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ABSTRACT
Electoral control models ways of changing the outcome of
an election via such actions as adding/deleting/partitioning
either candidates or voters. These actions modify an elec-
tion’s participation structure and aim at either making a
favorite candidate win (“constructive control”) or prevent a
despised candidate from winning (“destructive control”). To
protect elections from such control attempts, computational
complexity has been used to show that electoral control,
though not impossible, is computationally prohibitive. Re-
cently, Erdélyi and Rothe [10] proved that Brams and San-
ver’s fallback voting [5], a hybrid voting system that com-
bines Bucklin with approval voting, is resistant to each of
the standard types of control except five types of voter con-
trol. They proved that fallback voting is vulnerable to two
of those control types, leaving the other three cases open.

We solve these three open problems, thus showing that
fallback voting is resistant to all standard types of control
by partition of voters—which is a particularly important and
well-motivated control type, as it models “two-district gerry-
mandering.” Hence, fallback voting is not only fully resistant
to candidate control [10] but also fully resistant to construc-
tive control, and it displays the broadest resistance to con-
trol currently known to hold among natural voting systems
with a polynomial-time winner problem. We also show that
Bucklin voting behaves almost as good in terms of control
resistance. Each resistance for Bucklin voting strengthens
the corresponding control resistance for fallback voting.
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and Problem Complexity;
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent Systems
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1. INTRODUCTION
Elections have been used for preference aggregation not

only in the context of politics and human societies, but
also in artificial intelligence, especially in multiagent sys-
tems, and other topics in computer science (see, e.g., [8, 14,
7]). That is why it is important to study the computational
properties of voting systems. In particular, complexity can
be used to protect elections against tampering attempts in
control, manipulation, and bribery attacks by showing that
such attacks, though not impossible in principle, can be com-
putationally prohibitive.

Since the seminal paper of Bartholdi et al. [2], the com-
plexity of electoral control—changing the outcome of an elec-
tion via such actions as adding/deleting/partitioning either
candidates or voters—has been studied for a variety of voting
systems. Unlike manipulation [1, 6], which models attempts
of strategic voters to influence the outcome of an election via
casting insincere votes, control models ways of an external
actor, the “chair,” to tamper with an election’s participa-
tion structure so as to alter its outcome. Another way of
tampering with the outcome of elections is bribery [11, 12],
which shares with manipulation the feature that votes are
being changed, and with control the aspect that an external
actor tries to change the outcome of the election. For more
background on complexity results for control, manipulation,
and bribery in approval voting and its variants, we refer to
the survey of Baumeister et al. [3].

Regarding control, a central question is to find voting sys-
tems that are computationally resistant to as many of the
common 22 control types as possible, where resistance means
the corresponding control problem is NP-hard. Each control
type is either constructive (the chair seeking to make some
candidate win) or destructive (the chair seeking to make
some candidate end up not winning). Erdélyi and Rothe [10]
recently proved that fallback voting [5], a hybrid voting sys-
tem combining Bucklin with approval voting, is resistant to
each of these 22 standard control types except five types of
voter control. They proved that fallback voting is vulnera-
ble to two of those control types (i.e., these control problems
are polynomial-time solvable), leaving the other three cases
open. We solve these three open problems by showing that
fallback voting is resistant to constructive and destructive
control by partition of voters in the tie-handling model “ties
promote” and to destructive control by partition of voters
in the “ties eliminate” model. Partition of voters is a par-
ticularly important and well-motivated control type, as it
models “two-district gerrymandering.” Control-by-partition
cases are the most difficult control types to deal with; their
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resistance proofs require the most involved constructions.
Thus fallback voting is fully resistant not only to candi-

date control [10] but also to constructive control. In terms
of the total number of proven resistances it even outnumbers
“sincere-strategy preference-based approval voting” (SP-AV,
a modification [9] of another hybrid system proposed by
Brams and Sanver [4]): Fallback voting has the most (20
out of 22) proven resistances to control among natural vot-
ing systems with a polynomial-time winner problem. Among
such systems, only SP-AV (with its 19 proven control re-
sistances [9]) and plurality voting were previously known
to be fully resistant to candidate control [2, 15], and only
Copeland voting and SP-AV were previously known to be
fully resistant to constructive control [12, 9]. However, plu-
rality has fewer resistances to voter control, Copeland vot-
ing has fewer resistances to destructive control, and SP-AV
is missing one destructive voter partition resistance and—
perhaps more importantly—is arguably less natural a sys-
tem than fallback voting, since in SP-AV (as modified by
Erdélyi and Rothe [9]) it may happen that votes are rewrit-
ten to ensure admissibility (for further details see [3, 9]).

We also study the control complexity of Bucklin voting
itself and show that it has (at least) 19 resistances to control,
thus drawing level with SP-AV. In particular, also Bucklin
voting is—like SP-AV and fallback voting—fully resistant to
constructive control and to candidate control. Since Bucklin
voting is a special case of fallback voting, each resistance
result for Bucklin strengthens the corresponding resistance
result for fallback voting.

2. PRELIMINARIES

Elections and Voting Systems.
An election (C, V ) is given by a finite set C of candidates

and a finite list V of votes over C. A voting system is a rule
that specifies how to determine the winner(s) of any given
election. The two voting systems considered in this paper
are Bucklin voting and fallback voting.

