
Computing stable outcomes in hedonic games with
voting-based deviations

Martin Gairing
Department of Computer Science

University of Liverpool
m.gairing@liverpool.ac.uk

Rahul Savani
Department of Computer Science

University of Liverpool
rahul.savani@liverpool.ac.uk

ABSTRACT
We study the computational complexity of finding stable
outcomes in hedonic games, which are a class of coalition
formation games. We restrict our attention to a nontrivial
subclass of such games, which are guaranteed to possess sta-
ble outcomes, i.e., the set of symmetric additively-separable
hedonic games. These games are specified by an undirected
edge-weighted graph: nodes are players, an outcome of the
game is a partition of the nodes into coalitions, and the
utility of a node is the sum of incident edge weights in the
same coalition. We consider several stability requirements
defined in the literature. These are based on restricting
feasible player deviations, for example, by giving existing
coalition members veto power. We extend these restrictions
by considering more general forms of preference aggregation
for coalition members. In particular, we consider voting
schemes to decide if coalition members will allow a player
to enter or leave their coalition. For all of the stability re-
quirements we consider, the existence of a stable outcome is
guaranteed by a potential function argument, and local im-
provements will converge to a stable outcome. We provide
an almost complete characterization of these games in terms
of the tractability of computing such stable outcomes. Our
findings comprise positive results in the form of polynomial-
time algorithms, and negative (PLS-completeness) results.
The negative results extend to more general hedonic games.

Keywords
Hedonic games, coalition formation, voting, local search,
PLS-completeness.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
Systems; F.2.0 [Analysis of Algorithms and Problem
Complexity]: General

General Terms
Algorithms, Economics, Theory

Cite as: Computing stable outcomes in hedonic games with voting-
based deviations, M. Gairing and R. Savani, Proc. of 10th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS
2011), Tumer, Yolum, Sonenberg and Stone (eds.), May, 2–6, 2011,
Taipei, Taiwan, pp. 559-566.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

1. INTRODUCTION
Hedonic games were introduced in the economics litera-

ture as a model of coalition formation where each player
cares only about those within the same coalition [12]. Such
games can be used to model a variety of settings ranging
from multi-agent coordination to group formation in social
networks. This paper studies the computational complex-
ity of finding stable outcomes in hedonic games. We con-
sider and extend the stability requirements introduced in
the work of Bogomolnaia and Jackson [6], which includes
a detailed discussion of real-life situations in which purely
hedonic models are reasonable.

An outcome is called Nash-stable if no player prefers to be
in a different coalition. Here a deviation depends only on
the preferences of the deviating player. Less stringent stabil-
ity requirements restrict feasible deviations: a coalition may
try to hold on to an attractive player or block the entry of
an unattractive player. In [6], deviations are restricted by
allowing members of a coalition to “veto” the entry or exit
of a player. They introduce individual stability, where there
is a veto for entering - a player can deviate to another coali-
tion only if everyone in this coalition is happy to have her.
They also introduce contractual individual stability, where,
in addition to a veto for entering, coalition members have a
veto to prevent a player from leaving the coalition - a player
can deviate only if everyone in her coalition is happy for her
to leave.

The case where every member of a coalition has a veto on
allowing players to enter and/or leave the coalition can be
seen as an extreme form of voting. This motivates the study
of more general voting mechanisms for allowing players to
enter and leave coalitions. In this paper, we consider general
voting schemes, for example, where a player is allowed to join
a coalition if the majority of existing members would like the
player to join. We also consider other methods of preference
aggregation for coalition members. For example, a player is
allowed to join a coalition only if the aggregate utility (i.e.,
the sum of utilities) existing members have for the entrant
is non-negative. These preference aggregation methods are
also considered in the context of preventing a player from
leaving a coalition. We study the computational complexity
of finding stable outcomes under stability requirements with
various restrictions on deviations.

The model.
In this paper, we study hedonic games with symmetric

additively-separable utilities, which allow a succinct repre-
sentation of the game as an undirected edge-weighted graph

559

G = (V,E,w). For clarity of our voting definitions, we
assume w.l.o.g. that we 6= 0 for all e ∈ E. Every node
i ∈ V represents a player. An outcome is a partition p of
V into coalitions. Denote by p(i) the coalition to which
i ∈ V belongs under p, and by E(p(i)) the set of edges
{{i, j} ∈ E | j ∈ p(i)}.

The utility of i ∈ V under p is the sum of edges to others in
the same coalition, i.e.,

P
e∈E(p(i)) w(e). Each player wants

to maximize her utility, so a player wants to deviate if there
exists a (possibly empty) coalition c whereX

e∈E(p(i))

w(e) <
X

{{i,j}∈E | j∈c}
w({i, j}).

We consider different restrictions on player deviations. Those
restrict when players are allowed to join and/or leave coali-
tions. A deviation of player i to coalition c is called

• Nash feasible if player i wants to deviate to c.

• vote-in feasible with threshold Tin if it is Nash feasible
and either at least a Tin fraction of i’s edges to c are
positive or i has no edge to c.

• vote-out feasible with threshold Tout if it is Nash-feasible
and either at least a Tout fraction of i’s edges to p(i)
are negative or i has no edges within p(i).

• sum-in feasible if it is Nash feasible andX
{{i,j}∈E | j∈c}

w({i, j}) ≥ 0.

• sum-out feasible if it is Nash feasible andX
e∈E(p(i))

w(e) ≤ 0.

