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ABSTRACT 

Large scale agent-based simulations typically face a trade-off 

between the level of detail in the representation of each agent and 

the scalability seen as the number of agents that can be simulated 

with the computing resources available. In this paper, we aim at 

bypassing this trade-off by considering that the level of detail is 

itself a parameter that can be adapted automatically and 

dynamically during the simulation, taking into account elements 

such as user focus, or specific events. We introduce a framework 

for such a methodology, and detail its deployment within an 

existing simulator dedicated to the simulation of urban 

infrastructures. We evaluate the approach experimentally along 

two criteria: (1) the impact of our methodology on the resources 

(CPU use), and (2) an estimate of the dissimilarity between the 

two modes of simulation, i.e. with and without applying our 

methodology. Initial experiments show that a major gain in CPU 

time can be obtained for a very limited loss of consistency. 

Categories and Subject Descriptors 

D.3.3 [Artificial Intelligence]: Distributed Artificial Intelligence 

– Multiagent systems 

General Terms 

Algorithms, , Performance, Experimentation. 

Keywords 

Agent-based simulations – Simulation techniques – Tools and 

environments – Level of Detail. 

1. INTRODUCTION 
Agent-based simulation of credible actors in large-scale urban 

environments is a growing research domain, with numerous 

applications ranging from security to crisis management, 

entertainment, urban planning and virtual training. Those 

simulations share broadly speaking the same high-level goal: 

provide a powerful analytical tool which can animate a large 

number of individuals, with complex, credible – sometimes 

realistic – behavior, within a large world. Ideally, they would 

work in real time in a continuous space, on a standard machine 

and with intensive and rich interactions with one or several users. 

However, simulating hundreds of thousands of individual agents 

within a very large environment like an airport, a crowded train 

station or a whole megacity, with credible behaviors, requires 

important computational power. This is mainly due to the 

complexity of the microscopic models used for instance for 

navigation, or decision processes that result in large states and 

actions spaces. Indeed, most of them require that each agent 

perceive its environment, update its internal variables, choose the 

most appropriate action and eventually communicate and learn. 

Reducing the complexity of the underlying algorithms is then a 

significant challenge. 

A similar issue has already been tackled by the field of computer 

graphics, where Level of Detail (LOD) techniques have been 

investigated [1] in order to find a good balance between visual 

credibility and computational requirements. Those techniques 

tend to adapt the complexity of the 3D models based on the 

viewpoint of the observer. Our approach proposes a similar idea 

adapted to the agent models. 

In this paper, we define an agent model as a computational 

abstraction of the behavior or the cognitive capabilities of a 

synthetic actor. Thus, this definition either applies to the processes 

and behaviors dealing with navigation, decisions, emotions, 

communication or social interactions. All those models take as 

input a representation of the agent being driven and a 

representation of its environment, and output an action or a 

modification of the internal state. 

We present here a novel approach of dynamic LOD for large scale 

simulations, which can apply to all agent models. Moreover, 

instead of using predefined LOD levels, our approach is able to 

determine by itself the most suitable representation level for each 

agent, regarding the simulation context, in real time and within a 

continuous environment. To do so, we first introduce the generic 

notions of dynamic change of representation and spatial 

aggregation. Then, we define a concrete sub-problem and we 

evaluate the approach experimentally along two criteria: the 

impact of our methodology on the computational resources, and 

an estimate of the dissimilarity between a full microscopic 

simulation and a simulation with our methodology. Finally we 

discuss the results obtained and propose enhancements for future 

works. 

2. RELATED WORK 
Generating realistic behavior for virtual humans has been the 

subject of numerous studies in various communities. Systems like 

SOAR [11], ACT-R [3], ICARUS [2] or LIDA [19] are excellent 

examples of cognitive architectures that provide a complex 

modeling of extremely advanced human reasoning capabilities at 

microscopic scale, based on studies about human memory, 

problem solving and skill acquisition [4]. However, though these 

systems are applicable in scenes with a reasonable number of 
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actors, they are inefficient to handle applications involving large 

populations of virtual humans on a standard computer. This 

limitation is also a disadvantage to the use of multi-agent 

platforms such as Cougaar [8], JADE [17] and ZEUS [26] which 

offer specific architectures able to distribute the virtual entities on 

different machines depending on the required computational load. 

