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ABSTRACT
Revelation games are bilateral bargaining games in which
agents may choose to truthfully reveal their private infor-
mation before engaging in multiple rounds of negotiation.
They are analogous to real-world situations in which people
need to decide whether to disclose information such as med-
ical records or university transcripts when negotiating over
health plans and business transactions. This paper presents
an agent-design that is able to negotiate proficiently with
people in a revelation game with different dependencies that
hold between players. The agent modeled the social fac-
tors that affect the players’ revelation decisions on people’s
negotiation behavior. It was empirically shown to outper-
form people in empirical evaluations as well as agents play-
ing equilibrium strategies. It was also more likely to reach
agreement than people or equilibrium agents.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]

General Terms
Experimentation

Keywords
Human-robot/agent interaction, Negotiation

1. INTRODUCTION
In many negotiation settings, participants lack informa-

tion about each other’s preferences, often hindering their
ability to reach beneficial agreements. This paper presents
a study of a particular class of such settings we call “revela-
tion games”. In these settings, players are given the choice to
truthfully reveal private information before commencing in a
finite sequence of alternating negotiation rounds. Revealing
this information narrows the search space of possible agree-
ments and may lead to agreement more quickly, but may
also lead players to be exploited by others.
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Revelation games combine two types of interactions that
have been studied in the past: Signaling games [13], in
which players choose whether to convey private information
to each other, and bargaining [10], in which players engage
in multiple negotiation rounds. Revelation games are analo-
gous to real-world scenarios in which parties may choose to
truthfully reveal information before negotiation ensues. For
example, consider a scenario in which company employees
negotiate over the conditions of their employer-sponsored
health insurance policy. The employees can wave the right
to keep their medical records private. The disclosure of this
information to the employer is necessarily truthful and is
not associated with a cost to the employees. It may provide
employees with favorable conditions when negotiating over
future health policies. However, many people choose not
to disclose medical records to their employees, fearing they
may be compromised by this information.

This paper describes a new agent design that uses a decision-
theoretic approach to negotiate proficiently with people in
revelation games. The agent explicitly reasons about the so-
cial factors that affect people’s decisions whether to reveal
private information, as well as the effects of people’s reve-
lation decisions on their negotiation behavior. It combines
a prediction model of people’s behavior in the game with a
decision-theoretic approach to make optimal decisions. The
parameters of this model were estimated from data consist-
ing of human play. The agent was evaluated playing new
people and an agent playing equilibrium strategies in a rev-
elation game that varied the dependency relationships be-
tween players. The results showed that the agent was able to
outperform human players as well as the equilibrium agent.
It learned to make offers that were significantly more bene-
ficial to people than the offers made by other people while
not compromising its own benefit, and was able to reach
agreement significantly more often than did people as well
as the equilibrium agent. In particular, it was able to ex-
ploit people’s tendency to agree to offers that are beneficial
to the agent if people revealed information at the onset of
the negotiation.

The contributions of this paper are fourfold. First, it for-
mally presents revelation games as a new type of interaction
which supports controlled revelation of private information.
Second, it presents a model of human behavior that explic-
itly reasons about the social factors that affect people’s ne-
gotiation behavior as well as the effects of players’ revelation
decisions on people’s negotiation behavior. Third, it incor-
porates this model into a decision-making paradigm for an
agent that uses the model to make optimal decisions in reve-
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lation games. Lastly, it provides an empirical analysis of this
agent, showing that the agent is able to outperform people
as well as more likely to reach agreement than people.