Outcomes where no corresponding feasible deviation is pos-
sible are called Nash stable, vote-in stable, vote-out stable,
sum-in stable, and sum-out stable, respectively. Outcomes
which are vote-in (resp. vote-out) stable with Tin = 1 (resp.
Tout = 1) are also called veto-in (resp. veto-out) stable.
Note that a veto-in stable outcome is an individual stable
outcome i.e., any player can veto a player joining a coali-
tion; an outcome that is veto-in and veto-out stable is a
contractual individual stable outcome.

An example.

a b c

d e f

1

33

5

5 6

−1

−2−2

The above figure gives an example of a hedonic game.
Consider the outcome {{a, b, d}, {c, e, f}}. The utilities of
the players a, b, c, d, e, f are 10, 5,−1, 5, 1, 4, respectively.
Players a, b, d, f have no Nash-feasible deviations, c has a
Nash-feasible deviation to go alone and start a singleton
coalition, and e has a Nash-feasible deviation to join the
other coalition. The deviation of c is not veto-out feasible,
since f prefers c to stay, however it is vote-out feasible for
any Tout ≤ 0.5. It is also sum-out feasible. The devia-
tion of e is not veto-in feasible, but is vote-in feasible for

any Tin ≤ 2/3. Since there are no deviations that are both
veto-in and veto-out feasible, this is a contractual individ-
ual stable outcome. The outcome {{a, b, d}, {c}, {e, f}} is an
individual stable outcome, and {{a, b, d, e, f}, {c}} is Nash
stable.

Justification of the model.
With the goal of understanding how difficult it is for agents

to find stable outcomes, we focus on a model in which they
are guaranteed to exist. The computational complexity of
a problem is measured in terms of the size of its input and
therefore depends on the representation of the problem in-
stance. For games, we desire that the size of the input is
polynomial in the number of players, as this is the natu-
ral parameter with which to measure the size of the game.
We consider only such succinct representations, since other-
wise we can find solutions using trivial algorithms (enumer-
ation of strategy profiles) that are polynomial in the input
size. Our focus on additively-separable games is motivated
by the hardness of even deciding the existence of stable out-
comes and other solution concepts for more general (uni-
versal) succinct representations, such as hedonic nets [14].
A non-symmetric additively-separable game, which is rep-
resented by a edge-weighted directed graph, may not have
a Nash-stable outcome [6, 4], and deciding existence is NP-
complete. We study a more restrictive model where stable
outcomes (for all of the stability requirements we consider)
are guaranteed to exist, noting that our hardness results ex-
tend to all more general models where existence of stable
outcomes is either guaranteed or promised, i.e., instances
are restricted to those possessing stable outcomes.

In a symmetric additively-separable hedonic game, for
each of the stability requirements we consider, a stable out-
come always exists by a simple potential function argument:
the potential function is the total happiness of an outcome,
i.e., the sum of players’ utilities. Unilateral player deviations
improve the potential. So for all our considered stability re-
quirements, local improvements will find a stable outcome,
and all the problems we consider are in the complexity class
PLS (polynomial local search) [20], which we introduce next.

Local search and the complexity class PLS.
Local search is one of few general and successful approaches

to difficult combinatorial optimisation problems. A local
search algorithm tries to find an improved solution in the
neighborhood of the current solution. A solution is locally
optimal if there is no better solution in its neighborhood.
Johnson et al. [20] introduced the complexity class PLS
(polynomial local search) to capture those local search prob-
lems for which a better neighboring solution can be found
in polynomial time if one exists, and a local optimum can
be verified in polynomial time.

They also introduced the notion of PLS-reduction. Sup-
pose A and B are problems in PLS. Then A is PLS-reducible
to B if there exist polynomial time computable functions f
and g such that f maps instances of A to instances of B
and g maps the local optima of B to local optima of A.
A problem is PLS-complete if all problems in PLS are PLS-
reducible to it. Prominent PLS-complete problems are those
of finding a local max-cut in a graph (LocalMaxCut) [24],
a stable solution in a Hopfield network [20], or a pure Nash
equilibrium in a congestion game [16]. PLS captures the
problem of finding pure Nash equilibria for many classes of

560

games where pure equilibria are guaranteed to exist.
On the one hand, finding a locally optimal solution is

presumably easier than finding a global optimum; in fact,
it is very unlikely that a PLS problem is NP-hard since
this would imply NP=coNP [20]. On the other hand, a
polynomial-time algorithm for a PLS-complete problem would
immediately imply such an algorithm for all problems in PLS
and thus solve a number of long open problems including the
simple stochastic game problem [29]. PLS-complete prob-
lems are believed not to have polynomial-time algorithms.

Computational problems.
We define the search problems, NashStable, IS (individ-

ual stable), CIS (contractual individual stable), VoteIn,
and VoteOut of finding a stable outcome for the respec-
tive stability requirement. We introduce VoteInOut as the
search problem of finding an outcome which is vote-in and
vote-out stable. All voting problems are parametrized by
Tin and/or Tout. We also introduce sumCIS as the problem
of finding an outcome which is sum-in and sum-out stable.