Attempts have been made to increase the number of simulated 

entities on a single computer by tuning the update time length 

given to each agent. To reach the amount of 200.000 vehicles 

simulated as individual autonomous agents with specific action 

selection mechanisms, SUMO [23] uses discrete calculation time 

steps of 1 second. Similarly, the crowd simulation proposed in 

[18] reduces the update times of non-visible agents and adapts 

their behavior to more simplified but less accurate microscopic 

agent models. Finally, the Process Manager described in [10] 

dynamically chooses between several AI update processes – full, 

time-sliced, postponed or replaced with simplified behavior – 

depending on the needs in computational resources. While those 

systems share the same philosophy, the first one sacrifices its real-

time component for the benefit of an accurate result whereas the 

others elected to decrease the realism of the simulation to 

maintain its believability. 

Some systems are able to simulate a very large number of agents 

using only macroscopic models. Crowd Patches [9] can handle up 

to 3.700 actors by dividing the world into small convex areas 

where agents can navigate, and using offline computed paths and 

animations stored within each patch to steer them. Other 

approaches have been attempted through the simultaneous use of 

macroscopic and microscopic models to define the individual 

behaviors of each agent. Thus, YaQ [25] uses offline predefined 

macroscopic paths across the world to steer up to 35.000 

pedestrians using various microscopic algorithms, depending on 

their position: potential fields on significant areas, Craig 

Reynolds’s seeking behavior on lower interest spots and linear 

steering toward their destination without collisions on 

unimportant regions. Similarly, Continuum Crowds [7] represents 

agents as particles which are subjected to three fields – one for 

their destination, one for their speed and one for their discomfort 

caused by the proximity of other agents – that guide them to their 

destination. Thereby, those systems combine global path planning 

and local collision avoidance within a single global steering 

model. However, they focus on navigation issues and are not 

easily transposed to other levels of behavior models such as ones 

dealing with decisions or emotions. Moreover, they do not 

provide the expected level of interactivity. 

Some approaches also exploit the principle of simultaneous use of 

microscopic and macroscopic models, but choose to partition the 

environment and implement a model type for each zone. [22] 

describes a top-down approach for simulating pedestrians within a 

large city, which uses high level flows and distributions models to 

steer non-visible agents along a network of nodes that describe the 

accessible areas of a city, and a microscopic collision avoidance 

model with speed adjustment for visible actors. Similarly, the 

systems presented in [20] and [21] simulate vehicles navigating in 

a static predesigned world. The entities use a macroscopic model 

based on the flow theory for low interest areas without crossroads, 

and a microscopic multi-agent car-following model for high 

interest areas. Those architectures can handle several thousand 

agents with high consistency level and offer a good interactivity 

with the agents’ behavior within both macroscopic and 

microscopic areas. But they require a preprocessed environment 

and predefined transition functions between the agent models. 

A last approach, IVE [16], is of particular interest to our work, 

since it is one that introduces level of detail techniques on human 

decision and behavior. This framework utilizes a hierarchical 

reactive planning mechanism to control the agents, which uses a 

tree structure. Those agents are placed within a 2D world that is 

split into atomic cells which are hierarchically organized within a 

topology tree. Each level of this topology tree is linked to one of 

the behavioral tree, defining accessible LOD ranks. Thus, IVE can 

adapt the level of detail of the simulation in order to simplify the 

behaviors of the unobserved agents – and then reduce the 

computational needs – hence dealing with more than 10.000 

agents simultaneously. But it requires the use of a discrete 

hierarchical world statically linked with the tree structure used by 

the decision process. 

The field of multi-agent systems is not the only one to be relevant 

in the context of this study. Thus, Multi-Resolution Modeling 

(MRM), which is the joint execution of different models of the 

same phenomenon within the same simulation or across several 

heterogeneous systems, provides several relevant approaches. In 

selective viewing [12], only the most detailed model is executed, 

and all other ones are emulated by selecting information, or views, 

from the representation of the most detailed model. In aggregation 

/ disaggregation techniques, one model is executed at a given 

time, but instead of being the most detailed one like in selective 

viewing, the choice of the model depends on the user needs. This 

approach has several variants, such as full disaggregation [15], 

partial disaggregation [6], playboxes [14] and pseudo-

disaggregation [13]. Variable Resolution Modeling allows the 

construction of families of models which support dynamic 

changes in resolution [12] by introducing constraints during their 

creation, such as the standardization of all the parameters in a 

dictionary, the creation of a hierarchical structure for the variables 

or the definition of calibration rules between models. 

