
Computing Time-Dependent Policies for Patrolling Games
with Mobile Targets

Branislav Bošanský, Viliam Lisý, Michal Jakob, Michal Pěchouček
Agent Technology Center, Dept. of Cybernetics, FEE, Czech Technical University

Technická 2, 16627 Prague 6, Czech Republic
{bosansky, lisy, jakob, pechoucek}@agents.felk.cvut.cz

ABSTRACT
We study how a mobile defender should patrol an area to
protect multiple valuable targets from being attacked by an
attacker. In contrast to existing approaches, which assume
stationary targets, we allow the targets to move through the
area according to an a priori known, deterministic move-
ment schedules. We represent the patrol area by a graph
of arbitrary topology and do not put any restrictions on
the movement schedules. We assume the attacker can ob-
serve the defender and has full knowledge of the strategy the
defender employs. We construct a game-theoretic formula-
tion and seek defender’s optimal randomized strategy in a
Stackelberg equilibrium of the game. We formulate the com-
putation of the strategy as a mathematical program whose
solution corresponds to an optimal time-dependent Markov
policy for the defender. We also consider a simplified formu-
lation allowing only stationary defender’s policies which are
generally less effective but are computationally significantly
cheaper to obtain. We provide experimental evaluation ex-
amining this trade-off on a set of test problems covering
various topologies of the patrol area and various movement
schedules of the targets.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems

General Terms
Algorithms, Economics, Experimentation

Keywords
patrolling game, Stackelberg equilibrium, mobile targets,
game theory, mathematical programming

1. INTRODUCTION
Game theoretical models have been recently used for mod-

eling scenarios, in which a group of agents (termed defenders
or patrollers) need to protect an area, or prevent an attack
on high-value targets. Game theory is a suitable frame-
work for such models as the solutions it provides are optimal

Cite as: Computing Time-Dependent Policies for Patrolling Games with
Mobile Targets, Branislav Bošanský, Viliam Lisý, Michal Jakob, Michal
Pěchouček, Proc. of 10th Int. Conf. on Autonomous Agents
and Multiagent Systems (AAMAS 2011), Tumer, Yolum, Sonen-
berg and Stone (eds.), May, 2–6, 2011, Taipei, Taiwan, pp. 989-996.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

strategies for the defenders given the opponents’ informa-
tion, capabilities and intentions. Moreover, game-theoretic
models have already been successfully applied in real-world
security scenarios [11, 10].

Existing approaches address the problem of protecting the
targets either by optimizing static allocation of available re-
sources to the targets in order to discover the attacker [8,
7], or by computing the optimal movement strategies for a
mobile patroller(s) aiming to interrupt a durative attack on
a target in a fully stationary environment [1, 3]. In this
paper, we study a problem based on the second category,
but – in contrast to the previous work – we assume that the
high-value targets can change their positions in time.

There are a number of real-world scenarios where the com-
putation of optimal movement strategies for patrolling areas
with mobile targets is needed. A typical example from the
maritime domain concerns a protection of vessels transiting
waters with high pirate activity. Another example concerns
unmanned aerial vehicle-based surveillance protecting mov-
ing ground targets.

We model the confrontation between the defender (pa-
troller) and the attacker as a two-player non-zero-sum game
played on a general directed graph. The movement schedules
of the targets are fixed a priori and known to both players.
We seek the optimum patrolling strategy as a Strong Stack-
elberg Equilibirum of the game [12]. This reflects the worst
case often present in real-world situations where the attacker
is able to observe the defender and its current position, and
exploit this information for planning the attack.

Introduction of the target movement requires us to ex-
tend the existing work in several important ways. The most
fundamental is the ability to use time-dependent patrolling
policies (i.e. policy changing in time), in contrast to sta-
tionary policies (i.e. policy not changing in time), which
are only used and sufficient for the case of stationary tar-
gets. The introduction of time-dependent policies necessi-
tates the extension of the respective game formulation and,
more importantly, novel, formulation of non-linear mathe-
matical programs used for computing solutions of such a
game.

We start in the next section by reviewing the previous
work on patrolling and security games. In Section 3, we
formally define the patrolling game with mobile targets and
the solution we seek. The main algorithmic technique we
use to solve the game is non-linear optimization; hence, in
the sections following, we formulate mathematical programs
(MP) that define game solutions for the case with stationary
(Section 4) and mobile (Section 5) targets. In Section 6, we

989

discuss how these highly-complex mathematical programs
can be solved using existing solvers and we discuss some
solver-independent optimizations. Finally, Section 7 evalu-
ates the quality of the solutions produced and the scalability
of our approach on a series of experiments.

2. RELATED WORK
Two main classes of game-theoretic models are dealing

with protecting targets or infrastructure from attacks of an
adversary: security games and patrolling games. The main
common features of the games are (1) the presence of two
players – the defender and the attacker; (2) a very limited
amount of resources available for the task – the defender
usually cannot guarantee preventing all the attacks, but it
optimizes a utility based on the probability of a successful
attack; (3) both classes seek the solution mostly in the form
of a Stackelberg equilibrium – they seek a strategy that is
efficient even if it is known to the attacker.

Security Games. In security games [8] the defender allo-
cates resources to protect the targets according to a random-
ized strategy. The attacker can observe the strategy of the
defender, but cannot observe the current state of the game –
i.e. cannot react on the current allocation. The earlier works
focused on finding an allocation that minimizes the chance
for attacking an unprotected target on large domains [10].
Later works extended the main task with a requirement that
the allocation needs to satisfy a set of constraints [11].

