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ABSTRACT
The Service Game is a model for reciprocity in multiagent
systems. Here, agents interact repeatedly by requesting and
providing services. In contrast to existing models where
players are matched randomly, players of the Service Game
may choose with whom they play. The rationale behind
provider selection is to choose a provider that is likely to
perform a task as desired. We develop a formal model for
provider selection in the Service Game. An evolutionary
process based on a genetic algorithm allows us to incorpo-
rate notions of bounded rationality, learning, and adaptation
into the analysis of the game. We conduct a series of experi-
ments to study the evolution of strategies and the emergence
of cooperation. We show that cooperation is more expensive
with provider selection than with random matching. Fur-
ther, populations consisting of discriminators and defectors
form a bistable community.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems

General Terms
Economics, Experimentation

Keywords
Agent cooperation, Formal model, Social simulation, Evolu-
tion

1. INTRODUCTION
In settings without payments between individuals, the

social mechanism of reciprocity is the basis for coopera-
tion [16]. Examples for such settings are peer-to-peer sys-
tems and social search. With direct reciprocity, an individ-
ual A rewards helpful acts or punishes uncooperative acts of
another individual B. Think of tit-for-tat, where A recipro-
cates B’s previous action. With indirect reciprocity in turn,
an action is rewarded or punished by a third individual C,
not involved in the original interaction. Such strategies typ-
ically rely on reputation and status [2]. While cooperation
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through direct reciprocity can only emerge in repeated in-
teractions between two individuals, it can emerge through
indirect reciprocity in one-shot interactions as well.

Reciprocity has been a prominent research topic, both in
theoretical [3, 16] and in experimental work [8, 10, 12]. In
existing models for reciprocity, players are either matched
randomly (for indirect reciprocity), or the same pairs of in-
dividuals interact repeatedly (for direct reciprocity). In re-
alistic settings, however, individuals can choose whom to
interact with. In the following, we will call this choice pro-
vider selection. Given the choice of interaction, both direct
and indirect reciprocity can emerge. If individual A has done
individual B a favor, A can redeem this favor either directly
by interacting with B again or indirectly by interacting with
another individual C. Thus, comprehensive models should
cover both forms of reciprocity.

In this paper, we study the following research question:
How efficient is reciprocity under provider selection? An-
swering this question is difficult for several reasons. First, we
expect provider selection to change the game substantially,
compared to random matching. This is because cooperative
providers, which are typically preferred by requesters, are
likely to have high workloads. Second, provider selection
has not yet been analyzed in existing studies of reciprocity.
As we will explain, a formal model required for the analysis
cannot be derived directly from existing models where play-
ers are matched randomly. Third, an analytical solution of
evolutionary games is hard if discriminating strategies are
present [2]. Discriminating strategies differentiate between
players according to certain attributes (e.g., their coopera-
tiveness), as opposed to strategies that treat all players as
equal. Simulations have shown that discriminating strate-
gies can lead to cooperative populations [12].

We meet these challenges by proposing the Service Game,
a formal model for reciprocity under provider selection. Here,
players interact repeatedly in the roles of requester and pro-
vider. The requester sends a request to the provider, who
decides on processing the request. Players have a benefit
if other players process their requests, whereas processing
requests for others incurs cost. In contrast to existing mod-
els, ours allows for both direct and indirect reciprocity by
letting players choose with whom they play. Note that, in
our model, all nodes are fully connected. Hence, network
formation is not an issue here.

Traditional game theory assumes that all players are fully
rational and homogeneous. While these assumptions are
crucial for the mathematical tractability of the models, more
recent work has dropped them [14]. In evolutionary game
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theory, the role of perfect rationality is taken over by a learn-
ing process in a heterogeneous society of agents. An evolu-
tionary process modeled by a genetic algorithm updates the
behavior of the agents. Genetic algorithms have frequently
been used in experimental work on cooperation to describe
social learning [1, 10,14].