2. RELATED WORK
Our work is related to studies in AI that use opponent

modeling to build agents for repeated negotiation in het-
erogeneous human-computer settings. These include the
KBAgent that made offers with multiple attributes in set-
tings which supported opting out options, and partial agree-
ments [11]. This agent used a social utility function to con-
sider the trade-offs between its own benefit from an offer and
the probability that it is accepted by people. It used density
estimation to model people’s behavior and approximated
people’s reasoning by assuming that people would accept of-
fers from computers that are similar to offers they make to
each other. Other works employed Bayesian techniques [6]
or approximation heuristics [7] to estimate people’s prefer-
ences in negotiation and integrated this model with a pre-
defined concession strategy to make offers. Bench-Capon [2]
provide an argumentation based mechanism for explaining
human behavior in the ultimatum game. We extend these
works in two ways, first in developing a partially strategic
model of people’s negotiation behavior and second in formal-
izing an optimal decision-making paradigm for agents using
this model. Gal and Pfeffer [4] proposed a model of human
reciprocity in a setting consisting of multiple one-shot take-
it-or-leave-it games, but did not evaluate a computer agent
or show how the model can be used to make decisions in the
game. Our work augments these studies in allowing players
to reveal private information and in explicitly modeling the
effect of revelation on people’s negotiation behavior.

Our work is also related to computational models of ar-
gumentation, in that people’s revelation decisions provide
an explanation of the type of offers they make during ne-
gotiation. Most of these works assume that agents follow
pre-defined strategies for revealing information [12, 14] and
do not consider or model human participants.

Lastly, revelation games, which incorporate both signaling
and bargaining, were inspired by canonical studies showing
that people learn to play equilibrium strategies when they
need to signal their private information to others [1]. On
the other hand, people’s bargaining behavior does not ad-
here to equilibrium [3, 9], and computers cannot use such
strategies to negotiate well with people [8]. Our work shows
that integrating opponent modeling and density estimation
techniques is an effective approach for creating agents that
can outperform people as well equilibrium strategies in rev-
elation games.

3. IMPLEMENTATION: COLORED TRAILS
We based our empirical work on a test-bed called Col-

ored Trails [5], which we adapted to model revelation games
with 2 rounds, the minimal number that allows an offer to
be made by both players. Our revelation game is played
on a board of colored squares. Each player has a square
on the board that is designated as its goal. The goal of
the game is to reach the goal square. To move to an ad-
jacent square required surrendering a chip in the color of
that square. Players had full view of the board and each
others’ chips. Both players were shown two possible loca-
tions for their goals with associated belief probabilities, but

(a) (b)

Figure 1: (a) A Colored Trails revelation game
shown from Bob’s point of view. (b) Bob’s offer

each player could only see its own goal. An example of a
CT revelation game is shown in Figure 1. Here, the “me”
and “O” icons represent two players, Bob and Alice, respec-
tively. Each player has two possible goals. Bob’s true goal
is located three steps below the “me” icon (appearing as a
white G square). Bob’s other goal is located two steps be-
low his true goal (appearing as a grey “?” square). Alice’s
possible goals are presented as two grey “?” circles, located
three and five steps above Alice’s “O” icon. The board is
presented from Bob’s point of view. Bob can see its true
goal location but Alice does not observe it. Similarly, Bob
cannot observe Alice’s true goal location. The number “50”
on each goal square represent a 50% probability that the
true goal lies in that square.

Our CT game progresses in three phases with associated
time limits. In the revelation phase, both players can choose
to truthfully reveal their goal to the other player.1 In the
proposal phase, one of the players is randomly assigned the
role of proposer and can offer to exchange a (possibly empty)
subset of its chips with a (possibly empty) subset of the chips
of the other player. If the responder accepts the offer, the
chips are transferred automatically according to the agree-
ment, both participants will automatically be moved as close
as possible to the goal square given their chips and the game
will end. If the responder rejects (or no offer was received),
it will be able to make a counter-proposal. If the proposal
is accepted, the game will end with the agreement result as
above. Otherwise, the game will end with no agreement.

At the end of the game, the score for each player is com-
puted as follows: 100 points bonus for reaching the goal;
5 points for each chip left in a player’s possession, and 10
points deducted for any square in the path between the play-
ers’ final position and the goal-square.2 Suppose for example
that Alice’s true goal is five steps above the position of her
icon (Bob does not see this goal if Alice does not reveal it).
Bob is missing one chip to get to the goal while Alice is
missing two chips; the score for Alice is 70 points and for

1This decision is performed simultaneously by all players,
and goals are only revealed at the end of the phase.
2This path is computed by the Manhattan distance.
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Bob is 90 points.
The game is interesting because players need to reason

about the tradeoff between revealing their goals and provid-
ing information to the other player, or not to reveal their
goals to possibly receive or ask for more chips than they
need. In addition, if there is a second round, the proposer
in this round has an advantage, in that it makes the final
offer in the game. But the identity of the second proposer is
not known at the time that players decide whether to reveal
their goals.