Symmetric additively-separable hedonic games are closely
related to party affiliation games, which are also specified
by an undirected edge-weighted graph. In a party affiliation
game each player must choose between one of two “parties”;
a player’s happiness is the sum of her edges to nodes in the
same party; in a stable outcome no player would prefer to
be in the other party. The problem PartyAffiliation is
to find a stable outcome in such a game. If such an instance
has only negative edges then it is equivalent to the prob-
lem LocalMaxCut, which is to find a stable outcome of
a local max-cut game. In party affiliation games there are
at most two coalitions, while in hedonic games any number
of coalitions is allowed. Thus, whereas PartyAffiliation
for instances with only negative edges is PLS-complete [24],
NashStable is trivial in this case, as the outcome where all
players are in singleton coalitions is Nash-stable. Both prob-
lems are trivial when all edges are non-negative, in which
case the grand coalition of all players is Nash-stable. Thus,
interesting hedonic games contain both positive and nega-
tive edges.

The problem OneEnemyPartyAffiliation is to find a
stable outcome of a party affiliation game where each node
is incident to at most one negative edge. This problem was
introduced in [17]. In this paper, we use a variant of this
problem as a starting point for some of our reductions:

Definition 1. Define the problem OneEnemyPartyAffi-
liation* as a restricted version of OneEnemyPartyAffi-
liation which is restricted to instances where no player is
ever indifferent between the two coalitions.

Gairing and Savani [17, Corollary 1] showed that OneEnemy-
PartyAffiliation* is PLS-complete.

Our results.
In this paper, we examine the complexity of computing

stable outcomes in symmetric additively-separable hedonic
games. In [17], it was shown that NashStable is PLS-
complete while CIS is solvable in polynomial time. We make
explicit two conditions, both met in the case of CIS, that
(individually) guarantee that local improvements converge
in polynomial time. The complexity of IS (i.e., of find-
ing a veto-in stable outcome) was left open in [17]. Here
we resolve that question, showing that IS is PLS-complete.

Perhaps surprisingly, given the apparantly restrictive nature
of the stability requirement, we show that sumCIS is PLS-
complete, in contrast to CIS.

We also study the complexity of finding vote-in and vote-
out stable outcomes. Using a different argument to the
polynomial-time cases mentioned previously, we show that
local improvements converge in polynomial time in the case
of vote-in- and vote-out- stability with Tin, Tout ≥ 0.5 and
Tin + Tout > 1. We show that if we require vote-in-stability
alone, we get a PLS-complete search problem. The problem
of finding a vote-out stable outcome is conceptually differ-
ent, and we can find a veto-out-stable outcome in polynomial
time (whereas it is PLS-complete to find a veto-in-stable out-
come). The technical difficulty in proving a hardness result
for VoteOut is restricting the number of coalitions. Ul-
timately, we leave the complexity of VoteOut open, but
do show that k-VoteOut, which is the problem of com-
puting a vote-out stable outcome when at most k coalitions
are allowed, is PLS-complete (Theorem 2). Our results are
summarized in Figure 1, which gives an almost complete
characterization of tractability.

Related work.
Hedonic coalition formation games were first considered

by Dreze and Greenberg [12]. Greenberg [18] later surveyed
coalition structures in game theory and economics. Based
on [12], Bogomolnaia and Jackson [6] formulated different
stability concepts in the context of hedonic games - see also
the survey [26]. These stability concepts were our motiva-
tion to introduce definitions of stability based on voting and
aggregation.

The general focus in the game theory community has
been on characterizing the conditions for which stable out-
comes exist. Burani and Zwicker [8] showed that additively-
separable and symmetric preferences guarantee the existence
of a Nash-stable outcome. They also showed that under cer-
tain different conditions on the preferences, the set of Nash-
stable outcomes can be empty but the set of individually-
stable partitions is always non-empty.

Cechlárová [9] surveys algorithmic problems related to
stable outcomes. Ballester [4] showed that for hedonic games
represented by an individually rational list of coalitions, the
complexity of checking whether core-stable, Nash-stable or
individual-stable outcomes exist is NP-complete, and that
every hedonic game has a contractually-individually-stable
solution. Recently, Sung and Dimitrov [27] showed that for
additively-separable hedonic games checking whether a core-
stable, strict-core-stable, Nash-stable or individually-stable
outcome exists is NP-hard. For core-stable and strict-core-
stable outcomes those NP-hardness results have been ex-
tended by Aziz et al. [2] to the case of symmetric player
preferences. Brânzei and Larson [7] studied the tradeoff be-
tween stability and social welfare in additively-separable he-
donic games. Elkind and Wooldridge [14] characterize the
complexity of problems related to coalitional stability for
hedonic games represented by hedonic nets, a succinct, rule-
based representation based on marginal contribution nets
(introduced by Ieong and Shoham [19]).

This work extends the model and results in Gairing and
Savani [17]. The definition of party affiliation games we
use appears in Balcan et al. [3]. Recent work on local max
cut and party affiliation games has focused on approxima-
tion [5, 10]; see also [23]. For surveys on the computational

561

XXXXXXXXXLeave
Enter

1: 2: 3: 4:

no restr. sum-in veto-in vote-in

A: NashStable IS VoteIn

no restr.
PLS-complete PLS-complete PLS-complete PLS-complete

[17] [17] Theorem 4 Theorem 1
B: sumCIS

sum-out
PLS-complete PLS-complete P ?