Multiple Representation Entities [5] is a final example from the 

MRM field which is of particular interest here. It uses concurrent 

representations to ensure simulation consistency and reduce 

computation costs. Its approach is to maintain, at all time, all 

representations through all available models of a given 

phenomenon, using appropriate mapping functions to translate 

changes between two representations. The goal is to permit 

constant interactions between all the representations, to avoid loss 

of resources or time when scaling from one model to another. This 

approach is a powerful way to deal with complex MRM, which 

offers a remedy for the weakness of aggregation / disaggregation 

methods and requires lower resources than simultaneous 

execution of multiple models. But it only gives mathematical 

requirements for mapping functions, through the use of attributes 

dependency graphs. Also, it does not identify the representation at 

any level nor relationships between representations. 

3. DYNAMIC LEVEL OF DETAIL FOR 

AGENT MODELS 
Our approach aims to mix the philosophy of graphical level of 

detail with the use of multiple agent models at different 

resolutions. The goal is to simulate precisely the behavior of 

actors in areas of high level of interest with microscopic models 

and to simulate less precisely but more economically (resource-
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wise) behavior of actors located elsewhere with macroscopic 

models. 

Several criteria have motivated the choice of using multiple 

models. Firstly, it allows the capture of all the aspects of a given 

phenomenon. Indeed, low resolution models allow a better overall 

understanding, by focusing on the big picture rather than on the 

details, whereas high resolution models give an accurate 

comprehension of a specific phenomenon and tend to simulate 

reality. Secondly, such a choice allows the finding of a good 

balance between computing resources and simulation properties, 

such as realism, coherence and complexity. Indeed, although high 

resolution models are very accurate for modeling individual 

behaviors, they often have high computational and memory needs. 

On the other hand, low resolution models can save resources but 

tend to give less accurate results. Mixing both types of models can 

hopefully lead to the best of both worlds. Finally, using multi 

models helps design systems by mimicking the human reasoning 

ability – which already works at different levels of understanding 

– and simplifies the calibration of the models by allowing the use 

of available data matching at least one of the implemented 

models. 

However, this fundamental choice leads to several challenges 

which can be classified along two axes. The first one relates to the 

models themselves. One must define the way they will be used (a 

model at a time, one model per areas of interest, all models 

simultaneously, etc…) and the way they will interact, using some 

of the Multi Resolution Modeling methods described above. The 

second axis relates to the physical agents. One must define how to 

manage a continuous 3D environment with complex moving 

agents, and how the physical position of the agents will have an 

impact on the model used. 

3.1 Dynamic change of representation 
This chapter focuses on the scalability aspect of the implemented 

agent models. It attempts to provide an efficient method for 

navigating dynamically from one model to another. The primary 

decision made is the choice of the aggregation / disaggregation 

technique to define how the models are used. This way, several 

agents are aggregated into a group of agents, then several groups 

are aggregated into a crowd, and finally several crowds are 

aggregated into a flow. The different agent models (agent, group, 

crowd and flow) are linked to each aggregation / disaggregation 

step. 

Let    be an agent model. The representation of an agent    in 

   at time   is denoted by    (        ) and is the vector of 

inner attributes of    required by    to operate. The number of 

such attributes is denoted by |  |. Then: 

   (        )  

(

 

     ( )

     ( )

 
    |  |

( ))

  

Let    be another agent model. We assume that    is more 

abstract than   , which also means that the representation level of 

   is higher than the one of   . Finally, let 

  *             + be a set of N agents, driven by the model 

  . The goal is to find the aggregation function     able to 

transform the representation of   in    at time  , into the 

representation of the aggregate    controlled by the model    at 

the same time: 

   (       )  (   (        )       (        ))

 (

     ( )       ( )

   
    |  |

( )      |  |
( )

) 

   ,   (       )-     (        ) 

As is, such function is difficult to define – or to learn – because it 

attempts to aggregate parameters which are a priori not 

semantically connected, such as the velocity of the agents and 

their thirst level. Our approach is to split     into several sub 

functions, each operating on parameters with a similar meaning, 

therefore likely to share a common dynamic. In this end, we 

classify each agent’s attributes in two categories, physical and 

psychological, and several subcategories, like physical traits, 

resources or spatial data for the first group and emotions, internal 

variables or knowledge for the second. Then, we partition the 

representation of the agents in each model. The goal is then to 

find the aggregation sub functions corresponding to each class of 

attributes, which guarantees the consistency of the models and 

allows a future disaggregation. 