Patrolling Games. In the patrolling games the defender
moves through an area according to a strategy, while the at-
tacker can observe the current position as well as the strat-
egy of the defender and in the right moment starts attacking
some of the targets. The attack takes some time and the goal
of the defender is to interrupt this attack.

In [1], the problem of patrolling a perimeter is analyzed.
The patrolled environment is modeled as a circle graph,
where each node is a potential target. The authors seek
the defender’s strategy both as a simple Markovian policy
and as a policy with an additional internal state. The im-
plications of limiting the attacker’s knowledge on the same
game model are analyzed in [2].

The methods for perimeter patrol cannot be directly ap-
plied for patrolling environments with more general topology
hence the problem of patrolling on general graphs was stud-
ied in a sequence of works by Basilico et al. In [3] the authors
define the patrolling problem on an arbitrary graph and pro-
vide a general model (termed BGA model) for finding the
optimal strategy for the defender. The strategy is defined as
a higher-order Markovian policy, though for computational
reasons, only experiments with a first-order Markovian pol-
icy were performed. Further work in this line of research
includes the analysis of the impact of the attacker’s knowl-
edge about the defender’s policy on a general graph [4] and
an extension of the model for multiple patrollers [5].

In this paper, we adopt the BGA model and further im-
prove it in order to find optimal strategies for protecting
mobile targets. We seek the strategies in the form of the
first-order Markovian policy, which has been shown to work
well for similar problems [1, 3].

3. PROBLEM DEFINITION
We model the problem of protecting mobile targets as a

two-player game between a defender and an attacker.

Environment. The game is played on a directed graph
G = (V,E), where the targets Q and the defender can be
positioned in any of the vertices. We assume the set E is
represented as an adjacency matrix (ei,j), where ei,j = 1
if there exists an edge from vertex i to j, {i, j} ∈ E, and
ei,j = 0 otherwise. The game is played in turns and we
denote the set of turns T , indexed t = 1 . . . |T |. In each
turn the defender and the targets can move to another ver-
tex. The defender can move only to an adjacent vertex.
Contrary, the movement of the targets in the graph can be
defined by an arbitrary function f : Q × T 7→ V . In some
scenarios it can be desirable to repeat the game each |T |
turns (e.g. targets can move in cycles), hence although the
actual number of the turns of the game is higher, we assume
that the function f contains operator modulo |T |. We refer
to this variant as a repeated version of the patrolling game.
The movement schedule of the targets is a fixed property
of the environment and cannot be influenced by any of the
players. We further assume that a successful attack on a
target takes d turns. The full information about the graph
structure (G), the targets’ actual positions and movement
schedules (f) is known to both players.

Strategies. The goal of the defender is to move on the
graph and to intercept an attack of the attacker, i.e. to come
to a node where the attack is taking place. In this paper,
we search for a strategy of the defender in the form of first-
order Markovian policy. The policy defines for each i, j ∈ V
and t ∈ T a value αti,j representing the probability that the
defender present in vertex i in turn t moves to vertex j. We
denote the set of all Markovian policies for the defender Θd.

The set of possible actions of the attacker Aa = {noop,
attack(s,t,q)} represents either the action noop (i.e. no at-
tack), or starting the attack on a target q when the defender
is in vertex s and it is the t-th turn of the game. If the at-
tacker chooses one of the attack actions, it cannot perform
any other actions and for next d ∈ N turns it can be captured
in the vertices {f(q, t+ 1), . . . , f(q, t+ d)}. We assume that
the attacker has a full knowledge of the stochastic strategy
executed by the defender. This simulates the worst case
attacker observing the defender for a long time before the
attack or obtaining a reliable intelligence. The attacker’s
strategy is a response function (AR : Θd 7→ Aa), which se-
lects an action for any of the strategies of the defender. We
denote the set of all attacker’s strategies Θa.

Utilities. Finally, let us define the utility values for both
players for each combination of their strategies. In general,
there is a limited number of outcomes of the game. The at-
tacker can either be captured, or it can successfully perform
an attack on a target q ∈ Q. Following the BGA Model we
define X0 ∈ R; X0 ≥ 0 to be the reward for the defender
when it captures the attacker and Xq ∈ R; Xq ≤ 0 to be the
loss of the defender when the attacker successfully performs
an attack on a target q ∈ Q. Similarly, we define the loss
and reward Y0 ∈ R; Y0 ≤ 0, and Yq ∈ R; Yq ≥ 0 for the
attacker being captured and successfully attacking q ∈ Q,
respectively.

The strategy of the defender is stochastic; hence the util-
ity value assigned to a combination of two strategies is the
expected utility. The values X0 and Xq (or Y0, Yq respec-
tively) are weighted by the probability of capturing the at-
tacker (πqσ) in case that the defender plays (σ ∈ Θd) and
the attacker plays AR(σ) ∈ Θa, which decides to attack the
target q:

990

Ud, Ua : Θd ×Θa 7→ R
Ud(σ,AR(σ)) = X0π

q
σ +Xq (1− πqσ)

Ua(σ,AR(σ)) = Y0π
q
σ + Yq (1− πqσ)

Ua(σ,noop) = Ud(σ,noop) = 0

(1)

Solution The defined problem corresponds to Stackelberg
(or leader-follower) games and we search for a solution of the
game in the form of a Strong Stackelberg Equilibrium (e.g.
in [12]). The formal definition of this notion follows.