We have designed and carried out a series of experiments
to study the evolution of strategies and the emergence of
cooperation under provider selection. It shows that coop-
eration is more expensive with provider selection than with
random matching. We deem this a fundamental observation
because it means that direct and indirect reciprocity should
not be analyzed separately. Further, populations consisting
of discriminators and defectors form a bistable community.
That is, provider selection preserves the evolutionary stable
states predicted by theory [3].

2. RELATED WORK
In this section we discuss related work. After examining

existing models for reciprocity, we review studies of the evo-
lution of cooperation. Finally, we delimit our work from
existing studies of provider selection.

While direct reciprocity has been a popular research topic,
more recent work on reciprocity has focused on indirect reci-
procity. One popular model to analyze cooperation through
indirect reciprocity is the helping game [12]. There, pairs of
a donor and a recipient are formed randomly. The recipient
asks the donor he is matched with for costly ‘help’. Nowak
and Sigmund have shown that cooperation can evolve if in-
formation about the past behavior of the players is available.
Each player is assigned a public image score which increases
through cooperation and decreases through defection. Strat-
egies based on image scoring have proven to be evolutionary
stable. A strategy population is called evolutionary stable if
the evolutionary process rejects the invasion of the popula-
tion by mutant strategies [9].

Gal and Pfeffer [5] showed that reciprocity has signifi-
cant implications for the behavior of agents. When they
interact with humans over time, agents need to learn social
factors that affect people’s play. Brandt et al. [3] analyzed
direct and indirect reciprocity theoretically using replicator
dynamics. While replicator dynamics are common to study
the evolutionary dynamics in games, they lack the notions
of learning and adaption [14]. Researchers often resort to
numerical simulations using genetic algorithms [8, 10, 12],
which explicitly model the individual agents. We will make
use of this methodology as well by carrying out an evolution-
ary analysis of cooperation in multiagent systems. Research
has proposed various approaches on cooperation among de-
ceptive agents that misreport the behavior of other agents.
Sen [15] has proposed a probabilistic strategy based on reci-
procity which is able to resist this kind of deception. While
we do not consider deceptive agents, the approach by Sen
might be applied to provider selection as well.

There also are models for the evolution of cooperation
not based on reciprocity. One such model uses so-called
‘tags’ [6] to help agents in identifying the groups they be-
long to. It has been shown that provider selection based on
tags produces stable cooperation. While tags correspond to
the origin of the agents, provider selection in our setting is
based on behavior. Fullam et al. [4] proposed a testbed for
trust and reputation mechanisms. Agents may choose other
agents from which they seek help, and the agents asked for

help decide whether to cooperate or not. Whereas Fullam
et al. compare a fixed set of strategies, we investigate the
evolution of strategies through a genetic algorithm. Provi-
der selection has also been studied in the area of peer-to-peer
systems [13]. However, existing studies we are aware of focus
on performance figures such as the ratio of successful inter-
actions. In the following, we develop a full-fledged economic
model for reciprocity in multiagent systems.

3. THE SERVICE GAME
The Service Game is a repeated game where players may

send requests to other players and decide whose requests
they process. That is, each player actually plays multiple
games in one round—one as requester and zero or more as
provider, depending on the number of requests he receives.
The fee for sending a request to another player is f , with
f > 0. The cost of processing the request of another player
is c, with c > 0. The benefit of a player if another player
processes his request is b, with b > 0. Fee, cost and benefit
are the same for all players. As usual in helping games, we
assume that b > c > f > 0 holds. The Service Game models
a homogeneous system in which all players send and process
requests at the same rate. To simplify matters, we assume
that there is only one kind of service which every player can
provide. Providers may neither pass on requests to other
players, nor postpone the decision on processing a request.
All players make their cooperation decisions simultaneously.