The notion of consistency is central in such an approach because 

it symbolizes the amount of essential information lost during the 

aggregation / disaggregation process and is linked to the global 

coherence of the simulation. A relevant definition of consistency 

between a high level model   and a low level model    has been 

given in [12] by the comparison between the projected state of an 

aggregate of high level entities which have followed  , and the 

projected state of the same aggregate initially controlled by   .  

The projection symbolizes that only a part of the final states is 

relevant to define the consistency. Our approach uses this notion 

to determine which kind of sub function fits best with which class 

of attributes. Thus, machine learning techniques would allow the 

system to find the best sub function for each attributes class 

between two agent models among a group of predefined operators 

such as SUM, MIN, MAX, MEDIAN or MEAN, by optimizing 

the consistency of both models. 

In parallel to the definition of the aggregation sub functions, we 

must find the associated disaggregation operator,       , which 

aims to recreate   from    at time    with respect to the evolution 

of    between   and   . To do so, we define memory functions 

whose goal is to save data at aggregation time to facilitate the 

disaggregation process: 

   (       )  (   (        )       (        ))

 (

     ( )       ( )

   
    |  |

( )      |  |
( )

) 

      ,   (        
 )     (       )-     (       

 ) 

There is a strong link between an aggregation function, its 

opposite disaggregation operator and the associated memory 

function. As an example, let us consider the resources of an agent. 

An intuitive aggregation operator would be the SUM as we may 

consider that a group of agents disposes of the sum of the 

resources of each individual. In this case, the memory function 

would be, for each resource attribute, a RATIO operator between 

the initial amount of the aggregated agent and the amount of the 

aggregate. Then, the disaggregation function would be a simple 

MULTIPLY between the new amount of the aggregate and the 
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memory of the agent, plus a random distribution of surplus 

between the agents. 

Finally, such method allows our approach to tune the memory 

consumption by controlling the quantity of data stored by the 

memory functions for each aggregated agents. Thus, gradual 

forgetting methods can be implemented, which keeps all the data 

of    (       ) just after the aggregation, then creates a 

statistical distribution for each attribute among all the aggregated 

agents after a predefined period of time and finally erase all stored 

data if the agents have been aggregated after a long period. In this 

last case, random attributes are generated for the disaggregation 

process. 

3.2 Spatial aggregation 
This section focuses on the spatial aggregation of agents and 

addresses the issue of finding which agents should be aggregated 

to form a representation at a less detailed level. The philosophy 

employed here is to consider a group of humans as a set of 

individuals with similar psychological profiles and a common 

physical space. 

To this end, two distances are defined based on the two main 

attributes classes defined before: a spatial distance   , and a 

psychological distance   . The first one can be a trivial Euclidean 

distance or a more complex computation taking into account the 

physical path between the two agents. The second distance 

represents how two actors share the same thoughts (for example 

the same goal, the same dominant emotion or the same desire). It 

can be the norm between the vectors of psychological attributes or 

the similarity between the long term goals chosen by the agent. 

Those distances are combined to define the affinity between two 

agents    and   . 

   (      )   ,  (      )   (      )- 

This affinity must be a continuous positive function, strictly 

decreasing as    or     increase. It represents the connection 

between two agents within the simulation, only based on their 

individual states. Their environment is taken into account with the 

definition of events. Those symbolize points of particular 

attention which require the creation of an area of high level of 

interest to increase the overall consistency of the simulation. 

