
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