We implement the Service Game as a multiagent system,
i.e., agents act as players. Each agent pursues two so called
‘policies’ which define the actions it performs. A placing
policy specifies the set of players which the agent sends re-
quests to. An accepting policy specifies the set of players
whose requests the agent is willing to process. As described
in Algorithm 1, every round t of the game consists of two
steps: provider selection and service decisions. First, each
agent i evaluates its placing policy pi to select a provider j.
If the placing policy is empty, the agent does not send a
request. If it contains several players, a provider is selected
at random from this set. Second, each agent j decides on
processing incoming requests by evaluating its accepting pol-
icy aj . If the accepting policy contains requester i, the agent
processes the task, otherwise it rejects the request.

Algorithm 1 The Service Game

for all rounds t do
for all players i ∈ I do {provider selection}

provider j ← evaluate(pi)
queue Qj ← Qj ∪ {i}

for all players j ∈ I do {service decisions}
for all requesters i ∈ Qj do

if i ∈ evaluate(aj) then
process the task

else
reject the request

3.1 Formal Model
The Service Game is characterized by the set of players

I = {1, . . . , n}, the policy sets A and P , and the payoff or
net return ntk of player k ∈ I in round t of the game. A
placing policy pk ⊆ I \ {k} specifies the set of players which
player k sends a request to. E.g., the placing policy pk =
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{l ∈ I \ {k} | rl ≥ 0.8} means that player k sends requests
only to players with a cooperativeness of 80% or more. An
accepting policy ak ⊆ I\{k} specifies the set of players whose
requests player k is willing to process. E.g., the accepting
policy ak = {l ∈ I \ {k} | rl ≥ 0.5} means that player k
processes requests only for players with a cooperativeness
of 50% or more. We denote the set of placing policies as
P = {p1, . . . , pn} and the set of accepting policies as A =
{a1, . . . , an}. We say that player k meets placing policy p
resp. accepting policy a if k ∈ p resp. k ∈ a holds.

We introduce a discount rate δ ≤ 1 to avoid infinite pay-
offs. On the one hand, it takes into account the probability
that another round occurs after the current round. On the
other hand, it represents the economic fact that the current
value of a future income is less than its nominal value. The
present value N t

k of the payoffs in round t is the discounted
sum of all previous rounds.

N t
k = δ ·N t−1

k + ntk (1)

3.2 Cooperativeness of the Players

Number of requests received
We first count how many requests player k is expected to
receive in round t. Let |ptl | be the number of players who
meet the placing policy ptl of some player l in round t. The
reciprocal value 1/|ptl | then is the probability that a random
player who meets the placing policy ptl receives a request
from player l. We denote this probability as the expected
number of requests exptl such a player receives from player l
in round t.

exptl =


1

|ptl |
if |ptl | > 0,

0 otherwise.
(2)

We now sum up exptl over all players l from which player k
might receive requests because he meets their placing poli-
cies ptl . This is the expected number of requests rectk player k
receives in round t.

rectk =
∑

l∈{I\{k}| k∈pt
l
}
exptl (3)

Number of requests processed
Next, we count how many requests player k is expected to
process in round t. He accepts requests from player l if and
only if this player meets his accepting policy atk. We refer
to the respective indicator function as acctk,l.

acctk,l =

{
1 if l ∈ atk,
0 otherwise.

(4)

If we multiply acctk,l by exptl , we get the expected number of
requests which player k processes for player l. We now sum
up this product over all players l from which player k receives
requests because he meets their placing policies ptl . This is
the expected number of requests proctk player k processes.

proctk =
∑

l∈{I\{k}| k∈pt
l
}
acctk,l · exptl (5)

Cooperativeness
We define the cooperativeness of a player as the share of
incoming requests he processes. E.g., a player with coop-
erativeness r = 0.5 processes half of the requests. The co-
operativeness rtk of player k in round t is the quotient of

the number of requests processed proctk and the number of
requests received rectk.

rtk =


proctk
rectk

if rectk > 0,

0 otherwise.

(6)

The mean cooperativeness Rtk of player k in round t is the
average over all previous rounds. Since players may change
their behavior during the game, recent interactions are more
important than old ones. We use an exponential moving
average with smoothing factor α ≤ 1 to assign more weight
to recent interactions.