Definition 3.1. A pair of strategies 〈σ,AR〉 forms a Strong
Stackelberg Equilibrium (SSE) if they satisfy the following:

1. The leader (defender) plays a best-response:
Ud(σ,AR(σ)) ≥ Ud(σ′, AR(σ′)), ∀σ′ ∈ Θd

2. The follower (attacker) plays a best-response:
Ua(σ,AR(σ)) ≥ Ua(σ,AR′(σ)), ∀σ ∈ Θd, AR

′ ∈ Θa

3. The follower breaks ties optimally for the leader:
Ud(σ,AR(σ)) ≥ Ud(σ,AR′(σ))

∀σ and ∀AR′ ∈ Θa satisfying 2.

SSE is a very suitable equilibrium for the security appli-
cations in the real world. First of all, the strategy in SSE
is robust against the worst case opponents that have full
knowledge of the strategy the defender is executing. More-
over, in many security games, the defender’s solution for
SSE is also a strategy in the NE of the game [12]. Hence, it
is efficient also in the case that the attacker did not observe
the defenders strategy and chose its action rationally only
based on the definition of the game.

A solution of the game defined in this section can be de-
terministic, where either the defender can always protect the
targets, or the attacker can always perform a successful at-
tack. In this paper we are interested in non-deterministic so-
lutions, where the defender is forced to randomize the move-
ment to maximize the utility based on a chance of capturing
the attacker.

4. PATROLLING STATIONARY TARGETS
We have already mentioned in Section 2 that a similar

game with stationary targets has been already studied in
literature. The approach taken in [3] is to formulate the
game as a set of mathematical programs (MPs) and solve it
using an existing mathematical optimization software.

In the first part of this section we describe the formu-
lation of the mathematical program presented in [3] and
termed BGA Model. Later, we present our improvement
of the formulation and in the next section we use this im-
proved version of the program as a basis for MPs describing
the patrolling game with mobile targets.

4.1 Stationary Game Formulation
The original BGA Model was designed for games with

stationary targets, which is a subclass of the game consid-
ered in this paper. In order to define the stationary games
in our framework, we use several simplifications. Firstly,
we assume that the policy is not changing each turn – i.e.
α1
i,j = α2

i,j = . . . = αTi,j , hence we can omit the upper index
t. Secondly, we assume that the function f(q, t) for target
q ∈ Q is a constant (the target is not moving in turns) hence
we can directly use index q as the representation of the ver-
tex where the target is placed. Finally, we omit the time
index from attacker’s actions attack(s,q).

4.2 BGA Model
The BGA Model uses bilinear MPs for computing the pol-

icy for the stationary version of our game. Besides the vari-
ables for the policy, the programs use helper variables γh,qi,j
representing the probability that the defender would reach
vertex j ∈ V beginning in vertex i ∈ V in exactly h ∈ N
steps while not visiting target q ∈ Q.

As described in [3], the algorithm that uses the BGA
Model has two main stages. We omit the mathematical pro-
gram representing the first stage as it can be easily derived
from program in the second stage. In the first stage the al-
gorithm checks whether there exist a defender’s strategy, for
which the action wait would be the best response (i.e. the at-
tacker cannot gain anything by attacking any target). If such
a strategy exists, the resulting policy σ = (αi,j ; i, j ∈ V)
represents the optimal patrolling strategy for the defender.
In the other case, the algorithm using the BGA Model en-
ters the second stage where a sequence of bilinear programs
is solved.

The goal of the BGA Model is to find a policy that is
efficient even against the worst attacker’s attack which cor-
responds to the definition of the Strong Stackelberg Equi-
librium (see Definition 3.1). Therefore a mathematical pro-
gram (MP) is constructed and ran for each attacker’s action
attack(s,q) as the best response. This reflects the motiva-
tion of the SSE – the attacker observes the defender and
waits until the defender is located in the most convenient
place for the attacker (s), and then starts the attack appro-
priate target (q). The main results of the program are the
value of the game for the defender (i.e., maximized function
value) and defender’s strategy σ = (αi,j ; i, j ∈ V). Finally,
as the overall solution of the patrolling problem we select
those values of αi,j that were found as the solution of the
MP with the highest value of the objective function. The
algorithm expressing the use of the MPs as sub-methods for
finding a SSE is depicted in Figure 1. The formulation of
the mathematical program follows.

max
σ

Xq
X

j∈Vrq
γd,qs,j +X0

0@1−
X

j∈Vrq
γd,qs,j

1A (2a)

αi,j ≥ 0 ∀i, j ∈ V (2b)X
j∈V

αi,j = 1 ∀i ∈ V (2c)

αi,j ≤ ei,j ∀i, j ∈ V (2d)

γ1,g
i,j = αi,j ∀i, j ∈ V ; g ∈ Q, j 6= g (2e)

γh,gi,j =
X

x∈Vrg

“
γh−1,g
i,x αx,j

”
∀i, j ∈ V ; g ∈ Q, j 6= g; ∀h ∈ {2, . . . , d}

(2f)

Yq
X

j∈Vrq
γd,qs,j + Y0

0@1−
X

j∈Vrq
γd,qs,j

1A ≥
≥ Yw

X
j∈Vrg

γd,gz,j + Y0

0@1−
X

j∈Vrg
γd,gz,j

1A
∀z ∈ V ; g ∈ Q

(2g)