4. THE SIGAL AGENT
The Sigmoid Acceptance Learning Agent (SIGAL) devel-

oped for this study uses a decision-theoretic approach to
negotiate in revelation games, that is based on a model of
how humans make decisions in the game. Before describing
the strategy used by SIGAL we make the following defini-
tions. Each player has a type ti that represents the true
position of its goal on the board.3 Let ωn represent an offer
ω made by a proposer player at round n ∈ {1, 2} in a game.
Let rn ∈ {accept, reject} represent the response to ωn by a
responder player. Let si represent the score in the game as
described in the previous section. The no-negotiation alter-
native (NNA) score to player i of type ti is the score for i in
the game given that no agreement was reached. We denote
the score for this event as si(∅). 4 We denote the benefit to
player i from ωn given that rn = accept as πi(ω

n | ti). This
is defined as the difference in score to i between an offer ωn

and the NNA score:

πi(ω
n | ti) = si(ω

n | ti)− si(∅) (1)

Let Ti denote a set of types for player i. Let φi denote
player i’s decision whether to reveal its type at the onset of
the game, which we will refer to as round 0. Let Φi = tki
denote the event in which i reveals its type tki ∈ Ti, and let
Φi = null denote the event in which i does not reveal its
type. Let hn denote a history of moves, including for both
players i and j their revelation decision at the onset of the
game, and the proposals and responses for rounds 1 through
n. We define h0 and h1 as follows:

h0 = {φi, φj} ;h1 =
{
h0, ω1, r1} (2)

For the remainder of this section, we assume that the SI-
GAL agent (denoted a) is paying a person (denoted p). Let
ωna,p represent an offer made by the agent to the person in
round n and let rnp represent the response of the person to
ωna,p. The expected benefit to SIGAL from ωna,p given history
hn−1 and SIGAL’s type tp is denoted Ea

(
ωna,p | hn−1, ta

)
.

Let p(rnp = accept | ωna,p, hn−1) denote the probability that
ωna,p is accepted by the person given history hn−1.

We now specify the strategy of SIGAL for the revelation
game defined in Section 3. The strategy assumes there ex-
ists a model of how humans make and accept offers in both
rounds. We describe how to estimate the parameters of this
model in Section 5. We begin by describing the negotiation
strategies of SIGAL for rounds 2 and 1.

3Revealing goals in the game thus corresponds to making
types common knowledge.
4Note that if no agreement was reached in round 2 (the last
round) of the game, players’ NNA score is also their final
score in the game. If no agreement was reached in round
1 of the game, players’ final score depends on whether the
counter-proposal in round 2 is accepted.

Round 2: If SIGAL is the second proposer, its expected
benefit from an offer (ω2

a,p) depends on its model of how
people accept offers in round 2, encapsulated in the proba-
bility p(r2

p = accept | ω2
a,p, h

1). The benefit to SIGAL is

Ea
(
ω2
a,p | h1, ta

)
=

πa(ω2
a,p | ta) · p(r2

p = accept | ω2
a,p, h

1)+

πa(∅ | ta) · p(r2
p = reject | ω2

a,p, h
1) (3)

Here, the term πa(∅ | ta) represents the benefit to SIGAL
from the NNA score, which is zero. SIGAL will propose an
offer that maximizes its expected benefit in round 2 out of
all possible proposals for this round.