Thus, the observer’s point of view, an accident or an evacuation 

can lead to the creation of simulation events. Let   
*             + be a set of M events generated by the 

simulation. The link between an agent and an event is 

characterized by a new pair of distances similar to those defined 

above. Although the meaning of the physical distance remains the 

same as the one between two agents, the signification of the 

psychological one is a bit different, and symbolizes how an actor 

is sensitive to the event. For example, if we consider an agent 

collapsing in the street, we can assume the impact of this event to 

be higher on a doctor walking nearby than on a child or an 

employee in a hurry. Those distances are combined to define the 

affinity between two agents    and    and an event     : 

{
  (          )     

 
,  (     )    (     )-

  (          )     
 

,  (     )    (     )-
 

   (          )   ,  (          )   (          )- 

Finally, we can define the link between the two agents    and    

and  : 

   (         )     
  ,   -

,   (          )- 

This link is finally used to define the aggregation utility between 

two agents    and   . This utility guides the choice of which 

agents to aggregate because they are close in their representation 

space and are not of interest for the simulation. 

   (      )    ,   (      )     (         )- 

The computation of the aggregation utilities between the agents 

leads to the creation of an aggregation graph, which vertices are 

the agents in the simulation. An edge of the graph is created when 

the value of the aggregation utility is greater than a given 

threshold. The weight of the edge is set to the value of the utility. 

Figure 1.A shows agents symbolized by circles with different 

colors representing their psychological states. The corresponding 

graph is shown in Figure 1.B. This structure allows optimizing the 

repartition of the agents within the created groups – Figure 1.C – 

with the use of specific graph algorithms. 

 

Figure 1: Example of spatial aggregation, with agents on the 

ground (A) used to create an aggregation graph (B) finally 

leading to the formation of groups (C). 

 

The disaggregation of an aggregate    proceeds of the same idea, 

although it just take into accounts the events defined in the 

simulation. Thus, we can define an affinity between    and an 

event     , then the affinity between    and  , and finally the 

disaggregation utility which guides the choice of which aggregate 

to split because its representation grain is too coarse for the area 

of interest where it stands: 

   (      )   ,  (      )   (      )- 

   (     )     
  ,   -

,   (      )- 

      (  )    ,   (    )- 

3.3 Implementation in SE-* 
A large part of our approach has been implemented and evaluated 

within SE-*, a Thales proprietary multi-agent simulation. This 

system is a synthetic environment engine, designed to be highly 

scalable and capable of modeling complex adaptive behaviors, 

low-level navigation and interactions with the environment. Each 

agent has a motivational tree containing predefined attributes, 

internal variables, motivations and behaviors. A hierarchical plan 

is created from these different motivations and from the Smart 

Objects the agent may use. Currently, SE-* can animate up to 

20,000 agents driven by more than 20 motivations within a 

complex environment. 
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This simulator has been used to test our approach on several 

scenarios. Due to the complexity of the model described above 

and its large number of parameters, we decided to focus on a sub 

problem for this first experiment, mostly by reducing the 

scalability of the agent models. The main simplification is the 

definition of two representation levels – individual and group – 

and the use of the same microscopic navigation and decision 

model for both levels. Thus, we assume that a group of a small 

number of agents perceive and act like a single actor. Then, we 

classify the attributes of the model into 3 physical categories 

(physical traits, resources and spatial data) and 3 psychological 

ones (motivations, internal variables and psychological traits). 

Finally, because our approach does not implement yet any 

automated learning mechanism for finding the aggregation 

operators, we defined them by hand. Thus, we use a simple 

MEAN operator for all the categories except for the resources 

which are aggregated using a SUM operator. The associated 

disaggregation and memory operators were also designed by 

hand. 

To compute the affinity between two agents    and   , we 

implemented a basic Euclidian distance as    and we set     as 

being equal to zero if the agents have the same short-term goal, 

one if not. The affinity function is then defined as follow: 

   (      )  
 

   (      )
     (      )

  (    )    
  

 

The affinity between two agents    and    and an event      is 

defined similarly, except for    which is always zero, 

symbolizing the fact that the agents are always affected by the 

events of the simulation. The aggregation utility between two 

agents    and    is then defined as follows: 

   (      )  
   (      )

   (        )      
  

Considering that    is always zero, the definition of the 

disaggregation utility for an aggregate    proceeds of the same 

idea: 

      (  )     (    )  
 

   (    )      
  

4. EXPERIMENTAL EVALUATION 
 We designed 3 scenarios to evaluate our approach. Two 

of them take place in a subway station initially empty, including 

various objects such as ATMs, ticket vending machines, beverage 

dispensers and ticket barriers, and the last one occurs in a large 

city. In each scenario, the agents are driven by a dozen different 

motivations, such as going to work, drinking, destroying a 

machine, repairing a broken machine or fleeing. 