The first two constraints (2b),(2c) ensure that the prob-
abilities αi,j represent a correct defender’s policy σ ; (2d)
ensure that the defender moves only between two adjacent
vertices; constraints (2e)-(2f) recursively define the helper

991

Input: G = (V,E) – graph; Q – targets
Output: σ – defender’s strategy, v – strategy value
1: for (s, q) ∈ V ×Q do
2: (v, σ) = MP (s, q)
3: if v > vmax then
4: vmax := v; σmax := σ
5: end if
6: end for

7: return (σmax, vmax)

Figure 1: The algorithm for computing the de-
fender’s policy for the game.

variables γh,gi,j as the probability of not reaching target g.
Finally, constraints (2g) ensure that no other action at-
tack(z,w) gives the attacker a higher expected utility value
than the action attack(s,q) for which the program was con-
structed. Note, that by modifying these constraints in the
way that expected utility value of the action attack(s,q) can-
not be larger than 0 we obtain the program for the first stage
of the algorithm.

The objective function (2a) maximizes the defender’s ex-

pected utility Ud. The term
“

1−Pj∈Vrq γ
d,q
s,j

”
expresses

the probability πqσ that the defender (placed in the vertex s)
would catch the attacker (attacking the target q).

The BGA Model requires that we construct up to |V |×|Q|
bilinear programs as defined above. The size of the program
is quite large as it consists of O(|V |3 · d) constraints and
variables. Moreover, we aim to extend the program to be
applicable also for the game with moving targets. Adding
the dimension of time to the variables would further increase
the size of the program. Therefore we first introduce a re-
formulation of the BGA Model that lowers the number of
variables and constraints in the program.

4.3 Improved BGA Model
Let us now present our novel improvement of the BGA

Model, which we later use as the basis for our solution for
the problem with mobile targets. All following algorithms
have similar two-stage structure as described in Section 4.2.
However, for explanatory reasons we further focus only on
the second stage and assume that the program solved in the
first stage is not feasible. As shown in the previous section
the program for the second stage can be easily derived from
the presented programs for the second stage.

In order to reduce the number of constraints and variables
we remove the variables γh,gi,j from the model and we define

an alternative set of variables δhi,q, which represent the prob-

ability that the defender positioned in node i reaches1 the
target q in exactly h ∈ N steps. In order to make the for-
mulas even more readable, we further define variables ωi,q
representing the probability that the defender positioned in
vertex i visits the target q in at most d steps.

Now, we can modify the constraints (2e) - (2g) and op-
timization function 2a as follows. Again, we formulate one
bilinear program for each action attack(s,q) for all s ∈ V ,
q ∈ Q being the best response of the attacker. The main
results of the program are again the value of the game for

1Note that the variable δ represent the probability that the
defender will visit specific target in comparison to the origi-
nal probability γ that the defender will not visit the target.

the defender (i.e., maximized function value) and defender’s
strategy σ = (αi,j ; i, j ∈ V).

max
σ

Xq (1− ωs,q) +X0ωs,q (3a)

constraints (2b) - (2d)

δ1i,j = αi,j ∀i, j ∈ V (3b)

δhi,j =
X

x∈Vrj

“
αi,xδ

h−1
x,j

”
∀i, j ∈ V ;h ∈ {2, . . . , d} (3c)

ωi,q =
dX
h=1

δhi,q ∀i ∈ V ; g ∈ Q (3d)

Yq (1− ωs,q) + Y0ωs,q ≥ Yg
`
1− ωs′,q′

´
+ Y0ωs′,q′

∀s′ ∈ V ; q′ ∈ Q (3e)

The objective function (3a) again maximizes expected de-
fender’s utility function Ud, where the probability of catch-
ing the attacker in target q by the defender starting in ver-
tex s is πqσ = ωs,q. The next two constraints (3b)-(3c) define
the probability δhi,j using the policy σ = (αi,j ; i, j ∈ V). If
h = 1, then it is exactly the probability connecting the cur-
rent position of the defender i and the vertex j of the target
in the policy σ. For higher h, it is the probability of moving
from the current position to some node x (different from the
target vertex j) multiplied with the probability of visiting
the target vertex j from the node x in exactly h − 1 steps.
The constraints (3d) defines a helper variable ω, and con-
straints (3e) again ensure that no other action attack(z,w)
gives the attacker a higher expected utility value than the
action attack(s,q) for which the program was constructed.

Note, that the reformulation of the probability lowers the
size of the program in terms of variables and constraints
to O(|V |2 · d). The solution of the program 3 is the same
than in the original program 2. The probability ωs,q that
the defender starting in s does visit the target in at most d
time steps is the complement of the probability γh,qi,j of not
visiting the target q in the original formulation.

5. PATROLLING MOBILE TARGETS
The previous problem formulations assumed that the tar-

gets, which the defender tries to periodically visit, statically
reside in some vertices of the graph. Further, we assume
that these targets change their positions over time based on
function f : Q × T 7→ V as defined in Section 3. Note that
q ∈ Q cannot be used to identify a node anymore. Fur-
ther we show that the MP formulation from Section 4.3 can
be modified to compute policies even in this dynamic case.
There are two main extensions in comparison to the model
presented in the previous section: (1) we add the time di-
mension to the policy and (2) we add the time dimension to
the helper variables in the program.