Theorem 5 Theorem 5 Proposition 1
C: CIS

veto-out
P P P P

Proposition 2 Proposition 2 [17] Proposition 2
D: VoteOut VoteInOut

vote-out
? ? P P (Tin, Tout > 0.5)

(see Theorem 2) (see Theorem 2) Proposition 1 Theorem 3

Figure 1: Table showing the computational complexity of the search problems for different entering and
leaving deviation restrictions. Note that columns 1 and 2 are essentially equivalent, since if a player has
a Nash-feasible deviation that results in a negative payoff, she also has a sum-in feasible (and hence also
Nash-feasible) deviation, namely to form a singleton coalition.

complexity of local search, see [22, 1]. We use the PLS-
completeness of LocalMaxCut which was shown in Schäf-
fer and Yannakakis [24].

There is an extensive literature on weighted voting games,
which are formally simple coalitional games. For such a
game, a “solution” is typically a vector (or set of vectors) of
payoffs for the players, rather than a coalition structure as
in our setting; for recent work on computational problems
associated with weighted voting games see [13, 15]. Deng
and Papadimitriou [11] examined the computational com-
plexity of computing solutions for coalitional games for a
model similar to additively-separable hedonic games, where
the game is given by an edge-weighted graph, and the value
of a coalition of nodes is the sum of weights of edges in the
corresponding subgraph. Here, we study the complexity of
finding a stable set of coalitions.

2. COMPUTATIONAL COMPLEXITY OF
FINDING STABLE OUTCOMES

In this section we study the complexity of computing sta-
ble outcomes under various stability requirements. We start
by showing PLS-hardness for the case that a deviating player
needs a Tin majority in the target coalition but there is no
restriction on leaving coalitions.

Theorem 1. VoteIn is PLS-complete for any voting
threshold 0 ≤ Tin < 1.

Proof. We reduce from OneEnemyPartyAffiliation*
represented by an edge-weighted graph G = (V,E,w). Let
∆(G) be the maximum degree of a node in G. Recall that
no player is ever indifferent between the two coalitions.

First observe that the case Tin > ∆(G)−1
∆(G)

is exactly the

same as IS (for which we show hardness in Theorem 4), since
in this case one negative edge is enough to veto a player join-

ing a coalition. In the following we assume Tin ≤ ∆(G)−1
∆(G)

.

We augment G as follows:
For every negative edge (a, b) in G we introduce 2∆(G)−2

new nodes, called followers, and connect them with a and
b as shown in the Figure 2. Both, a and b, get ∆(G) − 1
followers and have a δ edge to each of them. Moreover, the
followers have also an edge of weight ε to the other node.

−

a b

ǫ

ǫ

ǫ

ǫ

ǫ

ǫδ

δ

δ

δ

δ

δ

Figure 2: Gadget used for showing that VoteIn is
PLS-complete. The gadget augments negative edges
with followers that ensure that there is always a Tin-
majority when a player enters a coalition.

Here 0 < ε < δ and δ is small enough so that the player pref-
erences of the original players (a and b) are still determined
only by the original edges. In a stable outcome the followers
will be in the same coalition as their “leader”, i.e., the node
to which they have a δ edge. The followers make sure that
their is always a Tin-majority for entering a coalition. In
other words, in a stable outcome of the VoteIn instance,
the voting doesn’t impose any restrictions.

To ensure that any stable outcome for the VoteIn in-
stance has only two coalitions we further augment G by in-
troducing two new players, called supernodes. Every player
i ∈ V has an edge of weight W >

P
e∈E |we| to each of the

supernodes. The two supernodes are connected by an edge
of weight −M , where M > |V | ·W . This enforces that the
two supernodes are in a different coalition in any stable out-
come. Moreover, by the choice of W , each player in V will
be in a coalition with one of the supernodes. The fact that
edges to supernodes have all the same weight directly im-
plies that a stable outcome for the VoteIn instance is also a
stable outcome for the OneEnemyPartyAffiliation* in-
stance. The claim follows.

In contrast to VoteIn, VoteOut is conceptually differ-
ent. In VoteOut a coalition of two players connected by
a positive edge is vote-out stable. This makes it hard to

562

restrict the number of coaltions. Doing this is probably the
key for proving PLS-hardness also for VoteOut. For the
following theorem we consider a version of VoteOut where
the number of coalitions are restricted by the problem. Let
k-VoteOut be the problem of computing a vote-out stable
outcome when at most k coalitions are allowed. Observe
that for any k ≥ 2 such a vote-out stable outcome exists
and that local improvements starting from any k-partition
converge to such a stable outcome.

Theorem 2. k-VoteOut is PLS-complete for any vot-
ing threshold 0 ≤ Tout < 1 and any k ≥ 2.

Proof. Our reduction is from OneEnemyPartyAffi-
liation, but we first reduce to the intermediate problem
OneEnemyNashStable, which is a restricted version of
NashStable where each player is only incident to at most
one negative edge. Consider an instance of OneEnemy-
PartyAffiliation which is represented as an edge-weighted
graph G = (V,E,w). We augment G with two supernodes
in exactly the same way as in Theorem 1. This ensures that
any stable outcome of the OneEnemyNashStable instance
uses only two coalitions and thus is also a stable outcome for
the OneEnemyPartyAffiliation instance. Hence, OneEn-
emyNashStable is PLS-complete.

We now reduce from OneEnemyNashStable to k-Vote-
Out. Let G be the graph corresponding to an instance of
OneEnemyNashStable. Let ∆(G) be the maximum de-
gree of a node in G. We augment G as follows: We in-
troduce s · k · ∆(G) new nodes where s is an integer satis-
fying s ≥ Tout

1−Tout . Those nodes are organized in s · ∆(G)
complete graphs of k nodes each. All the edges in the com-
plete graphs have weight −M where M is sufficiently large
(M > |V | · ∆(G) · ε will do). Moreover, we connect every
original node u ∈ V to every new node with an edge of
weight −ε, where ε > 0.