Two subway stations have been designed for the two first 

scenarios, which share the same 3D model but have specific 

locations for the objects. Details are shown in Figure 2 and Figure 

3. When entering the station, each agent aims to take the train and 

has random physical and psychological traits as well as 30% 

chance to own a ticket and another 30% chance to start with a 

small amount of money. To achieve its initial goal, and according 

to its inner attributes, an agent will have to get some cash at the 

ATM, buy a ticket, get a drink or directly go through the ticket 

barriers to the train doors. The first station contains 4 entries, 4 

train doors, 8 ATMs (in green on the figures), 8 ticket vending 

machines (in yellow), 12 ticket barriers (in white), 12 exit barriers 

(in dark red) and 7 beverage dispensers (in red). In the second 

one, 4 ATMs were swapped with 4 ticket vending machines in 

order to see if a modification in the topology has an impact on the 

performances. 

 

Figure 2: Top view of the first test subway station. 

 

 

Figure 3: View of a part of the first test subway station. 

The last scenario takes place in an entire city which includes the 

subway station, shown in Figure 4. The 3D mesh is larger and 

allows the simulation of thousands of agents. However, it does not 

contain any smart objects with which to interact. Thus, the agents 

only walk from entry points to exit gates without colliding, which 

is a typical navigation task. 

 

Figure 4: View of the test city. 

Each scenario was run twice – one as a fully microscopic 

simulation without any LOD process and one with our dynamic 

aggregation method activated. The goal was to compare both runs 

to calculate both the CPU gain and the behavioral consistency. 

For the first criterion, we stored the total amount of time needed 

by the simulation to compute 60 frames within one second. For 

the second one, we aimed to find an estimate of the behavioral 
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distance between both runs. Thus, we used as objective abstract 

criterion: the number of uses of each object, from the start of the 

simulation to the measure time. Those cumulative values, taken 

every second, symbolize the throughput of each machine within 

the station. Because we already assume that the aggregation 

process has an impact on the simulation that is unavoidable and 

that may be significant, we choose to avoid using exact statistical 

hypothesis tests, such as Mann-Whitney’s. Instead we defined, for 

each object, a local dissimilarity as the difference of the temporal 

means between the cumulative values obtained at both runs. 

Finally, we defined a global behavioral dissimilarity indicator as 

the mean of all the variations found for all objects. Let   ( ) be 

the cumulative number of uses of object   at time   during the 

microscopic simulation, and   
 ( ) the cumulative uses of the 

same object at the same time during the simulation using our 

dynamic aggregation method. Then: 

              
 

        
∑ {

∑ ,  ( )    
 ( )- 

   

∑   ( )
 
   

}

        

   

 

Because it does not have any smart object to interact with, only 

the CPU gain was computed for the city scenario. For each 

scenario, we changed the maximum number of agents within the 

simulation and the maximum number of entities allowed inside an 

aggregate in order to study the impact of those parameters on the 

results. Finally, each experimentation has been run 5 times during 

30 minutes on an Intel Core 2 Duo 2.26 GHz laptop with a 

memory of 2 Go. The results showed are the mean of the 5 runs. 

Table 1: Experimentation results on both subway stations 

varying max group size and max number of entities. 

Entities 

Max 

Group 

Size 

CPU Gain (%) Dissimilarity (%) 

1st 

Station 

2nd 

Station 

1st 

Station 

2nd 

Station 

100 5 43,4 43,0 3 5,4 

100 10 47,5 45,9 7,1 6,9 

100 15 50,3 46,5 10,9 8,3 

100 20 49,4 46,9 9,9 7,6 

100 25 50,5 47,6 8,7 9,7 

300 5 59,9 56,7 4,9 6,3 

300 10 66,7 60 4,5 5,5 

300 15 67,9 65,6 7,5 8,5 

300 20 67,7 66,2 5,7 6,3 

300 25 69 66,9 8,6 7,1 

500 5 61,5 56,8 21,5 20,1 

500 10 67,4 64,5 19 19,1 

500 15 69,6 67,2 18,7 18,4 

500 20 70,7 66,5 17,2 17,5 

500 25 72,6 69,1 14,2 16,2 

1000 5 57,33 53,8 35,41 36,1 

1000 10 63,97 59,4 33,68 32,4 

1000 15 66,52 58,7 33,85 32,3 

1000 20 67,79 60,7 31,51 31,4 

1000 25 68,79 61,3 32,6 31,4 

 