ω2∗
a,p = argmaxω2

a,p
Ea
(
ω2
a,p | h1, ta

)
(4)

If SIGAL is the second responder, its optimal action is to
accept any proposal from the person that gives it positive
benefit. Let r2∗

a (ω2
p,a | h1) denote the response of SIGAL to

offer ω2
p,a, defined as

r2∗
a (ω2

p,a | h1) =

{
accept πa(ω2

p,a | ta) > 0

reject otherwise
(5)

where πa(ω2
p,a | ta) is defined in Equation 1. The benefit to

SIGAL from this response is defined as

πa
(
r2∗
a | ω2

p,a, h
1, ta

)
={

πa(ω2
p,a | ta) r2∗

a (ω2
p,a | h1) = accept

πa(∅ | ta) otherwise
(6)

Round 1: If SIGAL is the first proposer, its expected ben-
efit from making a proposal ω1

a,p depends on its model of
the person: If the person accepts ω1

a,p, then the benefit to
SIGAL is just πa(ω1

a,p | ta). If (ω1
a,p) is rejected by the

person, then the benefit to SIGAL depends on the counter-
proposal ω2

p,a made by the person in round 2, which itself
depends on SIGAL’s model p(ω2

p,a | h1) of how people make
counter-proposals. The expected benefit to SIGAL from be-
having optimally as a second responder for a given offer ω2

p,a

is denoted Ea(resp2 | h1, ta), and defined as

Ea(resp2 | h1, ta) =∑
ω2
p,a

p(ω2
p,a | h1) · πa(r2∗

a | ω2
p,a, h

1, ta) (7)

where πa(r2∗
a | ω2

p,a, h
1, ta) is defined in Equation 6.

Its expected benefit from ω1
a,p is:

Ea
(
ω1
a,p | h0, ta

)
=

πa(ω1
a,p | ta) · p(r1

p = accept | ω1
a,p, h

0)+

Ea(resp2 | h1, ta) · p(r1
p = reject | ω1

a,p, h
0) (8)

Where h1 =
{
h0, ω1

a,p, r
1
p = reject

}
. SIGAL will propose

an offer in round 1 that maximizes its expected benefit in
this round:

ω1∗
a,p = argmaxω1

a,p
Ea
(
ω1
a,p | h0, ta

)
(9)

If SIGAL is the first responder, it accepts any offer that
provides it with a larger benefit than it would get from mak-
ing the counter-proposal ω2∗

a,p in round 2, given its model of
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how people respond to offers in round 2:

r1∗
a (ω1

p,a | h0) =


accept πa(ω1

p,a | ta) >

Ea
(
ω2∗
a,p | h1, ta

)
reject otherwise

(10)

Here, h1 =
{
h0, ω1

p,a, r
1
a = reject

}
, πa(ω1

p,a | ta) is defined

in Equation 1 and Ea
(
ω2∗
a,p | h1, ta

)
is the benefit to SIGAL

from making an optimal proposal ω2∗
a,p at round 2, as defined

in Equation 3.
Let πa

(
r1∗
a | ω1

p,a, h
0, ta

)
denote the benefit to SIGAL from

its response to offer ω1
p,a in round 1. If SIGAL accepts this

offer, it receives the benefit associated with ω1
p,a. If it rejects

this offer, it will receive the expected benefit Ea
(
ω2∗
a,p | h1, ta

)
from making an optimal counter-proposal at round 2:

πa
(
r1∗
a | ω1

p,a, h
0, ta

)
={

πa(ω1
p,a | ta) r1∗

a (ω1
p,a | h0) = accept

Ea
(
ω2∗
a,p | h1, ta

)
otherwise

(11)

The expected benefit to SIGAL as a responder in round 1 is
denoted as Ea

(
resp1 | h0, ta

)
. This benefit depends on its

model of all possible offers made by people for each type,
given that SIGAL responds optimally to the offer.

Ea
(
resp1 | h0, ta

)
=
∑
tp∈Tp

p(tp | h0)·
∑
ω1
p,a

p(ω1
p,a | tp, h0) · πa

(
r1∗
a | ω1

p,a, h
0, ta

) (12)

Note that when the person reveals his/her type at round 0,
this is encapsulated in the history h0, and p(tp | h0) equals
1 for the person’s true type. Otherwise p(tp | h0) equals the
probability p(tp).