In Bucklin voting, votes are represented as linear orders
over C, i.e., each voter ranks all candidates according to
his or her preferences. For example, if C = {a, b, c, d} then
a vote might look like c d a b, i.e., this voter (strictly)
prefers c to d, d to a, and a to b. Given an election (C, V )
and a candidate c ∈ C, define the level i score of c in
(C, V ) (denoted by score i

(C,V )(c)) as the number of votes
in V that rank c among their top i positions. Denoting the
strict majority threshold for a list V of voters by maj (V ) =
⌊‖V ‖/2⌋ + 1, the Bucklin score of c in (C, V ) is the smallest
i such that score i

(C,V )(c) ≥ maj (V ). All candidates with
a smallest Bucklin score, say k, and a largest level k score
are the Bucklin winners (BV winners, for short) in (C, V ).
If some candidate becomes a Bucklin winner on level k, we
call him or her a level k BV winner in (C,V ). Note that a
level 1 BV winner must be unique, but there may be more
level k BV winners than one for k > 1, i.e., an election may
have more than one Bucklin winner in general.

Brams and Sanver [5] proposed fallback voting as a hybrid
voting system that combines Bucklin with approval voting.
In approval voting, votes are represented by approval vec-
tors in {0, 1}‖C‖ (with respect to a fixed order of the candi-
dates in C), where 0 stands for disapproval and 1 stands
for approval. Given an election (C, V ) and a candidate
c ∈ C, define the approval score of c in (C, V ) (denoted

by score(C,V )(c)) as the number of c’s approvals in (C, V ),
and all candidates with a largest approval score are the ap-
proval winners in (C, V ). Note that an election may have
more than one approval winner. Fallback voting combines
Bucklin with approval voting as follows. Each voter provides
both an approval vector and a linear ordering of all approved
candidates. For simplicity, we will omit the disapproved can-
didates in each vote. For example, if C = {a, b, c, d} and a
voter approves of a, c, and d but disapproves of b, and prefers
c to d and d to a, then this vote will be written as: c d a.
We will always explicitly state the candidate set, so it will
always be clear which candidates participate in an election
and which of them are disapproved by which voter (namely
those not occurring in his or her vote). Given an election
(C, V ) and a candidate c ∈ C, the notions of level i score of c
in (C, V ) and level k fallback voting winner (level k FV win-
ner, for short) in (C, V ) are defined analogously to the case
of Bucklin voting, and if there exists a level k FV winner for
some k ≤ ‖C‖, he or she is called a fallback winner (FV win-
ner, for short) in (C, V ). However, unlike in Bucklin voting,
in fallback voting it may happen that no candidate reaches
a strict majority for any level, due to voters being allowed to
disapprove of (any number of) candidates, so it may happen
that for no k ≤ ‖C‖ a level k FV winner exists. In such a
case, every candidate with a largest (approval) score is an
FV winner in (C,V ). Note that Bucklin voting is the spe-
cial case of fallback voting where each voter approves of all
candidates. As a notation, when a vote contains a subset
of the candidate set, such as c D a for a subset D ⊆ C,
this is a shorthand for c d1 · · · dℓ a, where the elements
of D = {d1, . . . , dℓ} are ranked with respect to some (tacitly
assumed) fixed ordering of all candidates in C. For example,
if C = {a, b, c, d} is assumed to be ordered lexicographically
and D = {b, d} then “c D a” is a shorthand for c b d a.

Types of Electoral Control.
There are eleven types of electoral control, each coming

in two variants. In constructive control [2], the chair tries to
make his or her favorite candidate win; in destructive control
[15], the chair tries to prevent a despised candidate’s victory.
We refrain from giving a detailed discussion of natural, real-
life scenarios for each of these 22 standard control types that
motivate them; these can be found in, e.g., [2, 15, 12, 16, 9,
3]. However, we stress that every control type is motivated
by an appropriate real-life scenario.

When we define our 22 standard control types as deci-
sion problems, we assume that each election or subelection
in these control problems will be conducted with the voting
system at hand (i.e., either Bucklin or fallback voting) and
that each vote will be represented as required by the corre-
sponding voting system. We also assume that the chair has
complete knowledge of the voters’ preferences and/or ap-
proval strategies. This assumption may be considered to be
unrealistic in certain settings, but is reasonable and natural
in certain others, including small-scale elections among hu-
mans and even large-scale elections among software agents.
More to the point, assuming the chair to have complete in-
formation makes sense for our results, as most of our results
are NP-hardness lower bounds showing resistance of a vot-
ing system against specific control attempts and complexity
lower bounds in the complete-information model are inher-
ited by any natural partial-information model (see [15] for a
more detailed discussion of this point).
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All our decision problems are formally described in the
standard Instance-Question format. As an explicit example,
we define the decision problem corresponding to control by
partition of voters with the tie-handling rule “ties promote”
(TP), see [15]. This control type produces a two-stage elec-
tion with two first-stage and one final-stage subelections.
The constructive variant of this problem is defined as:

Constructive Control by Partition of Voters (TP)

Instance: A set C of candidates, a list V of votes over C,
and a designated candidate c ∈ C.

Question: Can V be partitioned into V1 and V2 such that c
is the unique winner of the two-stage election in which
the winners of the two first-stage subelections, (C, V1)
and (C, V2), run against each other in the final stage?

The destructive variant of this problem is defined analo-
gously, except it asks whether c is not a unique winner of
this two-stage election. In both variants, if one uses the tie-
handling model TE (“ties eliminate,” see [15]) instead of TP
in the two first-stage subelections, a winner w of (C,V1) or
(C, V2) proceeds to the final stage if and only if w is the only
winner of his or her subelection. Each of the four problems
just defined can be seen as a way of modeling “two-district
gerrymandering.”

There are many ways of introducing new voters into an
election—think, e.g., of “get-out-the-vote” drives, or of low-
ering the age-limit for the right to vote, or of attracting new
voters with certain promises or even small gifts), and such
scenarios are modeled as Constructive/Destructive
Control by Adding Voters: Given a set C of candidates,
two disjoint lists of votes over C (one list, V , corresponding
to the already registered voters and the other list, W , corre-
sponding to the as yet unregistered voters whose votes may
be added), a designated candidate c ∈ C, and a nonnegative
integer k, is there a subset W ′ ⊆ W such that ‖W ′‖ ≤ k
and c is (is not) the unique winner in (C, V ∪W ′)?