The results of the experimentation done on the first station are 

shown in Table 1. It appears that, for a given maximum number of 

agents within the station, the CPU gain is very encouraging 

(between 40% and 70% is saved) and logically increases with the 

maximum size of each aggregate. On the other hand, the 

behavioral dissimilarity appears to be acceptable (3-10% range for 

simulation inconsistency) for a maximum of 100 and 300 agents 

in the station. However, it becomes unsatisfactory (14 to 36% 

inconsistency) if the station is filled with 500 or 1000 agents. 

Moreover, there is no clear pattern in the dynamics of the 

behavioral dissimilarity as a function of the group size. 

Table 1 also shows the results obtained when running the tests on 

the second station. The evolution of the CPU gain is the same as 

the one observed in the first experiment. However, the behavioral 

dissimilarity seems to be globally better at 300 agents even if it 

remains in the same range. Like before, it is difficult to detect a 

clear trend concerning this second criterion. 

Table 2: Experimentation results for the city environment. 

Entities 
Max 

Group Size 
CPU Gain (%) 

Aggregation 

Cost (%) 

10.000 5 38,0 5,3 

10.000 10 48,0 7,1 

10.000 15 54,2 8,7 

10.000 20 56,0 9,0 

10.000 25 54,5 8,8 

 

The CPU gain observed in the city simulation is shown in Table 2. 

Like above, the CPU gain increases with the maximum size of 

each aggregate. This test demonstrates that the cost of the 

additional computations required by our approach (the 

Aggregation Cost) is limited and indeed remains much smaller 

than the total computation gain, even with a high number of 

agents. However, all the tests highlight a non linear variation of 

the CPU gain according to the group size. This can be explained 

by the actual number of agents within each aggregate during a 

simulation run. According to our observations, this number is 

generally between 10 and 15 agents, which coincides with the 

slowdown in growth of the CPU gain after a maximum of 15 

agents per aggregate. The main explanation for this result lies in 

the choice of the psychological distance and the aggregation 

utility threshold. Because the first one is focused on the agents’ 

short-term goal, it is sometimes too specific and greatly limits the 

size of the groups. The second one has been set high enough to 

trigger an aggregation if and only if both physical and 

psychological distances are low. Because of what has been said 

before, this induces the agents to be grouped only if they are also 

physically close enough. Finally, those fixed parameters lead to 

the small group sizes observed in our simulations. 

The results of the two subway scenarios highlight an important 

variation of the behavioral dissimilarity between the 

experimentations involving a small number of entities – 100 and 

300 – within the station, and those dealing with 500 to 1000 

agents. Again, our observations showed that this difference is the 

direct result of the overcrowding of the station which becomes a 

key phenomenon when it contains more than 500 microscopic 

entities. In this situation, agents trying to pass the ticket barriers 

are colliding with the ones queuing at the ATMs and the ticket 

vending machines. The time required to access the objects is 

greatly increasing. Some agents even leave the station because 

they get upset to wait so long to use the machines or because they 

get stressed by the crowd. This situation does not appear during 

macroscopic simulations, because the aggregation itself greatly 

reduces the perceived density of agents in the station. Hence, our 

approach is not able to simulate properly specific microscopic 
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phenomena because the aggregation process is too coarse by 

grouping several entities into one agents and applying to it a 

microscopic agent model. 

5. DISCUSSION AND FUTURE WORK 
In this paper, we presented a novel approach of dynamic level of 

detail (LOD) for large scale simulations, which breaks from the 

general habit of using a single level of representation. Instead, we 

proposed the use of behavioral LOD and we introduced the 

notions of dynamic change of representation and spatial 

aggregation. Hence, our approach can be applied to various 

models governing agent behavior, dealing for example with 

navigation, decision, or emotions. Moreover, it is able to 

determine by itself the most suitable representation level for each 

agent, regarding the simulation context. 