By the choice of M and since at most k coalitions are
allowed, in any stable solution there will be one node from
each complete graph in each of the k coalitions. This shifts
the utility of each player i ∈ V with respect to each coalition
by −s ·∆(G) · ε. Moreover, every original node has at least
s · ∆(G) negative edges to each coalition. Since each node
is incident to at most ∆(G) positive edges, it follows that
the fraction of negative edges to each coalition is at least
s
s+1
≥ Tout. Thus, in every stable outcome all nodes u ∈ V

have a Tout-majority for leaving their coalition. This implies
that in the corresponding outcome of the OneEnemyNash-
Stable instance, no player can improve her utility by joining
one of the k coalitions used in k-VoteOut. Moreover, in
every stable outcome the utility of each node u ∈ V with
respect to the set of original nodes V is non-negative, since
u has at most one negative incident edge in the OneEne-
myNashStable instance and k ≥ 2. It follows that a stable
outcome for the k-VoteOut instance is also a stable out-
come for the OneEnemyNashStable instance. The claim
follows.

It is an interesting open problem whether PLS-complete-
ness also holds if the restriction on the number of allowed
coalitions is dropped. Can we construct a gadget that im-
poses this restriction without restricting the problem a pri-
ori?

Since VoteIn and a restricted version of VoteOut are
PLS-complete it’s interesting to study the combination of

both problems. What happens if we require vote-in stabil-
ity and vote-out stability? With a mild assumption on the
voting thresholds Tin, Tout, we establish:

Theorem 3. For any instance of VoteInOut with vot-
ing thresholds Tin, Tout ≥ 1

2
and Tin + Tout > 1, local im-

provements converge in O(|E|) steps.

Proof. For any outcome p define a potential function
Φ(p) = Φ+(p) − Φ−(p), where Φ+(p) (resp. Φ−(p)) is the
number of positive (resp. negative) internal edges, i.e. edges
not crossing coalition boundaries. Consider a local improve-
ment of some player i from coalition p(i) to p′(i). Since
Tout ≥ 1

2
, player i has at least as many negative as posi-

tive edges to p(i). Likewise since Tin ≥ 1
2
, player i has at

least as many positive as negative edges to p′(i). So Φ(p)
cannot decrease by a local improvement. Moreover, since
Tin + Tout > 1, one of the threshold inequalities must be
strict, which implies Φ(p′) > Φ(p). The claim follows since
−|E| ≤ Φ(p) ≤ |E| and Φ(p) is integer.

Without the assumption on the voting thresholds, the com-
plexity of computing stable outcomes remains an interesting
open problem. In particular the case Tin = Tout = 1/2 is
very tantalizing.

We proceed by studying the complexity of finding stable
outcomes if a single player in the target coalition can pre-
vent (veto) a player from joining it. Observe, that the proof
of Theorem 1 does not go through for this case. In [17] it
was shown that a restricted version of IS (where in addition
to normal IS deviations, two players connected by an neg-
ative edge are allowed to swap coalitions) is PLS-complete.
Here, we show that allowing swaps is not necessary for PLS-
hardness.

Theorem 4. IS is PLS-complete.

Proof. We start with an instance of OneEnemyParty-
Affiliation*. The instance has the property that no player
is ever indifferent between the two coalitions that make up
stable outcomes. We add four supernodes which are con-
nected by a complete graph of sufficiently large negative
edges. This enforces that in any stable outcome the supern-
odes are in different coalitions, say 0, 1, 2, 3. The supernodes
are used to restrict which coalition a node can be in in a sta-
ble outcome. This is achieved by having large positive edges
of equal weight to the corresponding supernodes. All orig-
inal nodes of the OneEnemyPartyAffiliation* instance
are restricted to be 0 or 1.

We now show how to simulate a negative edge of One-
EnemyPartyAffiliation* by an IS-gadget. To do so, we
replace a negative edge (a, b) of weight −w with the gadget
in Figure 3. Nodes a and b are original nodes and restricted
to {0, 1}, node a′ is restricted to {0, 1, 2}, node b′ is re-
stricted to {0, 1, 3}, and node c is restricted to {2, 3}. As
depicted in the gadget, nodes a′ and b′ have an additional
offset to 2 and 3, respectively. Coalitions 2 and 3 are only
used locally within the gadget. The pseudocode next to the
gadget describes how the internal nodes of the gadget are
biased. Here, checking whether a node can improve is w.r.t.
her original neighborhood. We use “look at” and “bias” as
defined in the following lemma and definition, which are
analogous to those in [28, 21]. In particular, we check if
a node can improve by looking at all nodes in her original
neighborhood.

563

w

w

w

w

w
−M

−M
−M

−M

a

a
′

b

b
′

c

2

3

Bias internal nodes

if a can improve then
bias c to 3
bias a′ to 2

else
bias a′ to {0, 1}
bias c to 2

end if
if b can improve then

bias b′ to 3
else

bias b′ to {0, 1}
end if

Figure 3: Gadget to replace negative edges

Lemma 1. For any polynomial-time computable function
f : {0, 1}k 7→ {0, 1, 2, 3}m one can construct a graph Gf =
(Vf , Ef , w) having the following properties: (i) there exist
s1, . . . , sk, t1, . . . , tm ∈ Vf , (ii) all edges e ∈ Ef are positive,
(iii) f(s1, . . . , sk) = (t1, . . . , tm) in any stable solution of the
hedonic game defined by Gf .