Disenfranchisement and other means of voter suppression
is modeled as Constructive/Destructive Control by
Deleting Voters: Given a set C of candidates, a list V
of votes over C, a designated candidate c ∈ C, and a non-
negative integer k, can one make c the unique winner (not
a unique winner) of the election resulting from deleting at
most k votes from V ?

Having defined these eight standard types of voter control,
we now turn to the 14 types of candidate control. Now, the
control action seeks to influence the outcome of an election
by either adding, deleting, or partitioning the candidates,
again for both the constructive and the destructive variant.

In the adding candidates cases, we distinguish between
adding, from a given pool of spoiler candidates, an unlim-
ited number of such candidates (as originally defined by
Bartholdi et al. [2]) and adding a limited number of spoiler
candidates (as defined by Faliszewski et al. [12], to stay in
sync with the problem format of control by deleting candi-
dates and by adding/deleting voters). Constructive/De-
structive Control by Adding (a Limited Number of)
Candidates, is defined as follows: Given two disjoint candi-
date sets, C and D, a list V of votes over C∪D, a designated
candidate c ∈ C, and a nonnegative integer k, can one find
a subset D′ ⊆ D such that ‖D′‖ ≤ k and c is (is not) the
unique winner in (C ∪ D′, V )? The “unlimited” version of
the problem is the same, except that the addition limit k
and the requirement “‖D′‖ ≤ k” are being dropped, so any

subset of the spoiler candidates may be added.
Constructive/Destructive Control by Deleting

Candidates is defined by: Given a set C of candidates,
a list V of votes over C, a designated candidate c ∈ C, and
a nonnegative integer k, can one make c the unique winner
(not a unique winner) of the election resulting from deleting
at most k candidates (other than c in the destructive case)
from C?

Finally, we define the partition-of-candidate cases, again
using either of the two tie-handling models, TP and TE, but
now we define these scenarios with and without a run-off.
The variant with run-off, Constructive/Destructive
Control by Run-Off Partition of Candidates, is anal-
ogous to the partition-of-voters control type: Given a set C
of candidates, a list V of votes over C, and a designated can-
didate c ∈ C, can C be partitioned into C1 and C2 such that
c is (is not) the unique winner of the two-stage election in
which the winners of the two first-stage subelections, (C1, V )
and (C2, V ), who survive the tie-handling rule run against
each other in the final stage? The variant without run-off
is the same, except that the winners of first-stage subelec-
tion (C1, V ) who survive the tie-handling rule run against
all members of C2 in the final round (and not only against
the winners of (C2, V ) surviving the tie-handling rule). As
an example, think of a sports tournament in which certain
teams (such as last year’s champion and this year’s hosting
team) are given an exemption from qualification.

Immunity, Susceptibility, Resistance, Vulnerability.
Let CT be a control type. We say a voting system is

immune to CT if it is impossible for the chair to make the
given candidate the unique winner in the constructive case
(not a unique winner in the destructive case) via exerting
control of type CT. We say a voting system is susceptible
to CT if it is not immune to CT. A voting system that is
susceptible to CT is said to be vulnerable to CT if the control
problem corresponding to CT can be solved in polynomial
time, and is said to be resistant to CT if the control problem
corresponding to CT is NP-hard. These notions are due to
Bartholdi et al. [2] (except that we follow the now more
common approach of Hemaspaandra et al. [16] who define
resistant to mean “susceptible and NP-hard” rather than
“susceptible and NP-complete”).

Fallback voting is susceptible to each of our 22 control
types [10]. It is easy to see that the same holds true for
Bucklin voting. The proof is omitted.

Lemma 2.1. Bucklin voting is susceptible to each of the
22 control types defined in this section.

3. PARTITION OF VOTERS IN BV AND FV
Table 1 shows in boldface our results on the control com-

plexity of fallback voting for three cases of voter partition
(the other results for fallback voting being due to Erdélyi
and Rothe [10]) and of Bucklin voting for all 22 standard
control types. For comparison, this table also shows the re-
sults for approval voting due to Hemaspaandra et al. [15],
and for SP-AV due to Erdélyi et al. [9].

In this section, we solve the three questions left open
in [10]. We start with the proof that fallback voting is
resistant to constructive control by partition of voters in
model TP (see Corollary 3.2). We do so by proving in The-
orem 3.1 that even Bucklin voting is resistant to this type of
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Fallback Voting Bucklin Voting SP-AV Approval
Control by Const. Dest. Const. Dest. Const. Dest. Const. Dest.

Adding Candidates (unlimited) R R R R R R I V
Adding Candidates (limited) R R R R R R I V
Deleting Candidates R R R R R R V I
Partition of Candidates TE: R TE: R TE: R TE: R TE: R TE: R TE: V TE: I

TP: R TP: R TP: R TP: R TP: R TP: R TP: I TP: I
Run-off Partition of Candidates TE: R TE: R TE: R TE: R TE: R TE: R TE: V TE: I

TP: R TP: R TP: R TP: R TP: R TP: R TP: I TP: I
Adding Voters R V R V R V R V
Deleting Voters R V R V R V R V
Partition of Voters TE: R TE: R TE: R TE: R TE: R TE: V TE: R TE: V

TP: R TP: R TP: R TP: S TP: R TP: R TP: R TP: V

Table 1: Overview of results. Key: I = immune, S = susceptible, R = resistant, V = vulnerable, TE = ties
eliminate, and TP = ties promote. Results new to this paper are in boldface.

control. As our reduction works also for the TE tie-handling
model, this strengthens the corresponding result for fallback
voting from [10].