The MP we design in this section searches for an optimal
time-dependent policy σ = (αti,j ; i, j ∈ V ; t ∈ T) for the de-
fender. The reason for using time-dependent policy is that
the defender can have substantially different strategy in the
same node in different time steps because of the changed po-
sitions of the targets. The main helper variable after adding
the time dimension has the form δh,ts,q , with the meaning of
the probability that the defender positioned in the vertex
s ∈ V reaches the target q ∈ Q in exactly h ∈ N steps while
starting in the t-th (t ∈ T) turn of the game.

As in the previous model, we construct one MP for each
attacker’s action and choose the strategy from the MP with

992

the maximal value for the defender. Compared to the sta-
tionary case, the attacker’s action attack(s,t,q) depends also
on time – i.e. the attacker waits for the “right moment”
uniquely identified by the position of the defender s ∈ V
and turn of the game t ∈ T . Then it starts attack on target
q ∈ Q. The algorithm of using MPs is similar to the algo-
rithm in Figure 1 and the difference is only in adding the
index of the turn of the game.

Each call of the MP in the algorithm optimizes the de-
fender’s policy σ = (αti,j ; i, j ∈ V ; t ∈ T) under the assump-
tion that attack(s, q, t) is the optimal action of the attacker.
The formulation of the MP for single configuration (s, q, t)
is following.

max
σ

Xq
`
1− ωts,q

´
+X0ω

t
s,q (4a)

αli,j ≥ 0 ∀i, j ∈ V ; l ∈ T (4b)X
j∈V

αli,j = 1 ∀i ∈ V ; l ∈ T (4c)

αli,j ≤ ei,j ∀i, j ∈ V ; l ∈ T (4d)

δ1,li,g = αli,f(g,l+1) ∀i ∈ V ; g ∈ G; l ∈ T (4e)

δh,li,g =
X

x∈Vrf(g,l+1)

“
αli,xδ

h−1,((l+1)mod|T |)
x,g

”
∀i ∈ V ; g ∈ Q; h ∈ {2, . . . , d}; l ∈ T

(4f)

ωli,g =
dX
h=1

δh,li,g ∀i ∈ V ; g ∈ Q; l ∈ T (4g)

Yq
`
1− ωts,q

´
+ Y0ω

t
s,q ≥ Yq′

“
1− ωt′s′,q′

”
+ Y0ω

t′
s′,q′

∀s′ ∈ V ; q′ ∈ Q; t′ ∈ T
(4h)

The constraints are very similar to improved stationary
program 3. Constraints (4b) and (4d) again ensure that σ is
a correct policy, and constraints (4e)-(4f) define the proba-

bility δh,li,g using the policy σ. The difference is in expressing
the vertex of the target using the function f . If h = 1, δ is
equal to probability connecting the current position of the
defender i and the position of the target in the next turn
f(g, l + 1). For higher h, it is the probability is calculated
similarly to the stationary case, but the excluding vertex is
the vertex, where target q is in the next turn l+1. The con-
straints (4g) define variable ω and constraints (4h) ensure
that no alternative attacker strategy can provide higher at-
tacker’s utility Ua. The optimized function (4a) is also very
similar to the stationary case and it express the expected
utility Ud of the patroller’s policy σ for a fixed combination
of s ∈ V, q ∈ Q and t ∈ T .

6. SOLVING THE PROGRAM
If some solver can optimally solve the programs defined

above, we would have the optimal strategies for the pa-
trolling problem. However, solving this program is hard.
The number of program constraints and variables in the im-
proved stationary formulation isO(|V |2·d) andO(|V |2·|T |·d)
in the time-dependent case. Most of the constraints are bi-
linear; the remaining constraints as well as the optimized
function are linear.

6.1 Alternative Program Formulations
The formulation of the programs in previous sections was

chosen with the readability as the main criterion. However,
the exact form of the formulation can influence the compu-
tational complexity of solving the problem optimally as well

as the potential for approximation. A different formulation
of the problem can be constructed if some of the program
variables are not represented explicitly in the program.

Bilinear MP The presented form of the programs ex-
presses the optimization of a linear function over a region
defined by (at worst) bilinear constraints. The size of the
program is polynomial in the relevant problem parameters.
However, solving a bilinear program is in general NP-hard
[6]. Non-convexity of the feasible region that is defined by
the bilinear equalities indicates that this particular problem
is most likely not an exception. On the other hand, these
programs are widely studied and many approximation algo-
rithms are available.

Polynomial MP Some of the variables in the presented
programs do not have to be represented explicitly in an ac-
tual program formulation. For example, the variables ω in
programs (3) and (4) can be clearly removed and all its oc-
currences can be substituted by the corresponding sum of
variables δ. This modification still leads to a bilinear pro-
gram. However, if we also remove the variables δ in the same
way, we are in a different class of MPs. All the bilinear con-
straints are removed and only the linear constraints remain.
However, the complexity of the optimized function increases
dramatically. Instead of linear, it becomes polynomial with
maximal degree d. As mentioned in [9], even unconstrained
optimization of 4-degre polynomials is NP-hard, hence this
formulation is also not likely to produce optimal solution for
larger problems in reasonable time.

6.2 Approximate MP Solutions
The discussion above indicates that finding reasonably

fast solvers that would solve the presented MPs optimally is
unlikely. However, this section shows that even approxima-
tion algorithms that do not guarantee finding the optimal
result are usable for finding a good solution of the game. In
order to do that, we use the most general case of finding the
time-dependent policy for mobile targets. The same results
hold also for the simpler cases. Let MP ∗(s, q, t) be the opti-
mal solution for the program for the setting and MP (s, q, t)
be a feasible approximate solution. First of all, we show that
any feasible solution of the program provides a strategy with
a guaranteed quality.