Rtk = α · rtk + (1− α) ·Rt−1
k (7)

3.3 Payoff of the Players

Benefit of a successful request
To compute the benefit btk of player k, we first determine
whether this player sends out a request in round t. Player k
sends requests to all players l which meet his placing pol-
icy ptk. We refer to the respective indicator function as senttk.

senttk =

{
1 if |ptk| > 0,

0 otherwise.
(8)

Next, we determine whether this request is successful or not.
Player l accepts requests from player k (acctl,k = 1) if and

only if player k meets his accepting policy atl . If we multiply
acctl,k by exptk, we get the expected number of requests which
player l processes for player k. We now sum up this product
over all players l to which player k sends requests because
they meet his placing policy ptk.

succtk =
∑

l∈pt
k

acctl,k · exptk (9)

Note that the expected number of successful requests succtk
is at most 1. The benefit btk of player k is the product of b
and the number of successful requests sent out in round t.

btk = b · succtk (10)

Cost of processing requests
The cost ctk depends on the number of requests player k pro-
cesses in round t. While player k receives requests from all
players l whose placing policies ptl he meets, he only pro-
cesses requests from players who meet his accepting pol-
icy atk. This is exactly the definition of proctk in Equa-
tion (5). In addition, player k has to pay fee f if he sends out
a request in round t. We use the indicator function senttk
from Equation (8).

ctk = c · proctk + f · senttk (11)

Payoff
The payoff ntk of each player k in round t is the difference
between the benefit btk of a successful request and the cost ctk
of sending and processing requests.

ntk = b · succtk − c · proctk − f · senttk (12)

In every round t of the game, each player k would ideally
choose the combination of placing policy ptk and accepting
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policy atk which maximizes his payoff. We denote the opti-
mal payoff of player k in round t as n̂tk:

n̂tk = maximize
ptk⊆I\{k}, atk⊆I\{k}

ntk (13)

It is hard to determine the optimal payoff analytically if
discriminating strategies are present [2]. Often, pairs of
discriminating strategies perform equally well against each
other, so that their frequencies drift randomly. However, the
success of other strategies depends on the frequencies of the
discriminating strategies. To remove this restriction, we will
resort to numerical simulations.

4. EVOLUTIONARY ANALYSIS
In evolutionary games, players are not assumed to be ra-

tional or able to think ahead. Strategies are simple behav-
ioral programs which specify the actions of each player. In
this section, we will first explain the strategies used in our
analysis and then describe the evolutionary process in detail.

4.1 Strategies
In a previous experiment of ours [7], subjects have for-

mulated plaintext policies which we then used to program
agents playing the Service Game. A cutoff strategy based
on the cooperativeness of the players was the most success-
ful strategy for provider selection. Hence, in this paper, we
will analyze the evolutionary stability of the cutoff strategy
for provider selection. In each round t of the game, player i
sends a request to player j if the mean cooperativeness Rt−1

j

of player j exceeds a threshold value ρi:

pti,j =

{
1 if Rt−1

j ≥ ρi,
0 otherwise.

(14)

We will eventually compare the results of our study with
previous studies on reciprocity [2]. In these studies, the three
basic strategies ‘always cooperate’, ‘always defect’, and ‘tit-
for-tat’ have prevailed. Thus, in this paper, we use these
strategies as well for service decisions. Needless to say, there
are many other strategies conceivable for both provider se-
lection and service decisions. Nevertheless, the strategies we
use capture the most important aspects of cooperation [3].