Our reductions in the proof of Theorem 3.1 are from the
NP-complete problem Exact Cover by Three-Sets, which
is defined as follows (see, e.g., [13]):

Exact Cover by Three-Sets (X3C)

Instance: A set B = {b1, b2, . . . , b3m}, m ≥ 1, and a col-
lection S = {S1, S2, . . . , Sn} of subsets Si ⊆ B with
‖Si‖ = 3 for each i, 1 ≤ i ≤ n.

Question: Is there a subcollection S ′ ⊆ S such that each
element of B occurs in exactly one set in S ′?

Theorem 3.1. Bucklin voting is resistant to constructive
control by partition of voters in both model TE and model TP.

Proof. Susceptibility holds by Lemma 2.1. To show NP-
hardness we reduce X3C to our control problems. Let (B,S)
be an X3C instance with B = {b1, b2, . . . , b3m}, m ≥ 1, and
a collection S = {S1, S2, . . . , Sn} of subsets Si ⊆ B with
‖Si‖ = 3 for each i, 1 ≤ i ≤ n. We define the election (C, V ),
where C = B ∪{c, w, x}∪D ∪E ∪F ∪G is the set of candi-
dates with D = {d1, . . . , d3nm}, E = {e1, . . . , e(3m−1)(m+1)},
F = {f1, . . . , f(3m+1)(m−1)}, and G = {g1, . . . , gn(3m−3)},
and where w is the distinguished candidate. Let V consist
of the following 2n + 2m voters:

1. For each i, 1 ≤ i ≤ n, there is one voter of the form:
c Si Gi (G−Gi) F D E (B − Si) w x,

where Gi = {g(i−1)(3m−3)+1, . . . , gi(3m−3)} for each i,
1 ≤ i ≤ n.

2. For each i, 1 ≤ i ≤ n, there is one voter of the form:
Bi Di w G E (D −Di) F (B −Bi) c x,

where, letting ℓj = ‖{Si ∈ S | bj ∈ Si}‖ for each j,
1 ≤ j ≤ 3m, we define Bi = {bj ∈ B | i ≤ n − ℓj} and
Di = {d(i−1)3m+1, . . . , d3im−‖Bi‖}.

3. For each k, 1 ≤ k ≤ m + 1, there is one voter of the
form: x c Ek F (E − Ek) G D B w,
where Ek = {e(3m−1)(k−1)+1, . . . , e(3m−1)k} for each k,
1 ≤ k ≤ m + 1.

4. For each l, 1 ≤ l ≤ m − 1, there is one voter of the
form: Fl c (F − Fl) G D E B w x,
where Fl = {f(3m+1)(l−1)+1, . . . , f(3m+1)l}, for each l,
1 ≤ l ≤ m− 1.

In this election, candidate c is the unique level 2 BV winner
with a level 2 score of n + m + 1.

We claim that S has an exact cover S ′ for B if and only
if w can be made the unique BV winner of the resulting
election by partition of voters (regardless of the tie-handling
model used).

From left to right: Suppose S has an exact cover S ′ for
B. Partition V the following way. Let V1 consist of:

• the m voters of the first group that correspond to the
exact cover (i.e., those m voters of the form
c Si Gi (G−Gi) F D E (B − Si) w x

for which Si ∈ S ′) and

• the m + 1 voters of the third group (i.e., all voters of
the form x c Ek F (E − Ek) G D B w.

Let V2 = V − V1. In subelection (C, V1), candidate x is the
unique level 1 BV winner. In subelection (C, V2), candidate
w is the first candidate who has a strict majority and moves
on to the final round of the election. Thus there are w and
x in the final run-off, which w wins with a strict major-
ity on the first level. Since both subelections, (C,V1) and
(C, V2), have unique BV winners, candidate w can be made
the unique BV winner by partition of voters, regardless of
the tie-handling model used.

From right to left: Suppose that w can be made the unique
BV winner by exerting control by partition of voters (for
concreteness, say in TP). Let (V1, V2) be such a success-
ful partition. Since w wins the resulting two-stage election,
w has to win at least one of the subelections (say, w wins
(C, V1)). If candidate c participates in the final round, he
or she wins the election with a strict majority no later than
on the second level, no matter which other candidates move
forward to the final election. That means that in both sub-
elections, (C, V1) and (C,V2), c must not be a BV winner.
Only in the second voter group candidate w (who has to
be a BV winner in (C, V1)) gets points earlier than on the
second-to-last level. So w has to be a level 3m + 1 BV win-
ner in (C, V1) via votes from the second voter group in V1.
As c scores already on the first two levels in voter groups 1
and 3, only x and the candidates in B can prevent c from
winning in (C, V2). However, since voters from the second
voter group have to be in V1 (as stated above), in subelection
(C, V2) only candidate x can prevent c from moving forward
to the final round. Since x is always placed behind c in all
votes except those votes from the third voter group, x has
to be a level 1 BV winner in (C,V2). In (C,V1) candidate w
gains all the points on exactly the (3m + 1)st level, whereas
the other candidates scoring more than one point up to this
level receive their points on either earlier or later levels, so
no candidate can tie with w on the (3m + 1)st level and w
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is the unique level 3m + 1 BV winner in (C,V1). As both
subelections, (C, V1) and (C, V2), have unique BV winners
other than c, the construction works in model TE as well.