Lemma 6.1. Let (v, σ) = MP (s, q, t) be any feasible so-
lution of program (4) for any (s, q, t) ∈ V × Q × T . If the
attacker plays rationally and the defender uses the strategy
σ, it is guaranteed to achieve the utility v.

Proof. For any s, q, t ∈ V ×Q×T and a feasible strategy
σ, the constraints (4g) ensure that the best rational response
of the attacker to strategy α is to use the strategy s, q, t.
Any other strategy leads to at most the same utility for the
attacker. Moreover, according to Definition 3.1, the attacker
chooses among its alternative best responses the one that is
best for the defender.

We continue by showing the relation between the quality
of the solution for individual mathematical programs (4) and
the quality of the solution produced by Algorithm 1.

Lemma 6.2. Let v∗ be the value of the optimal strategy of
the defender. Assume that each of the programs for different
settings of s, q, t ∈ V ×Q× T is approximately solved, such
that the difference between the defender’s utility from the

993

produced policy and the optimal policy for the setting is lower
than ε. Then the difference between the utility of the policy
produced by Algorithm 1 and v∗ is lower than ε.

Proof. Assume that Algorithm 1 selects the result of
MP (s, q, t) to be the output of the whole process. There
are two cases we need to consider.

1. (v∗, σ∗) = MP ∗(s, q, t):
The difference between the produced solution and the
optimum is less than ε from its definition.

2. (v∗, σ∗) = MP ∗(s′, q′, t′) and (s, q, t) 6= (s′, q′, t′):
Let (v, σ) = MP (s, q, t) and (v′, σ′) = MP (s′, q′, t′).
If Algorithm 1 selected σ then v ≥ v′. v′ ≥ v∗− ε from
the definition of ε. Hence v ≥ v∗ − ε, which means
that the produced solution is at most ε far from the
optimum.

7. EXPERIMENTAL EVALUATION
In this section, we experimentally evaluate the proposed

approach. The focus of the paper is on validation of the novel
patrolling game model, hence the focus of the experiments
is on the quality of the solutions produced by the proposed
non-linear program. As discussed in Section 6, solving the
program is NP-hard, therefore we also describe several pre-
liminary optimization techniques (more advanced improve-
ments are planned for future work) that help the solver to
converge to reasonable solutions in a reasonable time.

7.1 Experiment Settings
We used the following settings for the experiments: (1) we

used two types of graphs – grid and grid with holes; (2) two
targets were present in each setting and we used three dif-
ferent movement schedules for the targets; (3) we simplified
the values of the targets and assume that all targets have
the same value; (4) we compared the quality of produced
time-dependent policies to an approximation calculated as
a stationary policy.

7.1.1 Graphs
We conducted the evaluation on two types of graphs in-

spired by a typical application domains: (1) grid with holes
(see Figure 2(a) for an example) which may e.g. represent
a road network, (2) full grid (see Figure 2(b) for an exam-
ple) that corresponds to discretization of open space, such as
ocean surface. In both figures, black nodes represent initial
positions of targets and dashed arrows show motion patterns
for the targets. In all experiments, targets move once per
two defender’s moves; this reflects that the defender is faster
than targets.

7.1.2 Targets
As adding more targets did not show any interesting changes

in the results, we limit the presentation to experiments with
two targets only. Three types of target movement with
different implications on the distance between the targets
were employed: (1) alternating where the distance between
the targets is decreasing and increasing in time (see Fig-
ures 2(a),2(b)); (2) equidistant is defined only for grid graphs
and involves simultaneous movement of targets along the
top-most and bottom-most edges of the graph from left to
right and back. In Figure 2(b), the target at the bottom

(a) (b)

Figure 2: The schema of the experimental scenarios.
Black nodes denote target’s initial poositions and
arrows depict target’s movement.

starts from the left side and moves in the same way as the
one on top; (3) stationary where targets remain in their
initial positions. Finally, in all experiments we adopt the
repeated version of the game – i.e. the targets are moving
in cycles and the game repeats each |T | turns.

7.1.3 Program for Time-Dependant Policies
For explanatory reasons we simplified the values of the

targets, that neither the attacker nor the defender has any
preference among the targets – the attacker tries to max-
imize the probability that it will successfully attack some
target and the defender aims to minimize this probability.
This corresponds to an instance of the defined patrolling
problem where Xq = −Yq = −1; ∀q ∈ Q and Y0 = X0 = 0.
As we want to evaluate the probability of catching the at-
tacker we assume that the attacker has to attack some target
(i.e, we disallow noop action for the attacker).

Using above simplification the game became a zero-sum
variant of the original problem, however, it does not sub-
stantially change the characteristics of the program, nor it is
significantly computationally easier to solve compared to the
original formulation due to the non-linearity in constraints
of the MPs (δ variables). The only change is the simplifica-
tion of the objective function and utility-based constraints,
which enable us to formulate the MP as a single min-max
optimization instead of a sequence of optimizations of MPs
for each initial point, turn, and target. We are searching for
σ that optimizes:

max
σ

min
s,q,t

`
ωts,q

´
(5)

s.t. (4b)-(4g)

Constraints (4h) are substituted by the maximization of
the objective function and can be removed. We further refer
to the value of the objective function (5) as the reached value
of the game.