The results detailed in section 4 show an encouraging CPU gain 

between the microscopic simulation and the one implementing 

LOD techniques, even on experimentations involving a high 

number of agents. Moreover, this gain leads to an acceptable 

behavioral dissimilarity when the number of entities within the 

station does not lead to crowded situations. 

 

Figure 5: Evolution of CPU gain and simulation consistency 

for a maximum of 300 agents within each station. 

 

However, when microscopic phenomena such as a very high 

density of agents are observed, the behavioral distance increases 

significantly. Thus, this result highlights two shortcomings of our 

current approach. The first one is the consequence of the 

assumptions made for the experimentations, where the same agent 

model has been used on each representation level. Doing so 

implies that the physical area of an aggregate to be equal to the 

one of an individual agent. This remark brings forward the need 

for a group model taking into account, at the minimum, a surface, 

a density and deformation factor. Of course, using a more 

complex model with specific group actions, knowledge and 

detailed internal state might help designing a more realistic 

simulation. 

The second shortcoming of our approach results from the fact that 

the aggregation process, by merging several entities into a single 

one, may be too coarse in some situations. Although it may lead to 

visual inconsistencies, it can also create a strong behavioral 

difference between a model and another with a lower level of 

representation. A solution would be to use an intermediate level 

between several entities and an aggregate: the mesoscopic level 

[24]. The idea is to assume that, among the two main attributes 

categories defined in chapter 3.1 – physical and psychological – 

the first one is the most objective and observable. Thus, going 

from the microscopic to the mesoscopic level consists in 

aggregating only the psychological attributes. The mesoscopic 

agent will then have several bodies, corresponding to the physical 

microscopic bodies of the agents and driven by the low 

representation physical agent model (such as the navigational 

model), and one brain controlled by the low representation 

psychological model (such as decisional or emotional models). 

Doing so would decrease the CPU gain, because it only saves 

computation time on some agent models, but would also decrease 

the dissimilarity, in particular in crowded situations. However, 

many issues remain to be studied, especially the criteria for 

aggregating and disaggregating mesoscopic agents. 

Another weakness highlighted by our experiments is the use of 

fixed parameters which leads to small aggregates size. This 

limitation could be lifted by a study on a more generic 

psychological distance between two agents and on the dynamicity 

of the most important parameters of the approach such as the 

aggregation and dissagregation thresholds. The first one has been 

arbitrarily defined and deserves to be made dependent on more 

subjectives parameters, such as those which are important for the 

user observing the simulation. For our experiments, we chose the 

short-term goal as criterion, but another user which may be 

particularly interested in the stress level of each agent might 

decide that two actors are psychologically close if they share the 

same stress level. Although this attribute cannot be used alone to 

define a coherent psychological distance, there is a need to give to 

the user some control over the weight of each psychological 

attribute in the computation of the distance. Secondly, the 

important parameters such as the thresholds were defined by hand 

for this first experimentation. An idea would be to set them 

dynamically, function of the number of representation levels, the 

number of agents in the simulation and the available CPU power. 

This way, the aggregation and desaggregation processes would 

adapt the context of the simulation and would provide the best 

CPU gain / dissimilarity ratio. 

One of the most important limitations of the sub problem defined 

in section 3.3 is the simplification done to the scalability of the 

agent models part, especially for the definition of the aggregation, 

disaggregation and memory operators. Indeed, one of the major 

improvements of this work would come from the ability to obtain 

these operators through learning or search. As mentioned in 

section 3.1, the use of machine learning mechanisms can be 

promising. They may, for example, focus on minimizing the 

behavioral dissimilarity defined in section 4. 

Finally, the issue of communications between agents – which 

relates more generally to the notion of scalability of the 

interactions between agents at all levels of representation – has 

not been directly studied in this work, as our agents do not 

communicate directly with each other. Considering such ability 

would require the definition (or the automatic search) of 

aggregation and disaggregation operators to transform the 

information emitted from an agent at a given level of 

representation to another at another level. If those operators are 

similar to the ones working on the agents’ representation – except 

that they would work on the semantics – they would be called for 

each interaction and might increase the computational cost. This 

important point has yet to be investigated. 
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