We implement the strategies for service decisions as sto-
chastic reactive strategies [11]. They are described by two
parameters (p, q), which are the probabilities to cooperate
after a cooperation resp. a defection by the co-player in the
previous round. Always cooperate is given by (1, 1), always
defect by (0, 0), and tit-for-tat by (1, 0). In each round t, the
probability that player i accepts a request from player j is
the expected value of the stochastic reactive strategy. Recall
that at−1

j,i denotes the service decision of player j regarding
player i in round t− 1.

ati,j = p · at−1
j,i + q · (1− at−1

j,i ) (15)

A strategy can be represented as a ‘chromosome’ describ-
ing the action of a player in each different context of the
game. We encode the strategy of each player i by a binary
string of 24 bits. The first 8 bits represent the threshold
value ρi of the cutoff strategy for provider selection. The
second and third 8 bits represent the probabilities pi and qi
of the stochastic reactive strategy for service decisions. We
use a Gray coding of the binary strings to avoid the repre-
sentational bias in binary encoding.

4.2 Evolutionary Process
We update the strategies through an evolutionary process

modeled by a genetic algorithm (GA). GAs mimic a popula-
tion of strategies acting in a well-defined environment which
evaluates the performance of each strategy. New popula-
tions are formed by selecting the better performing strat-
egies and modifying them through genetic operators. The
GA then subjects the resulting offspring to competition with
other strategies in the population. Successful strategies are
allowed to reproduce, while unsuccessful strategies become
extinct. GAs have frequently been used in economics to
characterize a form of social learning [1, 10, 14]. Selection
can be interpreted as learning by imitation, recombination
as learning by communication, and mutation as learning by
experiment. The combination of these three operators re-
sults in a very powerful optimization algorithm.

Algorithm 2 The genetic algorithm

Create initial population m0

Evaluate m0

for round t = 1 to tmax do
Rank mt−1

Select from mt−1 into mt

Recombine mt

Mutate mt

Evaluate mt

The GA used in this paper is shown in Algorithm 2. First,
an initial strategy population m0 is created randomly. Each
strategy is then tested against the environment (composed
of the other strategies) and receives a performance score
(the payoff). Given the performance scores, a fitness value
is assigned to each strategy. We use a rank-based fitness
function with a selective pressure of 2 and linear ranking,
giving the most fit strategy a fitness value of 2 and the least
fit strategy a fitness value of 0. Strategies from the par-
ent population mt−1 are selected for reproduction using a
stochastic universal sampling routine. The strategies mt se-
lected for reproduction are recombined using a single-point
crossover function with probability .7. Having produced the
offspring, mutation may now be applied with probability
.7/Lind, where Lind = 24 is the length of a chromosome.
Finally, the offspring mt is evaluated and the new perfor-
mance scores are calculated. The GA terminates when the
maximum number of rounds tmax is reached. We verify that
the population has converged by analyzing its variance.

5. EXPERIMENTS
To analyze the evolution of strategies and the emergence

of cooperation under provider selection, we formulate the
following research questions:

1. How does provider selection change policy-based help-
ing scenarios?

2. Which states of the game are evolutionary stable, and
how efficient are the resulting equilibria?

3. How do the parameters of the game influence stability
and efficiency?

Regarding the first question, we expect provider selection
to change the game substantially. This is because cooper-
ative providers are likely to receive many requests, making
cooperation expensive. With the second question we inves-
tigate whether the equilibria identified in previous studies
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Table 1: Parameter values used in the experiments
Experiments Parameters

f c b δ α

E1
Random matching 0 2 20 .9 .5
Provider selection 0 2 20 .9 .5

E2
No fee 0 2 20 .9 .5
Low cost 1 2 20 .9 .5
High cost 5 10 20 .9 .5

E3
Low discount 1 2 20 .1 .5
Medium discount 1 2 20 .5 .5
High discount 1 2 20 .9 .5

E4
Low smoothing 1 2 20 .5 .1
Medium smoothing 1 2 20 .5 .5
High smoothing 1 2 20 .5 .9

still hold for the Service Game. We expect the equilibria
to be less efficient because, according to a previous study of
ours [7], players are less cooperative in a game with provider
selection than in a game with random matching. The third
question addresses the parameters of the Service Game (f ,
c, b, δ, α). According to previous studies on reciprocity [2],
we expect the cost-to-benefit ratio c/b to have a significant
influence on the efficiency of the game. While a high dis-
count factor δ causes a low rate of inflation, a low smoothing
factor α indicates a long memory of interactions. We expect
both to increase the efficiency.