Round 0: In the revelation round SIGAL needs to decide
whether to reveal its type. Let Ea(h0, ta) denote the ex-
pected benefit to SIGAL given that h0 includes a revelation
decision for both players and that ta is the type of agent.
This benefit depends on the probability that SIGAL is cho-
sen to be a proposer (p(prop)) or responder (p(resp)) in
round 1:

Ea(h0, ta) =p(resp) · Ea
(
resp1 | h0, ta

)
+

p(prop) · Ea
(
ω1∗
a,p | h0, ta

)
(13)

Here, ω1∗
a,p is the optimal proposal for SIGAL in round 1, and

Ea
(
ω1∗
a,p | h0, ta

)
is the expected benefit associated with this

proposal, defined in Equation 8.
Because players do not observe each other’s revelation de-

cisions, the expected benefit for a revelation decision φa of
the SIGAL agent sums over the case where people revealed
their type (i.e., φa = tp) or did not reveal their type (i.e.,
φa = null). We denote p(φp = tp) as the probability that
the person revealed its type tp, and p(φp = null) as the
probability that the person did not reveal its type tp.

Ea (φa) =
∑
tp∈Tp

[p(φp = tp)·

Ea
(
h0 = {φa, φp = tp} , ta

)
+

p(φp = null)·
Ea
(
h0 = {φa, φp = null} , ta

)
] (14)

Given that SIGAL is of type ta ∈ Ta, it reveals its type only
if its expected benefit from revelation is strictly greater from
not revealing:

φ∗a =


ta Ea (φa = ta) ≥

Ea (φa = null)

null otherwise

(15)

The value of the game for SIGAL for making the optimal
decision whether to reveal its type is defined as Ea (φ∗a).

Lastly, we wished SIGAL to take a risk averse approach
to making decisions in the game. Therefore SIGAL used a
convex function to represent its utility in the game from an
offer ωn, which modified Equation 1.

π′a(ωn | ta) =
πa(ωn | ta)(1−ρ)

1− ρ (16)

The strategy used by SIGAL is obtained by “plugging in”
the risk averse utility π′a(ωn | ta) instead of πi(ω

n | ti).

5. MODELING HUMAN PLAYERS
In this section we describe a model of people’s behavior

used by SIGAL to make optimal decisions in the game. We
assume that there is a training set of games played by people,
as we show in the next Section.

5.1 Accepting Proposals
We modeled people’s acceptance of proposals in revelation

games using a stochastic model that depended on a set of
features. These comprised past actions in the game (e.g.,
a responder may be more likely to accept a given offer if it
revealed its type as compared to the case in which it did not
reveal its type) as well as social factors (e.g., a responder
player may be less likely to accept a proposal that offers
more benefit to the proposer than to itself).5

Let ωni,j represent a proposal from a player i to a player j
at a round n. We describe the following features that affect
the extent to which player j will accept proposal ωni,j . These
features are presented from the point of view of proposer
i, therefore we assume that the type of the proposer ti is
known, while the type of the responder tj is known only if j
revealed its type. We first detail the features that relate to
players’ decisions whether to reveal their types.

• REV 0
j . Revelation by j. This feature equals 1 if the

responder j has revealed its type and 0 otherwise. The
superscript 0 indicates this feature is relevant to the
revelation phase, which is round 0.

• REV 0
i . Revelation by i. This feature equals 1 if the

proposer has revealed its type ti.

We now describe the set of features relating to social factors
of the responder player j.

• BENn
j . Benefit to j. The benefit to j from proposal

ωni,j in round n. This measures the extent to which
the proposal ωni,j is generous to the responder. In
the case where j revealed its type, this feature equals
πj(ω

n
i,j | tj) and computed directly from Equation 1.

Otherwise, the value of this feature is the expected

5Both of these patterns were confirmed empirically, as shown
in the Results section.
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benefit to the responder from ωni,j for all possible re-
sponder types Tj :∑

tj∈Tj
p(tj | hn−1) · πj(ωni,j | tj)

• AIni . Advantageous inequality of i. The difference
between the benefit to proposer i and responder j that
is associated with proposal ωni,j . This measures the
extent to which proposer i is competitive, in that ωni,j
offers more for i than for j. This feature equals the
difference between πi(ω

n
i,j , accept | ti) and BENn

j .