Definition 2. For a polynomial-time computable func-
tion f : {0, 1}k 7→ {0, 1, 2, 3}m we say that Gf as constructed
in Lemma 1 is a graph that looks at s1, . . . , sk ∈ Vf and bi-
ases t1, . . . , tm ∈ Vf according to the function f .

Recall that the instance of OneEnemyPartyAffiliation*
has the property that no player is ever indifferent between
the two coalitions that make up stable outcomes. By scal-
ing edge weights we can implement the “look at” required to
bias the internal nodes of the gadget without affecting their
original preferences.

We say that node a is locked by the gadget if a = 1 and
a′ = 0 or a = 0 and a′ = 1. Node b is said to be locked
accordingly. The following two lemmas describe the opera-
tion of the gadget. Both lemmas should be read with the
implicit clause: If the internal nodes (a′, b′, c) are stable.
Let ¬u denote the complement of u over {0, 1}.

Lemma 2. If neither a nor b can improve then a and b
are locked by the gadget.

Lemma 3. If a or b (or both) can improve then one im-
proving node is not locked while the other node is locked by
the gadget. Moreover, if a (resp. b) is not locked by the
gadget then b′ = ¬b (resp. a′ = ¬a).

To complete the proof we show that a stable outcome of
the IS instance is also a stable outcome for the OneEnemy-
PartyAffiliation* instance. Suppose the contrary. Then
there must exist an original node which is stable for IS
but not for OneEnemyPartyAffiliation*. Clearly such
a node must be the node a or b for some gadget. So either
a or b (or both) can improve. But then by the first state-
ment in Lemma 3 one of the improving nodes is unlocked,
say a. Since a was only incident to one negative edge in
the OneEnemyPartyAffiliation* instance, a cannot be
locked by any other gadget. Moreover, by the second state-
ment in Lemma 3, a is now connected in the gadget by a
positive edge to the node b′ and b′ = ¬b. On the one hand, if
a = b then the original edge (a, b) contributes −w to a’s util-
ity while now a receives 0 from the edge (a, b′). On the other

hand, if a 6= b then the corresponding utility contributions
are 0 and w. So if a changes strategy then the difference in
her utility w.r.t. b is the same in both problems, since we
just shifted the utility of node a w.r.t. b by w. So a is also
not stable for IS, a contradiction. This finishes the proof of
Theorem 4.

In IS a single player can veto against others joining her
coalition but there is no restriction on leaving a coalition.
The following proposition shows that adding certain leaving
conditions yields polynomial-time convergence from the all-
singleton partition.

Proposition 1. Any problem in column 3 of Figure 1
can be solved in polynomial time provided that the leaving
condition requires that the leaving node has at least one neg-
ative edge within the coalition. In particular this hold for the
problems in cells 3B, 3C, and 3D.

Proof. We use local improvements starting from the set
of singleton coalitions. Then a player can make at most
one improving step, since all edges in resulting non-singleton
coalitions will be positive, and so no player can leave such
a coalition. Hence we arrive at a stable outcome in at most
|V | improving steps.

Interestingly, requiring veto-feasablity is already enough
for polynomial-time convergence even if we have no restric-
tion on the entering condition. This stands in contrast to
Theorem 4.

Proposition 2. All problems in row C of Figure 1 can
be solved in polynomial time by local improvements using at
most 2|V | improving steps.

Proof. To get a running time of 2|V | (rather thanO(|V |2))
we restrict players from joining a non-empty coalition to
which they have no positive edge. This ensures that when-
ever a player joins a non-empty coalition then this player
(and all players to which she is connected by a positive edge
in the coalition) will never move again. Moreover, a player
can only start a new coalition once. It follows that each
player can make at most two strategy changes. In total we
have at most 2|V | local improvements.

We close this paper with a result for sumCIS. Even though
deviations are very restricted here, it is PLS-complete to
compute a stable outcome.

564

Theorem 5. sumCIS is PLS-complete.

Proof. We reduce from LocalMaxCut. Consider an
arbitrary instance of LocalMaxCut with only integer edge
weights. Recall that such an instance can be cast as an in-
stance of PartyAffiliation by negating the weights of the
edges. Let G = (V,E,w) represent the PartyAffiliation
instance. For each player i ∈ V let σi be the total weight of
edges incident to player i, i.e. σi =

P
(i,j)∈E w(i,j). Observe

that σi is a negative integer. We augment G by introduc-
ing two new players, called supernodes. Every player i ∈ V
has an edge of weight −σi

2
+ 1

4
to each supernode. The two

supernodes are connected by an edge of weight −M where
M is sufficiently large (i.e., M >

P
i∈V (−σi

2
+ 1

4
)). The

resulting graph G′ represents our sumCIS instance.
Consider a stable outcome of the sumCIS instance G′.

By the choice of M the two supernodes will be in different
coalitions. Now consider any player i ∈ V . If i is not in
a coalition with one of the supernodes, then i’s payoff is
negative. On the other hand joining the coalition of one of
the supernodes yields positive payoff, since 2(−σi

2
+ 1

4
)+σi >

0. Thus, each player i ∈ V will be in a coalition with one
of the supernodes. So our outcome partitions V into two
partitions, say V1, V2.