5.1 Experimental Design
To answer the research questions, we have designed and

conducted a series of experiments. In these experiments,
we explore all parameters of the game separately (i.e., we
vary one parameter at a time). In Experiment E1, we com-
pare random matching with provider selection, to address
the first research question. We tackle the second question
by analyzing the equilibria of the game and their efficiency.
Regarding the third question, we compare different ratios
of fee/cost and cost/benefit in Experiment E2, different dis-
count rates in Experiment E3, and different smoothing fac-
tors in Experiment E4. Table 1 serves as a summary. Fi-
nally, we identify lessons learned from our experiments that
are of general interest.

Each simulation consists of a population of 100 agents,
which played the Service Game for 100 rounds. In each
round of the game, each player plays against every other
player specified by his placing policy. The payoff then is
the expected value of the play, i.e., the average over the
individual games. Payoffs were calculated using the equa-
tions in Section 3.3. Under each of the conditions, 100 rep-
etitions were conducted to allow for stochastic variations.
The choices of simulation parameters (e.g., population size)
and algorithmic components (e.g., selection function of the
GA) were guided by considerations of robustness and com-
putational constraints. Note that genetic algorithms are ex-
tremely robust to actual parametric and algorithmic choices.
All the results reported in the next section have been con-
firmed using a variety of different simulation parameters and
algorithmic components.

5.2 Methodology
The frequencies of the three strategies for service deci-

sions (cooperate, defect, and tit-for-tat) are given by x, y,

and z with x + y + z = 1. Thus, the three strategies form
a strategy simplex which describes the composition of the
population. The strategy simplex can be imagined as a 2D
triangle in the 3D coordinate system (x, y, z). The three
vertices x = 1, y = 1, and z = 1 of the strategy simplex de-
scribe ‘pure’ populations consisting solely of the strategies
cooperate, defect, and tit-for-tat, respectively. The edges
x = 0, y = 0, and z = 0 describe ‘dual’ populations consist-
ing of the two strategies specified by its vertices. Finally, the
points (x, y, z) within the simplex describe ‘mixed’ strategy
populations.

By definition, the number of points in the strategy sim-
plex is infinite. Thus, we have to create a random sample of
the strategy simplex. In theory, it is possible that the ran-
dom sample misses important aspects of the game. In the
following experiments, we have chosen a large sample size
of 500 points to minimize the possibility of error. To avoid
clutter in the figure, we will depict only 100 points. We run
the GA for each point of the sample and analyze how the
population evolves. The strategies are updated through the
evolutionary process described in Section 4. In the follow-
ing analyses, we will average over the resulting strategies in
each population. The key figures to quantify the efficiency
are the mean cooperativeness R and the total payoff N of
the players. Both figures are strongly correlated because
requesters can only make profit if the providers cooperate.
We focus on the cooperativeness because it is, by definition,
normalized to the interval [0, 1] and thus allows for a direct
comparison.

6. RESULTS
In this section, we first examine a system with random

matching to replicate the effects of existing studies [2] on
reciprocity. It serves as baseline for the following analysis of
provider selection. Our experiments indicate that there are
significant differences between random matching and provi-
der selection.

6.1 Random Matching
In experiment E1, we have analyzed how the matching of

the players affects the evolution of the strategies and the
efficiency of the game. Figure 1a shows the resulting sim-
plex for random matching. To visualize the results, we have
projected the strategy simplex onto a 2D coordinate system.
The three vertices x = 1, y = 1, and z = 1 were mapped to
the coordinates (1, 0), (0, 0), and (1/2,

√
3/2), respectively.

Recall that each point of the simplex represents one popula-
tion of strategies. The coordinates specify the frequencies of
the strategies, i.e., the initial composition of the population.
To visualize the efficiency of each population, we depict the
average cooperativeness as the color of the corresponding
point. Light colors (white to yellow) represent cooperative
populations, dark colors (red to black) uncooperative ones.