It remains to show that S has an exact cover S ′ for B.
Since w has to win (C, V1) with the votes from the second
voter group, not all voters from the first voter group can be
in V1 (otherwise c would have n points already on the first
level). On the other hand, there can be at most m voters
from the first voter group in V2 because otherwise x would
not be a level 1 BV winner in (C, V2). To ensure that no
candidate in B has the same score as w, namely n points,
and gets these points on an earlier level than w in (C, V1),
there have to be exactly m voters from the first group in V2

and these voters correspond to an exact cover for B. ❑

Since Bucklin voting is a special case of fallback voting,
we can answer one of the questions raised in [10] as follows:

Corollary 3.2. Fallback voting is resistant to construc-
tive control by partition of voters in model TP.

The following construction will be used to handle the de-
structive case of control by partition of voters in model TP
for fallback voting (see Theorem 3.5 below). The construc-
tion starts from an instance of Restricted Hitting Set, a
restricted version of the NP-complete problem Hitting Set
(see, e.g., [13]), which is defined as follows:

Name: Restricted Hitting Set (RHS).
Instance: A set B = {b1, b2, . . . , bm}, a collection S =

{S1, S2, . . . , Sn} of nonempty subsets Si ⊆ B such that
n > m, and a positive integer k with 1 < k < m.

Question: Does S have a hitting set of size at most k, i.e.,
is there a set B′ ⊆ B with ‖B′‖ ≤ k such that for each
i, Si ∩B′ 6= ∅?

Note that by dropping the requirement “n > m > k > 1,”
we obtain the (unrestricted) Hitting Set problem. It is
easy to see that Restricted Hitting Set is NP-complete.

Construction 3.3. Let (B,S , k) be a given instance of
RHS, with a set B = {b1, b2, . . . , bm}, a collection S =
{S1, S2, . . . , Sn} of nonempty subsets Si ⊆ B, and an in-
teger k with 1 < k < m < n. Define election (C, V ),
where C = B ∪ D ∪ E ∪ {c, w} is the candidate set with
D = {d1, . . . , d2(m+1)} and E = {e1, . . . , e2(m−1)} and where

V consists of the following 2n(k + 1) + 4m + 2mk voters:1

1. For each i, 1 ≤ i ≤ n, k+1 voters approve of w Si c.

2. For each j, 1 ≤ j ≤ m, one voter approves of c bj w.

3. For each j, 1 ≤ j ≤ m, k − 1 voters approve of bj .

4. For each p, 1 ≤ p ≤ m + 1, one voter approves of
d2(p−1)+1 d2p w.

5. For each r, 1 ≤ r ≤ 2(m−1), one voter approves of er.

6. n(k + 1) + m− k + 1 voters approve of c.

7. mk + k − 1 voters approve of c w.

8. One voter approves of w c.

1Recall: Disapproved candidates are omitted and approved
candidates are ranked in the votes of a fallback election.

Note that maj (V ) = n(k + 1) + 2m + mk + 1. In elec-
tion (C, V ), only the two candidates c and w reach a strict
majority, w on the third level and c on the second level (see
Table 2). Thus c is the unique level 2 FV winner of election
(C, V ). Lemma 3.4 will be used in the proof of Theorem 3.5.

c dp ∈ D er ∈ E

score1 n(k + 1) + 2m + mk ≤ 1 1
score2 n(k + 1) + 2m + mk + 1 1 1
scorem+2 2n(k + 1) + 2m + mk + 1 1 1

w bj ∈ B

score1 n(k + 1) + 1 k − 1
score2 n(k + 1) + mk + k ≤ k + n(k + 1)
scorem+2 n(k + 1) + 2m + mk + k + 1 ≤ k + n(k + 1)

Table 2: Level i scores in (C, V ) for i ∈ {1, 2, m+2}.

Lemma 3.4. In election (C, V ) from Construction 3.3, for
every partition of V into V1 and V2, candidate c is an FV
winner of (C, V1) or (C, V2).

Proof. For a contradiction, suppose that in both subelec-
tions, (C, V1) and (C, V2), candidate c is not an FV win-
ner. Since score1

(C,V )(c) = ‖V ‖/2, the two subelections sat-
isfy that both ‖V1‖ and ‖V2‖ are even numbers, and that
score1

(C,V1)(c) = ‖V1‖/2 and score1
(C,V2)(c) = ‖V2‖/2. Other-

wise, c would have a strict majority already on the first level
in one of the subelections and would win that subelection.
For each i ∈ {1, 2}, c already on the first level has only one
point less than the strict majority threshold maj (Vi) in sub-
election (C, Vi), and c will get a strict majority in (C, Vi) no
later than on the (m + 2)nd level. Thus, for both i = 1 and
i = 2, there must be candidates whose level m + 2 scores in
(C, Vi) are higher than the level m + 2 score of c in (C, Vi).
Table 2 shows the level m + 2 scores of all candidates in
(C, V ). Only w and some bj ∈ B have a chance to beat c on
that level in (C, Vi), i ∈ {1, 2}.

Suppose that c is defeated in both subelections by two
distinct candidates from B (say, bx defeats c in (C, V1) and
by defeats c in (C,V2)). Thus the following must hold:2

scorem+2
(C,V1)(bx) + scorem+2

(C,V2)(by) ≥ scorem+2
(C,V )(c) + 2

2n(k + 1) + 2k − n(k + 1) ≥ 2n(k + 1) + mk + 2m + 3

2k ≥ n(k + 1) + mk + 2m + 3,

which contradicts our basic assumption m > k > 1. Thus
the only possibility for c to not win any of the two subelec-
tions is that c is defeated in one subelection, say (C, V1), by
a candidate from B, say bx, and in the other subelection,
(C, V2), by candidate w. Then it must hold that:2

scorem+2
(C,V1)(bx) + scorem+2

(C,V2)(w) ≥ scorem+2
(C,V )(c) + 2,

which is equivalent to

2n(k + 1) + 2k + 2m + mk + 1− n(k + 1) − 1

≥ 2n(k + 1) + mk + 2m + 3,

i.e., 2k ≥ n(k + 1) + 3. Since n > 1, this cannot hold, so c
must be an FV winner in one of the subelections. ❑

2For the left-hand sides of the inequalities, note that each
vote occurs in only one of the two subelections. To avoid
double-counting those votes that give points to both candi-
dates, we first sum up the overall number of points each can-
didate scores and then substract the double-counted points.
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Theorem 3.5. Fallback voting is resistant to destructive
control by partition of voters in model TP.