To capture the way the behavior in round n = 1 affects the
decisions made by participants in round n = 2, we added
the following features that refer to past offers.

• P.BENn
j . Benefit to j in the previous round. This

feature equals BEN1
j if n = 2, and 0 otherwise.

• P.BENn
i . Benefit to proposer i in the previous round.

This feature equals πi(ω
1
i,j , accept | ti) if n = 2 and 0

otherwise.

To illustrate, consider the CT board game shown in Figure 1.
Alice is missing two green chips to get to the goal and Bob is
missing 1 purple chip to get to the goal. Suppose Bob is the
first proposer (player i) and that Alice is the first responder
(player j), and that Bob revealed its goal to Alice, so its
type is common knowledge, while Alice did not reveal her
goal. We thus have that REV 0

j = 0 and REV 0
i = 1. Alice’s

no-negotiation alternative (NNA) score, sj(∅), is 70 points
and Bob’s NNA score is 90 points.

According to the offer shown in the Figure, Bob offered
two green chips to Alice in return for two purple chips. If
accepted, this offer would allow Alice to get to the goal in 5
steps, so she will have 19 chips left at the end of the game,
worth 19 · 5 = 95 points. Similarly, Bob will have 21 chips
left at the end of the game, worth 105 points. Both will also
earn a bonus of 100 points for getting to the goal. Therefore
we have that BEN1

j = 95+100−70 = 125. Similarly, Bob’s
benefit from this proposal is 105 + 100 − 90 = 115 points.
The difference between the benefit to Bob and to Alice is
−10, so we have that AI1

i = −10. Lastly, because the offer
is made in round 1, we have that P.BEN1

j = P.BEN1
i = 0.

This offer is more generous to Alice than it is to Bob.
Suppose now that Alice rejects this offer and makes a

counter proposal in round 2, that proposes one purple chip
to Bob in return for four greens. In this example, Alice is
using her knowledge of Bob’s type to make the minimal of-
fer that would allow Bob to reach the goal while providing
additional benefit to Alice. Alice is the proposer (player i)
and Bob is the responder (player j). Recall that Bob has
revealed its goal while Alice did not, so we have REV 0

j = 1

and REV 0
i = 0. Using a similar computation from before,

we get that Bob’s score from the counter proposal is 190
points. Therefor we have that BEN2

j = 190 − 90 = 100.
Alice’s benefit from the counter-proposal is 210− 70 = 140,
therefore we have that AI2

i = 140 − 100 = 40. The last
features in the example capture the benefit to both players
from the proposal made in the first round to Alice and Bob,
so we have P.BEN2

j = 125, and P.BEN2
i = 115.

5.1.1 Social Utility Function
We model the person as using a social utility function to

decide whether to accept proposals in the game. This social

utility depends on a weighted average of the features defined
above. We define a transition function, Tn, that maps an
offer ωn and history hn−1 to an (ordered) set of feature
values xn as follows.6

xn =
(
REV 0

j , REV
0
i , BEN

n
j , AI

n
i , P.BEN

n
j , P.BEN

n
i

)
To illustrate, in the example above, we have that x1 =
(0, 1, 125,−10, 0, 0) and x2 = (1, 0, 100, 40, 125, 115).

Let u(xn) denote the social utility function which is de-
fined as the weighted sum of these features. To capture the
fact that a decision might be implemented noisily, we use
a sigmoid function to describe the probability that people
accept offers, in a similar way to past studies for modeling
human behavior [4]. We define the probability of acceptance
for a particular features values xn by a responder to be

p(rni = accept | ωn, hn−1) =
1

1 + e−u(xn)
(17)

where xn = Tn(ωn, hn−1). In particular, the probability of
acceptance converges to 1 as u(xn) becomes large and posi-
tive, and to 0 as the utility becomes large and negative. We
interpret the utility to be the degree to which one decision
is preferred. Thus, the probability of accepting a proposal
is higher when the utility is larger.