During the evolutionary process, the composition of the
population changes because successful strategies prevail. The
arrows in each point visualize the direction which the popu-
lation shifts to. E.g., the points in the center of the simplex
shift to the edge y = 0. A strategy population is in an evolu-
tionary stable state if its composition does not change during
the evolutionary process [9]. A fixed point keeps its position,
i.e., the population is evolutionary stable. A closer look at
the data reveals that the vertex y = 1 consisting solely of de-
fectors is evolutionary stable. Furthermore, all points on the
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(a) Random matching (b) Provider selection

Figure 1: Strategy simplices for random matching and for provider selection.

edge y = 0 are evolutionary stable. I.e., any mixture of co-
operators and discriminators are in equilibrium. All points
on the edge z = 0 are unstable. There is a line of unstable
points connecting a fixed point Fyz on the edge x = 0 with
another fixed point Fxz on the edge y = 0. We call this line
the boundary line. While the states between the defectors
vertex and the boundary line are inefficient (cooperativeness
R ≈ 0), the states between the line and the discriminators
vertex are efficient (R ≈ 1). These findings are consistent
with theoretical results in [3].

6.2 Provider Selection
From now on, we focus on systems with provider selection.

Figure 1b shows the resulting strategy simplex. Apparently,
the system with random matching has a higher fraction of
cooperative (white) states than the system with provider se-
lection. In fact, the mean cooperativeness is .637 (±.431) for
random matching and only .402 (±.435) for provider selec-
tion. A t-test confirms that the difference is significant for
a confidence level of .01.

Observation 1. Games with provider selection are less co-
operative than games with random matching.

This result is expected because, according to their placing
policies, requesters prefer cooperative providers. Thus, co-
operative players have high workloads, making cooperation
expensive. In contrast, random matching balances requests
uniformly between providers.

An analysis of the evolutionary stability shows that the
system with provider selection has the same stable states as
the system with random matching. Again, the vertex y = 1
consisting solely of defectors is evolutionary stable. Along
the edge y = 0, any mixture of cooperators and discrimina-
tors is stable. Finally, a line of unstable states (the boundary
line) connects a fixed point Fyz on the edge x = 0 with a
fixed point Fxz on the edge y = 0.

Observation 2. Populations consisting of discriminators
and defectors form a bistable community.

While the strategies for service decisions are defined by
their coordinates in the strategy simplex, the cutoff strat-
egy for provider selection is defined by its threshold values ρ

(see Equation 14). For each population of strategies, we
have computed the mean and the variance of the thresh-
old values. We visualize the average threshold values as an
additional dimension (the z-axis) of the strategy simplex.
‘Higher’ points represent greater threshold values and thus
stricter cutoff strategies. Figure 2 shows the resulting strat-
egy simplices.

Interestingly, the location of the boundary line strongly in-
fluences the threshold values of the cutoff strategies (height).
The boundary line divides the simplex into two areas. In the
area between the defectors vertex and the boundary line, the
cutoff thresholds reach their maximum values, and the sys-
tem is inefficient (R ≈ 0). The threshold maximum can
be visualized as a ‘range’ of strict cutoff strategies. On the
other side, between the boundary line and the discrimina-
tors vertex, the threshold values are much lower. Visually,
the boundary line forms the ‘rim’ of the cutoff range. If we
descend the cutoff range towards the discriminators vertex,
the system becomes more efficient. In the ‘valley’ along the
edge y = 0, the system is highly efficient (R ≈ 1).

6.2.1 Benefit, Cost, and Fee
In experiment E2, we have investigated how the parame-

ters benefit, cost, and fee affect the efficiency. First, we have
conducted an analysis of variance (ANOVA) to test whether
the means of the three treatments (no fee, low cost, high
cost) are all equal or not. The test indicates that at least
one sample mean is different from the other two (F = 60.89)
with a significance level of .01. Next, we have analyzed the
ratio f/c of fee to cost by comparing the no-fee and the low-
cost treatment. The statistics do not show any significant
difference. Thus, we leave aside the no-fee treatment in the
remaining analysis.