Proof. Susceptibility holds by [10, Lemma 3.4]. To prove
NP-hardness in the TP case, we reduce RHS to our control
problem. Consider the election (C, V ) constructed according
to Construction 3.3 from a given RHS instance (B,S , k),
where B = {b1, . . . , bm} is a set, S = {S1, . . . , Sn} is a
collection of nonempty subsets Si ⊆ B, and k is an integer
with 1 < k < m < n.

We claim that S has a hitting set B′ ⊆ B of size k if and
only if c can be prevented from being the unique FV winner
by partition of voters in model TP.

From left to right: Suppose B′ ⊆ B is a hitting set of size k
for S . Partition V into V1 and V2 as follows. Let V1 consist of
those voters of the second group where bj ∈ B′ and of those
voters of the third group where bj ∈ B′. Let V2 = V −V1. In
(C, V1), no candidate reaches a strict majority (see Table 3),
where maj (V1) = ⌊k2

/2⌋ + 1, and candidates c, w, and each
bj ∈ B′ win the election with an approval score of k.

c w bj ∈ B′ bj 6∈ B′

score1 k 0 k − 1 0
score2 k 0 k 0
score3 k k k 0

Table 3: Level i scores in (C, V1) for i ∈ {1, 2, 3} and
all candidates in B ∪ {c, w}.

c bj ∈ B′

score1 n(k + 1) + 2m− k + mk 0
score2 n(k + 1) + 2m− k + mk + 1 ≤ n(k + 1)
score3 ≥ n(k + 1) + 2m− k + mk + 1 ≤ n(k + 1)

w bj 6∈ B′

score1 n(k + 1) + 1 k − 1
score2 n(k + 1) + mk + k ≤ k + n(k + 1)
score3 n(k + 1) + mk + 2m + 1 ≤ k + n(k + 1)

Table 4: Level i scores in (C, V2) for i ∈ {1, 2, 3} and
all candidates in B ∪ {c, w}.

The level i scores in election (C,V2) for i ∈ {1, 2, 3} and
all candidates in B ∪ {c, w} are shown in Table 4. Since in
(C, V2) no candidate from B wins, the candidates participat-
ing in the final round are B′∪{c, w}. The scores in the final
election (B′ ∪ {c, w}, V ) can be seen in Table 5. Since can-
didates c and w with the same level 2 scores are both level 2
FV winners, candidate c has been prevented from being the
unique FV winner by partition of voters in model TP.

c w

score1 n(k + 1) + 2m + mk n(k + 1) + m + 2
score2 n(k + 1) + 2m + mk + 1 n(k + 1) + 2m + mk + 1

bj ∈ B′

score1 k − 1
score2 ≤ k + n(k + 1)

Table 5: Level i scores in the final-stage election
(B′ ∪ {c, w}, V ) for i ∈ {1, 2}.

From right to left: Suppose candidate c can be prevented
from being a unique FV winner by partition of voters in
model TP. From Lemma 3.4 it follows that candidate c par-
ticipates in the final round. Since c has a strict majority
of approvals, c has to be tied with or lose against another
candidate by a strict majority at some level. Only candidate
w has a strict majority of approvals, so w has to tie or beat

c at some level in the final round. Because of the low scores
of the candidates in D and E we may assume that only can-
didates from B are participating in the final round besides c
and w. Let B′ ⊆ B be the set of candidates who also partic-
ipate in the final round. Let ℓ be the number of sets in S not
hit by B′. As w cannot reach a strict majority of approvals
on the first level, we consider the level 2 scores of c and w:
score2

(B′∪{c,w},V )(c) = n(k+1)+2m+mk+1+ℓ(k+1), and

score2
(B′∪{c,w},V )(w) = n(k + 1) + 2m + mk + k − ‖B′‖+ 1.

Since c has a strict majority already on the second level, w
must tie or beat c on this level, so the following must hold:

score2
(B′∪{c,w},V )(c)− score2

(B′∪{c,w},V )(w) ≤ 0

‖B′‖ − k + ℓ(k + 1) ≤ 0.

This is possible only if ℓ = 0 (i.e., all sets in S are hit by B′),
so ‖B′‖ ≤ k. Thus S has a hitting set of size at most k. ❑

Finally, we turn to destructive control by partition of vot-
ers in model TE. The proof of Theorem 3.6 (which employs
a reduction from Dominating Set) is omitted due to space.

Theorem 3.6. Bucklin voting (and thus fallback voting
as well) is resistant to destructive control by partition of
voters in model TE.

4. CANDIDATE CONTROL IN BV
Theorem 4.1 strengthens the corresponding result for fall-

back voting [10].

Theorem 4.1. Bucklin voting is resistant to each of the
14 standard types of candidate control.

For the hardness proofs showing Theorem 4.1, we again
use the RHS problem defined in Section 3.

In this section, all reductions except one (namely that
used to prove Lemma 4.2) will apply Construction 4.3 below.
We first handle this one exception.

Lemma 4.2. Bucklin voting is resistant to constructive
control by deleting candidates.