It remains to show that any stable outcome for the sum-
CIS instance is also a local optimum for the PartyAffil-
iation instance. Assume that the outcome of the sum-
CIS instance is stable but in the corresponding outcome
of PartyAffiliation instance there exists a player i which
can improve by joining the other coalition. W.l.o.g. as-
sume i ∈ V1. Then,

P
s∈V1

w(i,s) <
P
s∈V2

w(i,s). With

σi =
P
s∈V w(i,s) and since σi is integer, we getX

s∈V1

w(i,s) ≤ σi
2
− 1

2
<
σi
2
<
σi
2

+
1

2
≤
X
s∈V2

w(i,s).

It follows that in the sumCIS instance, player i’s payoff is
negative in her current coalition V1 whereas joining V2 would
yield positive payoff. This contradicts our assumption that
we are in a stable outcome of the sumCIS instance. The
claim follows.

3. CONCLUSIONS AND OPEN PROBLEMS
Our findings comprise both positive and negative results,

some of which are somewhat surprising. There is an asym-
metry between the case of vote-in and vote-out stability. We
show that VoteIn is PLS-complete for all voting thresholds,
including Tin = 1. The case for Tin = 1, which corresponds
to the search problem IS for finding a veto-in stable out-
come, has to be treated separately from the case Tin < 1.
In contrast, we show that the case of finding a veto-out sta-
ble outcome is polynomial-time solvable. This suggests that
VoteOut is conceptually different from VoteIn. Indeed,
it seems difficult to restrict the coalitions in this case. We
do show that k-VoteOut, where we restrict the outcome to
have at most k coalitions, is PLS-complete for 0 ≤ Tout < 1,
but we leave the complexity of VoteOut as an interesting
open problem.

We show that even though requiring both sum-in and
sum-out stability is apparantly quite restrictive, the result-
ing search problem sumCIS is PLS-complete.

In terms of positive results, we show that local improve-
ments converge in polynomial time in the case of requiring
both vote-in- and vote-out- stability with Tin, Tout ≥ 0.5

and Tin + Tout > 1. We leave open the interesting case
of VoteInOut with voting thresholds that do not satisfy
Tin, Tout ≥ 1

2
and Tin + Tout > 1. We also leave open the

case of finding an outcome that is vote-in and sum-out sta-
ble.

References
[1] E. H. L. Aarts and J. K. Lenstra. Local Search in Com-

binatorial Optimization. Wiley-Interscience, 1997.

[2] H. Aziz, F. Brandt, H. G. Seedig. Stable partitions
in additively separable hedonic games. In International
Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS), 2011.

[3] M.-F. Balcan, A. Blum, and Y. Mansour. Improved
equilibria via public service advertising. In ACM-SIAM
Symp. on Discrete Algorithms (SODA), pp. 728–737,
2009.

[4] C. Ballester. NP-completeness in hedonic games.
Games and Economic Behavior, 49(1):1–30, 2004.

[5] A. Bhalgat, T. Chakraborty, and S. Khanna. Approx-
imating pure Nash equilibrium in cut, party affiliation
and satisfiability games. In ACM Conference in Elec-
tronic Commerce (EC), pp. 132–146, 2010.

[6] A. Bogomolnaia and M. O. Jackson. The stability of
hedonic coalition structures. Games and Economic Be-
havior, 38(2):201–230, 2002.

[7] S. Brânzei and K. Larson. Coalitional affinity games
and the stability gap. In International Joint Conference
on Artificial Intelligence (IJCAI), pp. 79–84, 2009.

[8] N. Burani and W. S. Zwicker. Coalition formation
games with separable preferences. Mathematical Social
Sciences, 45(1):27–52, 2003.

[9] K. Cechlárová. Stable partition problem. In Encyclo-
pedia of Algorithms. Springer, 2008.

[10] G. Christodoulou, V. S. Mirrokni, and A. Sidiropou-
los. Convergence and approximation in potential games.
In Symp. on Theoretical Aspects of Computer Science
(STACS), pp. 349–360, 2006.

[11] X. Deng and C. H. Papadimitriou. On the complex-
ity of cooperative solution concepts. Mathematics of
Operations Research, 12(2):257–266, 1994.

[12] J. H. Dreze and J. Greenberg. Hedonic coalitions: Op-
timality and stability. Econometrica, 48(4):987–1003,
1980.

[13] E. Elkind and D. Pasechnik. Computing the nucleolus
of weighted voting games. In ACM-SIAM Symp. on
Discrete Algorithms (SODA), pp. 327–335, 2009.

[14] E. Elkind and M. Wooldridge. Hedonic coalition nets.
In International Conference on Autonomous Agents
and Multiagent Systems (AAMAS), pp. 417–424, 2009.

[15] E. Elkind, L. A. Goldberg, P. W. Goldberg, and
M. Wooldridge. On the computational complexity of
weighted voting games. Ann. Math. Artif. Intell., 56
(2):109–131, 2009.

565

[16] A. Fabrikant, C. H. Papadimitriou, and K. Talwar. The
Complexity of Pure Nash Equilibria. In ACM Symp. on
Theory of Computing (STOC), pp. 604–612, 2004.

[17] M. Gairing and R. Savani. Computing stable outcomes
in hedonic games. In International Symp. on Algorith-
mic Game Theory (SAGT), pp. 174–185, 2010.

[18] J. Greenberg. Coalition structures. In R. J. Aumann
and S. Hart, editors, Handbook of Game Theory with
Economic Applications, volume II. Elsevier, 1994.