The ratio c/b of cost to benefit can be analyzed by compar-
ing the low-cost and the high-cost treatment. Figures 2a–b
show the resulting strategy simplices for both treatments.
The mean cooperativeness is .37 (±.43) for the low-cost and
only .148 (±.316) for the high-cost treatment. A t-test con-
firms that the difference is significant for a confidence level
of .01. We observe that the ratio c/b also affects the location
of the boundary line. As the cost-to-benefit ratio increases,
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(a) Low cost/high discount: f=1, c=2, b=20, δ=.9 (b) High cost: f=5, c=10, b=20

(c) Low discount rate: δ=.1, α=.5 (d) Medium discount/smoothing: δ=.5, α=.5

(e) Low smoothing factor: δ=.5, α=.1 (f) High smoothing factor: δ=.5, α=.9

Figure 2: Strategy simplices for different game parameters under provider selection.
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the fixed point Fyz moves closer towards the discriminators
vertex and thus the efficiency decreases.

Observation 3. The lower the ratio of cost to benefit, the
more efficient the system.

An important lesson learned is that the benefit of a success-
ful request should be at least one order of magnitude higher
than the cost of processing. A fee for sending requests does
not affect the efficiency of the system.

6.2.2 Discount Rate and Smoothing Factor
In experiments E3 and E4, we have investigated how dis-

count rate and smoothing factor affect the efficiency. First,
we have compared low, medium and high discount rates δ.
A low discount rate indicates a high rate of inflation and
thus a decline of the present value of the payoffs. For the re-
sults of low, medium, and high discount rates see Figures 2c,
d, a. The mean cooperativeness is .092 (±.213) for the low
discount and .370 (±.43) for the high discount treatment. A
t-test confirms that the difference is significant for a confi-
dence level of .01. Apparently, the discount rate affects the
‘height’ of the cutoff range. The lower the discount rate, the
higher the cutoff range and thus the stricter the strategies.

Observation 4. A higher discount rate (i.e., a lower infla-
tion) results in a more efficient system.

Finally, we compared low, medium, and high smoothing
factors α. A higher factor assigns more weight to recent in-
teractions and thus causes a shorter memory. For the results
of low, medium, and high smoothing factors see Figures 2e,
d, f. The mean cooperativeness is .422 (±.412) for the low
smoothing and .362 (±.429) for the high smoothing treat-
ment. A t-test confirms that the difference is significant for
a confidence level of .01. Apparently, the smoothing factor
affects the ‘width’ of the cutoff range. The lower the factor
is, the wider the cutoff range.

Observation 5. A lower smoothing factor (i.e., a longer
memory) increases the efficiency of the system.

Thus, a second lesson learned is that reputation systems for
multiagent systems should consider the complete history of
interactions.

7. CONCLUSIONS
In settings without payments between individuals, reci-

procity is the basis for cooperation. Examples for such set-
tings are peer-to-peer systems and social search. In existing
models for reciprocity, individuals are either matched ran-
domly, or the same pairs of individuals interact repeatedly.
However, in realistic settings, individuals can choose whom
to interact with. In this paper, we have investigated how
efficient reciprocity is under provider selection. To do so,
we have developed a formal model for reciprocity in mul-
tiagent systems. Strategies are updated through an evolu-
tionary process based on a genetic algorithm. This lets us
incorporate the notions of bounded rationality, learning, and
adaptation into the analysis.

We have designed and carried out a series of experiments
to study the evolution of strategies and the emergence of
cooperation. Our results show that cooperation is more
expensive in a system with provider selection than in a
system with random matching. Thus, existing models for

reciprocity overestimate the efficiency of real-world systems
where both direct and indirect reciprocity may occur in com-
bination. Further, populations consisting of discriminators
and defectors form a bistable community.
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