7.1.4 Program for Stationary Policy
In order to evaluate the quality of the solutions based

on a time-dependent policy we need to obtain a stationary
policy, which still can be efficient even with moving targets
in some cases (e.g. if the movement is limited). We compare
the performance of these two formulations in terms of the
reached game value and computation time in the game with
moving targets.

In order to obtain a stationary policy, we have slightly
modified the MP (5) – we have removed the time index from
all α variables in all constraints. All δ and ω variables keep
the time index in order to take target’s movement into ac-
count. This modification is especially useful if the variables
δ and ω are not explicitly represented in the implementation

994

Graph Mov. Type Policy d value time [s]

grid 4x4

alternating

stationary
8

0.19 6.60
dynamic 0.50 3516.20

stationary
9

0.33 30.81
dynamic 0.89 14063.46

equidistant

stationary
9

0.32 37.32
dynamic 0.50 333.22

stationary
10

0.37 39.81
dynamic 0.69 1338.19

grid-hole n13 alternating

stationary
8

0.17 4.83
dynamic 0.50 3194.19

stationary
9

0.26 13.58
dynamic 1.00 9859.08

Table 1: Comparision of the reached value of the
game (equals the probability that the defender
catches the attacker) and the average copmutation
time; d denotes attack duration.

of the program. In that case, the number of real variables
in the program decreases significantly.

Besides the comparison reasons we used the stationary
policy as an initial point for solver for calculating the time-
dependent policy (see Section 7.2.1).

7.1.5 Implementation
We implemented the proposed mathematical programs in

MATLABr using the fminimax function for the optimiza-
tion. For both programs – the MP for the time-dependent
and for the stationary policy – we use only α as variables;
variables δ and ω are not explicitly represented as variables
of the MP. The set of α variables is limited to those αti,j for
which there exists an edge between vertices.

Internal MATLAB parallel methods were used during the
optimization, hence the duration of the experiments is ex-
pressed in the total CPU time (in seconds) consumed on all
cores.

7.2 Results
In this section we present the results of the experimen-

tal evaluation. In general, the results proved that in the
game with mobile targets it is reasonable to use the time-
dependent policy. In most of the experimental settings us-
age of time-dependent policy led to significantly higher util-
ity value than the approximation using a stationary policy
but currently at the expense of significantly higher compu-
tational costs.

The most representative results, in terms of the reached
game value and the average computation time, from two
graphs (shown in Figures 2(a) and 2(b)) were selected and
depicted in Table 1. Note that the value reached in the
zero-sum variant represents the worst-case probability that
the defender catches the attacker during the attack on some
target. As expected, the dynamic policy is significantly bet-
ter than the stationary approximation, as the defender can
better adapt to the movement of the targets. For the third
target movement type, i.e. stationary targets, both methods
converged to the same values and policies.

The frequent appearance of 0.5 as the reached game value
in Table 1 stems from having two targets. In many settings,
the defender cannot protect both targets and thus it non-
deterministically “chooses” just one of them; the attacker
then succeeds if it attacks the other target. Note that the
MP also found a deterministic policy that always leads to
catching the attacker (reached value is 1.00).

(a) (b) (c)

Figure 3: Defender’s policies. Two targets move
right from vertices (0,12) to (3,15) and back. The
probability of using an edge corresponds to thick-
ness of the respective edge or circle (in the case of
loops). A stationary policy (Figure (a)) and two
snapshots of a time-dependent policy are shown –
turn 6 with targets at (2, 14) (Figure (b)) and turn
7 with targets at (3, 15) (Figure (c)).

The differences between stationary policy and time-depen-
dent policies for the defender can be seen in Figure 3: the
stationary policy 3(a) covers all positions of the targets in
time, while the time-dependent policy can utilize the knowl-
edge of the current positions of targets (vertices 2 and 14
in 3(b) showing turn 6) and also future positions of targets
(3(c) shows turn 7 of the game with targets in vertices 3 and
15). Note, that thanks to the time-dependant policy, the de-
fender can in turn 7 reach the target in vertex 3 from the
vertex 2 in one move, however, there is no such possibility
in the stationary policy.

7.2.1 Initial Values for Computing Time-Dependent
Policies

In Section 7.1.4 we mentioned that the approximate so-
lution of the problem using a stationary policy can be used
by the solver as the initial point for searching for a time-
dependant policy. In Figure 4, we compare the computation
time and the reached value of the game for a fixed graph
(grid 3x4, with d = 6) with different initial points. Note that
the graph is in logarithmic scale. When a random policy is
used for initialization (circle), most runs of the solver were
very quick but unsuccessful (i.e. the optimization stopped
in a local minimum with low value). For random values not
representing a legal policy (cross), most of runs stopped in a
local minimum with low value as well, but they took signifi-
cantly more time. Finally, when using the stationary policy
approximation as the initial value (diamond), the runtime
is comparable to random non-policy initialization and the
reached game value is maximal. Pattern visible in Figure 4
was observed for other graphs as well.

7.2.2 Scalability
To address the scalability of the approach, we performed

experiments (see Table 2) on grid graphs with an expand-
ing proportion. We can see that average time to solve the
program is increasing exponentially for both stationary and
dynamic policy. However, we had not implemented any
significant improvements leading to simplifying the math-
ematical programs and (s, q, t) configurations, hence there
is a possibility for significant improvement of performance
of proposed approach.