[19] S. Ieong and Y. Shoham. Marginal contribution nets: A
compact representation scheme for coalitional games. In
ACM Conference on Electronic Commerce (EC), 2005,
pp. 193–202, 2005.

[20] D. S. Johnson, C. H. Papadimitriou, and M. Yan-
nakakis. How easy is local search? Journal of Computer
and System Sciences, 37:79–100, 1988.

[21] B. Monien and T. Tscheuschner. On the power of nodes
of degree four in the local max-cut problem. In In-
ternational Conference on Algorithms and Complexity
(CIAC), pp. 264–275, 2010.

[22] B. Monien, D. Dumrauf, and T. Tscheuschner. Lo-
cal search: Simple, successful, but sometimes sluggish.
In International Colloquium on Automata, Languages,
and Programming (ICALP), pp. 1–17 , 2010.

[23] J. B. Orlin, A. P. Punnen, and A. S. Schulz. Approxi-
mate local search in combinatorial optimization. SIAM
Journal on Computing, 33(5):1201–1214, 2004.

[24] A. A. Schäffer and M. Yannakakis. Simple Local Search
Problems that are Hard to Solve. SIAM Journal of
Computing, 20(1):56–87, 1991.

[25] M. Sipser. Introduction to the Theory of Computation.
Thomson, 2006.

[26] S. C. Sung and D. Dimitrov. On myopic stability con-
cepts for hedonic games. Theory and Decision, 62, 2007.

[27] S. C. Sung and D. Dimitrov. Computational complexity
in additive hedonic games. European Journal of Oper-
ational Research, 203(3):635–639, 2010.

[28] T. Tscheuschner. The local max-cut problem is PLS-
complete even on graphs with maximum degree five.
http://arxiv.org/abs/1004.5329, 2010.

[29] M. Yannakakis. Equilibria, fixed points, and complexity
classes. In International Symp. on Theoretical Aspects
of Computer Science (STACS), pp. 19–38, 2008.

APPENDIX

Proof of Lemma 1
Proof. It is well known that for any polynomial com-

putable function f : {0, 1}k 7→ {0, 1}m one can construct a
circuit C with polynomial many gates that implements this
function [25, Theorem 9.30]. Clearly, we can also restrict C
to NOR gates with fan-in and fan-out at most 2. Organize

the gates in levels according to their distance to C’s output;
output gates are at level 1.

We replace each gate gi at level ` with the gadget in Fig-
ure 4. Nodes a, b are inputs and e is the output of the gate.

0

a

b

c d e

3
4ℓ

3
4ℓ

3
4ℓ−1

3
4ℓ−1

3
4ℓ−2

3
4ℓ−2

3
4ℓ−3

≤ 3
4(ℓ−1)

12

Figure 4: NOR gate

Nodes a, b and e are restricted (by supernodes) to {0, 1},
node c is restricted to {1, 2}, and node d is restricted to
{0, 2}. If a (or b) is an input of the circuit then we connect
a to the corresponding input s-node by an edge of weight
34`+1. If ` = 1, i.e. gi is an output gate, then we connect e to
the corresponding output t-node with an edge of weight 1.
Otherwise (` > 1), d is also the input to at most 2 lower
level gates. The corresponding edges have weight at most
34(`−1). In any Nash-stable solution, e = 1 if and only if
a = b = 0. In other words e = NOR(a, b). The claim
follows since our construction fulfils properties (i), (ii) and
(iii). If a component of the function output has to be 2 or 3
we slightly adjust the corresponding output NOR gate.

Proof of Lemma 2
Proof. Since neither a nor b can improve, a′ and b′ are

biased to {0, 1} and c is biased to 2. If c = 2 then the bias
on a′ assures a′ = ¬a. So b′ has an edge of weight w to
both 0 and 1. Together with the bias this implies b′ = ¬b.
If c = 3 then the bias on b′ assures b′ = ¬b. So a′ has an
edge of weight w to both 0 and 1. Together with the bias
this implies a′ = ¬a. So in both cases a′ = ¬a and b′ = ¬b.
The claim follows.

Proof of Lemma 3
Proof. We consider three cases: (i) only a can improve,

(ii) only b can improve, (iii) a and b can improve.
Case (i) (only a): Here c is biased to 3, a′ is biased to 2, and

b′ is biased to {0, 1}. First assume c = 2. This enforces
a′ = ¬a which together with the bias implies b′ = ¬b. But
then the bias on c gives c = 3, a contradiction. Thus c = 3,
which enforces b′ = ¬b and with the bias implies a′ = 2. So
a is not locked and b is locked.
Case (ii) (only b): Here c is biased to 2, a′ is biased to {0, 1},
and b′ is biased to 3. First assume c = 3. This enforces
b′ = ¬b which together with the bias implies a′ = ¬a. But
then the bias on c gives c = 2, a contradiction. Thus c = 2,
which enforces a′ = ¬a and with the bias implies b′ = 3. So
a is locked and b is not locked.
Case (iii) (a and b): Here c is biased to 3, a′ is biased to 2,

and b′ is biased to 3. If c = 2 then this enforces a′ = ¬a,
which together with the bias implies b′ = 3. So in this case
a is locked and b is not locked. If c = 3 then this enforces
b′ = ¬b, which together with the bias implies a′ = 2. So in
this case a is not locked and b is locked.

In every case both claims of the lemma are fulfilled.

566