5.1.2 Estimating Weights
To predict how people respond to offers in the game, it is

needed to estimate the weights in their social utility function
in a way that best explains the observed data. In general,
we need to model the probability that an offer is accepted
for any possible instantiation of the history. The number of
possible proposals in round 1 is exponential in the combined
chip set of players.7 It is not possible to use standard den-
sity estimation techniques because many such offers were
not seen in the training set or were very rare. Therefore,
we employed a supervised learning approach that assumed
people used a noisy utility function to accept offers that de-
pended on the features defined above. Let Ωi,p denote a
data set of offers proposed by some participant i to a per-
son p.8 For each offer ωni,p ∈ Ωi,p let y(rnp | ωni,p) denote
an indicator function that equals 1 if the person accepted
proposal ωni,p, and zero otherwise. The error of the predic-
tor depends on the difference between y(rnp | ωni,p) and the

predicted response p(rnp = accept | ωna,p, hn−1), as follows:∑
ωni,p∈Ωi,p

(p(rnj = accept | ωni,p, hn−1)− y(rnj | ωni,p))2 (18)

where p(rnj = accept | ωni,j , hn−1) is defined in Equation 17.
We used a standard Genetic algorithm to estimate weight

values for the features of people’s social utility that mini-
mize the aggregate error in the training set. To avoid over-
fitting the training set, we used a held-out cross-validation
set consisting of 30% of the data. We chose the instance with
minimal error (on the training set) in the generation that
corresponded to the smallest error on the cross-validation

6These weights are estimated from data using statistical
techniques as described in the following section.
7In one of the boards we studied the number of possible
offers that provided the same benefit to both players was
about 27,000, out of a total of 224 possible offers.
8We explain how we collected this data set in the Empirical
Methodology Section.
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set. We used ten-fold cross-validation, repeating this process
ten times, each time choosing different training and testing
sets, producing ten candidate instances. To pick the best
instance, we computed the value of the game Ea (φ∗a) for SI-
GAL for each of the learned models, where φ∗a is defined in
Equation 15. This is the expected benefit for SIGAL given
that it chooses optimal actions using a model of people that
corresponds to the feature values in each instance.

5.2 Proposing and Revealing
This section describes our model of how people make pro-

posals in revelation games and reason about whether to re-
veal information.

5.2.1 First proposal model
We used standard density estimation techniques (histograms)

to predict people’s offers for different types.Based on the as-
sumption that proposals for the first round depend on the
proposer’s type and its decision whether to reveal, we di-
vided the possible proposals to equivalence classes accord-
ing to the potential benefit for the proposer player, and
counted how many times each class appears in the set. Let
p(ω1

p,j | tp, φi) denote the probability that a human proposer

of type tp offers ω1
p,j in round 1. Let Ntp,φp(πp(ω

1
p,j | tp))

denote the number of first proposals which gives the human
a benefit of πp(ω

1
p,j | tp), given the human is of type tp and

its revelation decision was φp. Let Ntp,φp(Ω1
p,j) denote the

number of the first proposal in this subset. p(ω1
p,j | tp, φp)

is defined as:

p(ω1
p,j | tp, φp) =

Ntp,φp(πp(ω
1
p,j | tp))

Ntp,φp(Ω1
p,j)

(19)

5.2.2 Counter-proposal model
According to our model, a player’s proposal in the sec-

ond round also depends on the history, this two dimensional
probability density function tends to be too much sparse to
calculate it directly as described in Subsection 5.2.1. In-
spired by studies showing that people engage in tit-for-tat
reasoning [15] we used this principal to model the counter-
proposals made by people. We assumed that a responder
player i will be proposed offer ω2

p,i by a human player in the

second round with benefit πi(ω
2
p,i | ti) that is equal to the

benefit πp(ω
1
i,p | tp) from offer ω1

i,p made to the people in the
first round, when the human was a responder. For example,
suppose that Bob is the proposer in round 1 and propose
to Alice a benefit of 125. According to the model, if Al-
ice rejects the offer she will propose Bob a counter-proposal
that provides Bob with the same benefit, 125. Note that this
does not assume that the proposal will provide Alice with the
same benefit she got from Bob in the proposal from round
1. Formally, let NΩ2

p,i
(πp(ω

1
i,p | tp)) denote the number of

counter-proposals ω2
p,i which give benefit πp(ω

1
i,p | tp). We

assume that there always exists at least one proposal that
meets this criterion, i.e., NΩ2

p,i
(πp(ω

1
i,p | tp)) 6= 0. The “tit

for tat” heuristic is as follows:

p(ω2
p,i | h1) =

{
0 πi(ω

2
p,i) 6= πp(ω

1
i,p)

1/NΩ2
p,i

(πp(ω1
i,p|tP )) otherwise

(20)
This heuristic is used in Equation 7 to facilitate the compu-
tation of the expected benefit from SIGAL as a responder
in round 1.