Proof. Susceptibility holds by Lemma 2.1. To prove NP-
hardness of our control problem, we give a reduction from
RHS. Let (B,S , k) be a RHS instance with a set B =
{b1, b2, . . . , bm}, a collection S = {S1, S2, . . . , Sn} of nonempty
subsets Si ⊆ B, and a positive integer k satisfying k < m <
n. Let si = n + k − ‖Si‖, 1 ≤ i ≤ n, and s =

Pn
i=1 si. Note

that all si are positive, since m < n.
Define election (C, V ) with candidate set

C = B ∪ C′ ∪ D ∪E ∪ F ∪ {w},
where C′ = {c1, c2, . . . , ck+1}, D = {d1, d2, . . . , ds}, E =
{e1, e2, . . . , en}, F = {f1, . . . , fn+k}, and let w be the dis-
tinguished candidate. Note that the number of candidates
in D is s = n2 + kn −Pn

i=1 ‖Si‖. For each i, 1 ≤ i ≤ n, let
Di = {d

1+
Pi−1

j=1 sj
, . . . , dPi

j=1 sj
}, so ‖Di‖ = si.

Define V to consist of the following 2(n+k+1)+1 voters:

1. For each i, 1 ≤ i ≤ n, there is one voter of the form:
Si Di w C′ E (D −Di) (B − Si) F.

2. For each j, 1 ≤ j ≤ k + 1, there is one voter of the
form: E (C′ − {cj}) cj B D w F.
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3. There are k+1 voters of the form: w F C′ E B D.

4. There are n voters of the form: C′ D F B w E.

5. There is one voter of the form: C′ w D F E B.

There is no unique BV winner in election (C, V ), since w
and the candidates in C′ are level n + k + 1 BV winners.

We claim that S has a hitting set of size k if and only if
w can be made the unique BV winner by deleting at most
k candidates.

From left to right: Suppose S has a hitting set B′ of size k.
Delete the corresponding candidates. Now, w is the unique
level n + k BV winner of the resulting election.

From right to left: Suppose w can be made the unique
BV winner by deleting at most k candidates. Since k + 1
candidates other than w have a strict majority on level n +
k +1 in election (C, V ), after deleting at most k candidates,
there is still at least one candidate other than w with a strict
majority of approvals on level n + k + 1. However, since
w was made the unique BV winner by deleting at most k
candidates, w must be the unique BV winner on a level lower
than or equal to n + k. This is possible only if in all n votes
of the first voter group w moves forward by at least one
position. This, however, is possible only if S has a hitting
set B′ of size k. ❑

Construction 4.3 will be applied to prove the remaining
13 cases of candidate control stated in Theorem 4.1.

Construction 4.3. Let (B,S , k) be a given instance of
RHS, where B = {b1, b2, . . . , bm} is a set, S = {S1, . . . , Sn}
is a collection of nonempty subsets Si ⊆ B such that n >
m, and k < m is a positive integer. (Thus, n > m >
k > 1.) Define election (C, V ), where C = B ∪ {c, d, w}
is the candidate set and where V consists of the following
6n(k + 1) + 4m + 11 voters:

1. 2m + 1 voters: c d B w.

2. 2n + 2k(n − 1) + 3 voters: c w dB.

3. 2n(k + 1) + 5 voters: w c d B.

4. For each i, 1 ≤ i ≤ n, 2(k+1) voters: d Si c w (B − Si).

5. For each j, 1 ≤ j ≤ m, two voters: d bj w c (B − {bj}).
6. 2(k + 1) voters: dw c B.

We now prove Theorem 4.1 (except for the case already
handled separately in Lemma 4.2) via Construction 4.3, mak-
ing use of the following lemma.

Lemma 4.4. Consider the election (C,V ) constructed ac-
cording to Construction 4.3 from a RHS instance (B,S , k).

1. c is the unique level 2 BV winner of ({c, d,w}, V ).

2. If S has a hitting set B′ of size k, then w is the unique
BV winner of election (B′ ∪ {c, d, w}, V ).

3. Let D ⊆ B ∪ {d, w}. If c is not a unique BV winner
of election (D∪{c}, V ), then there exists a set B′ ⊆ B
such that

(a) D = B′ ∪ {d, w},
(b) w is a level 2 BV winner of (B′ ∪ {c, d, w}, V ),

(c) B′ is a hitting set for S of size at most k.

Proof. For the first part, note that there is no level 1 BV
winner in election ({c, d, w}, V ) and we have the following
level 2 scores in this election:

score2
({c,d,w},V )(c) = 6n(k + 1) + 2(m− k) + 9,

score2
({c,d,w},V )(d) = 2n(k + 1) + 4m + 2k + 3,

score2
({c,d,w},V )(w) = 4n(k + 1) + 2m + 10.

Since n > m (which implies n > k), we have:

score2
({c,d,w},V )(c)− score2

({c,d,w},V )(d)

= 4n(k + 1)− (2m + 4k) + 6 > 0,

score2
({c,d,w},V )(c)− score2

({c,d,w},V )(w)

= 2n(k + 1)− (2k + 1) > 0.

Thus, c is the unique level 2 BV winner of ({c, d, w}, V ).
For the second part, suppose that B′ is a hitting set for

S of size k. Then there is no level 1 BV winner in election
(B′ ∪ {c, d, w}, V ), and we have the following level 2 scores:

score2
(B′∪{c,d,w},V )(c) = 4n(k + 1) + 2(m− k) + 9,

score2
(B′∪{c,d,w},V )(d) = 2n(k + 1) + 4m + 2k + 3,

score2
(B′∪{c,d,w},V )(w) = 4n(k + 1) + 2(m− k) + 10,

score2
(B′∪{c,d,w},V )(bj) ≤ 2n(k + 1) + 2 for all bj ∈ B′.