8. CONCLUSION
We presented a novel formal model – a patrolling game

with mobile targets. It is a two-player game between the

995

Figure 4: Consumed time (x-axis) and reached value
(y-axis) for different initialization of the solver com-
puting the time-dependant policy. Both axes use
logarithmic scale.

Graph Policy d value time [s]

grid 2x4
stationary

4
0.12 1.06

dynamic 0.50 122.44

grid 3x4
stationary

6
0.18 17.97

dynamic 0.50 985.47

grid 4x4
stationary

8
0.24 29.77

dynamic 0.50 3516.20

grid 5x4
stationary

10
0.27 55.08

dynamic 0.66 53057.10

Table 2: Results of scale-up experiments (increasing
the height of the grid).

defender, patrolling in an area in order to protect a set of
targets, and the attacker who wants to attack the targets.
We assume that the attacker has full knowledge about the
defender’s strategy, and that an attack takes non-zero time
to complete, during which the attacker can be discovered by
the defender. In contrast to the existing work in the domain
of patrolling games, we allow the targets to move through
the area.

We provided a formal definition of this novel patrolling
game and a mathematical program for finding defender’s
optimal strategy, sought as the game’s Strong Stackelberg
Equilibrium. Specifically, we search for a time-dependent
Markovian policy for the defender that utilizes the knowl-
edge of the movement schedule of the targets. As the mathe-
matical program is non-linear, finding the solution is compu-
tationally hard. We therefore performed several experiments
to evaluate the proposed approach. The results justify using
time-dependent policies in scenarios with moving targets, as
the reached value of the game, i.e. the utility of the defender,
was significantly higher compared to the situations, where
defender’s strategies are limited to stationary policies.

Our results open a number of future work directions. Cur-
rently, we provided only a basic implementation of the pro-
posed program and further improvements are desirable to
improve the scalability of the approach. Furthermore, the
investigation of time-dependent non-markovian policies (i.e.
where the defender has some internal state e.g. represent-
ing the target, towards which the defender is heading) can
further enrich the space of patrolling games. Moreover, the
observability of the defender’s internal state by the attacker
can reflect the imperfectness of the attacker’s knowledge.

Finally, a more compact representation of the environment
of the game (e.g. only in terms of relative distances to the
targets) might be employed to reduce the complexity of com-
putation, in particular when combined with non-markovian
policies of the defender.

9. ACKNOWLEDGEMENTS
The work presented is supported by the U.S. Army grant

no. W15P7T-05-R-P209 (contract BAA 8020902.A), by the
Office of Naval Research project no. N00014-09-1-0537, by
the Czech Ministry of Education, Youth and Sports under
Research Programme no. MSM6840770038: Decision Mak-
ing and Control for Manufacturing III, and by the Grant
Agency of the Czech Technical University in Prague, grant
No. SGS10/188/OHK3/2T/13.

10. REFERENCES
[1] N. Agmon, S. Kraus, and G. A. Kaminka. Multi-robot

perimeter patrol in adversarial settings. In ICRA,
pages 2339–2345, 2008.

[2] N. Agmon, V. Sadov, G. A. Kaminka, and S. Kraus.
The impact of adversarial knowledge on adversarial
planning in perimeter patrol. In AAMAS, pages
55–62, 2008.

[3] N. Basilico, N. Gatti, and F. Amigoni. Leader-follower
strategies for robotic patrolling in environments with
arbitrary topologies. In AAMAS, pages 57–64, 2009.

[4] N. Basilico, N. Gatti, T. Rossi, S. Ceppi, and
F. Amigoni. Extending algorithms for mobile robot
patrolling in the presence of adversaries to more
realistic settings. In WI-IAT, pages 557–564, 2009.

[5] N. Basilico, N. Gatti, and F. Villa. Asynchronous
Multi-Robot Patrolling against Intrusion in Arbitrary
Topologies. In AAAI, 2010.

[6] K. Bennett and O. Mangasarian. Bilinear separation
of two sets inn-space. Computational Optimization and
Applications, 2(3):207–227, 1993.

[7] M. Jain, E. Karde, C. Kiekintveld, F. Ordóñez, and
M. Tambe. Optimal defender allocation for massive
security games: A branch and price approach. In
Workshop on Optimization in Multi-Agent Systems at
AAMAS, 2010.

[8] C. Kiekintveld, M. Jain, J. Tsai, J. Pita, F. Ordóñez,
and M. Tambe. Computing optimal randomized
resource allocations for massive security games. In
AAMAS, pages 689–696, 2009.

[9] J. Lasserre. Global optimization with polynomials and
the problem of moments. SIAM Journal on
Optimization, 11(3):796–817, 2001.

[10] J. Pita, M. Jain, J. Marecki, F. Ordó nez, C. Portway,
M. Tambe, C. Western, P. Paruchuri, and S. Kraus.
Deployed ARMOR protection: the application of a
game theoretic model for security at the Los Angeles
Int. Airport. In AAMAS, pages 125–132, 2008.

[11] J. Tsai, S. Rathi, C. Kiekintveld, F. Ordóñez, and
M. Tambe. IRIS - A Tool for Strategic Security
Allocation in Transportation Networks Categories and
Subject Descriptors. In AAMAS, pages 37–44, 2009.

[12] Z. Yin, D. Korzhyk, C. Kiekintveld, V. Conitzer, and
M. Tambe. Stackelberg vs. Nash in security games:
Interchangeability, equivalence, and uniqueness. In
AAMAS, pages 1139–1146, 2010.

996