It follows that w is the unique level 2 BV winner of election
(B′ ∪ {c, d, w}, V ).

For the third part, let D ⊆ B ∪ {d, w}. Suppose c is not
a unique BV winner of election (D ∪ {c}, V ).

(3a) Other than c, only w has a strict majority of votes
on the second level and only w can tie or beat c in
(D ∪ {c}, V ). Thus, since c is not a unique BV win-
ner of election (D ∪ {c}, V ), w is clearly in D. In
(D ∪ {c}, V ), candidate w has no level 1 strict ma-
jority, and candidate c has already on level 2 a strict
majority. Thus, w must tie or beat c on level 2. For a
contradiction, suppose d /∈ D. Then

score2
(D∪{c},V )(c) ≥ 4n(k + 1) + 2m + 11;

score2
(D∪{c},V )(w) = 4n(k + 1) + 2m + 10,

which contradicts the observation that w ties or beats
c on level 2. Thus, D = B′ ∪ {d, w}, where B′ ⊆ B.

(3b) This part follows immediately from the proof of (3a).

(3c) Let ℓ be the number of sets in S not hit by B′. We
have that score2

(B′∪{c,d,w},V )(w) = 4n(k + 1) + 10 +

2(m − ‖B′‖) and score2
(B′∪{c,d,w},V )(c) = 2(m − k) +

4n(k+1)+9+2(k+1)ℓ. From part (3b) we know that

score2
(B′∪{c,d,w},V )(w) ≥ score2

(B′∪{c,d,w},V )(c),

so 4n(k + 1) + 10 + 2(m− ‖B′‖) ≥ 2(m− k) + 4n(k +
1) + 9 + 2(k + 1)ℓ. This inequality implies 1 > 1

2
≥

‖B′‖ − k + (k + 1)ℓ. Since T = ‖B′‖ − k + (k + 1)ℓ is
an integer, we have T ≤ 0. If T = 0 then ℓ = 0 and
‖B′‖ = k. Now assume T < 0. If ℓ = 0, B′ is a hitting
set with ‖B′‖ < k, and if ℓ > 0 then (k + 1)ℓ > k,
which contradicts T = ‖B′‖−k+(k+1)ℓ < 0. In each
possible case, we have a hitting set (as ℓ = 0) of size
at most k. ❑
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Proof of Theorem 4.1. In each case, susceptibility holds
by Lemma 2.1. For the four adding-candidates cases, NP-
hardness follows immediately from Lemma 4.4.

NP-hardness for constructive control by deleting candi-
dates has been shown in Lemma 4.2. To show the problem
NP-hard in the destructive case, let (C,V ) be the election
resulting from a RHS instance (B,S , k) according to Con-
struction 4.3, and let c be the distinguished candidate. We
claim that S has a hitting set of size at most k if and only
if c can be prevented from being a unique BV winner by
deleting at most m− k candidates.

From left to right: Suppose S has a hitting set B′ of size k.
Delete the m− k candidates B −B′. Now, both candidates
c and w have a strict majority on level 2, but

score2
({c,d,w}∪B′,V )(c) = 4n(k + 1) + 2(m− k) + 9,

score2
({c,d,w}∪B′,V )(w) = 4n(k + 1) + 2(m− k) + 10,

so w is the unique level 2 BV winner of this election.
From right to left: Suppose that c can be prevented from

being a unique BV winner by deleting at most m− k candi-
dates. Let D′ ⊆ B ∪ {d, w} be the set of deleted candidates
(so c /∈ D′) and D = (C −D′)−{c}. It follows immediately
from Lemma 4.4 that D = B′∪{d, w}, where B′ is a hitting
set for S of size at most k.

To show that Bucklin voting is resistant to constructive
(or destructive) control by partition/run-off partition of can-
didates in TE and TP, map the instance (B,S , k) to the in-
stance ((C,V ), w) (or ((C,V ), c)), where (C,V ) is the elec-
tion from Construction 4.3. NP-hardness now follows from
Lemma 4.4; the detailed argument is omitted due to space
limitations (note that, in particular, if S has a hitting set
of size k, partitioning C = (C1, C2) into C1 = B′ ∪ {c, d, w}
and C2 = C − C1 will be successful). ❑ Theorem 4.1

5. ADDING/DELETING VOTERS IN BV
Finally, we turn to control by adding voters and by delet-

ing voters for Bucklin voting. As with fallback voting [10],
we have resistance in the constructive cases and vulnerabil-
ity in the destructive cases. Since Bucklin voting is a special
case of fallback voting, the two resistance results in Theo-
rem 5.1 (which both are shown via a reduction from X3C)
strengthen the corresponding results for fallback voting [10]
and the two vulnerability results immediately follow from
the corresponding results for fallback voting [10]. The proof
of Theorem 5.1 is omitted due to space limitations.

Theorem 5.1. Bucklin voting is resistant to constructive
control by adding voters and by deleting voters and is vulner-
able to destructive control by adding voters and by deleting
voters.

6. CONCLUSIONS
Solving the three open questions of Erdélyi and Rothe [10],

we have shown that fallback voting is fully resistant to con-
trol by partition of voters. Thus, among natural voting
systems with a polynomial-time winner problem, fallback
voting has the most proven resistances to control. SP-AV
is known to have an almost as broad control resistance [9];
however, fallback voting is arguably more natural than SP-
AV. We have also studied the control complexity of Bucklin
voting, thus improving the corresponding resistance results

for fallback voting. One case of control by partition of voters
(namely, the destructive case in model TP) remains open for
Bucklin voting. It would also be interesting and challenging
to complement our worst-case hardness results by theoreti-
cal and empirical typical-case studies of these problems.
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