Lastly, we detail the model used by SIGAL to predict
whether the person reveals its goal. Let Ntp denote the
number of instances in which people were of type tp, and
let Ntp(φp) denote the number of times that people of type
tp chose to reveal their type. The probability that a human
player p revealed its type tp is defined as:

p(φp | tp) =
Ntp(φp)

Ntp
(21)

6. EMPIRICAL METHODOLOGY
In this section we describe the methodology we used in or-

der to learn the parameters of the model of how people play
revelation games, and to evaluate it. For these purposes
we recruited 228 students enrolled in a computer science or
software engineering program at several universities and col-
leges. Subjects received an identical tutorial on revelation
games that was exemplified on a board (not the boards used
in the study). Actual participation was contingent on suc-
cessfully answering a set of basic comprehension questions
about the game. Participants were seated in front of a ter-
minal for the duration of the study, and could not speak
to any of the other participants. Each participant played
two revelation games on different boards. The boards in the
study fulfilled the following conditions at the onset of the
game: (1) There were two goals for each player; (2) Every
player lacked one or two chips to reach each of its possible
goals; (3) Every player possessed the chips that the other
needed to get to each of its possible goals; (4) There existed
at least one exchange of chips which allowed both players
to reach each of their possible goals; (5) the goals were dis-
tributed with a probability of 50% for both players. We
used two boards in the study. In the “asymmetric board”,
one of the players needed a single chip of a particular color
to reach its goal, while the other player needed two chips of
a particular color to reach its respective goal. This is the
board that is shown in Figure 1. We also used a “symmetric
board” in which both players needed a single chip of one of
two possible colors to get to their goal.

Participants played both symmetric and asymmetric boards
in random order. They engaged in a neutral activity (an-
swering demographic questions) between games to minimize
the effects of their behavior in the first game on their behav-
ior in the second game. The participant chosen to be the
proposer in the first game was randomly determined, and
participants switched roles in the second game, such that the
proposer in the first game was designated as the responder in
the second game. A central server (randomly) matched each
participant with a human or an agent counterpart for each
game. The identity of each participant was not disclosed.
We collected the board layout, and players’ proposals, re-
sponses and revelation decisions for all of the games played.
To avoid deception all participants were told they would be
interacting with a computer or a person. Participants re-
ceived fixed compensation (course credit) for participating
in the experiment.9

We divided subjects into four pools. The first pool con-
sisted of people playing other people (66 games). The second
pool consisted of people playing a computer agent that used
a randomized strategy to make offers and responses (170

9Our goal was to build an agent that negotiates well with
people, not to explain people’s incentives, therefore fixed
compensation was sufficient.
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Figure 2: Performance comparison

games). The purpose for this pool was to collect people’s
actions for diverse situations, for example, their response to
offers that were never made by other people. Two thirds
(44 games) of the data from the first pool and the data from
the second pool were used for training a model of people’s
behavior. The third pool consisted of people playing the
SIGAL agent (110 games). The fourth pool (118 games)
consisted of people playing an agent using an equilibrium
strategy to play revelation games.

7. RESULTS AND DISCUSSION
The performance of SIGAL was measured by comparing

its performance against people in the third pool with peo-
ple’s play in the remaining third of the first pool.10 We list
the number of observations and means for each result. All
results reported in this section are statistically significant in
the p < 0.05 range.

7.1 Analysis: General Performance
We first present a comparison of the performance of SI-

GAL and people. Figure 2 shows the average benefit (the
difference in score between agreement and the no-negation
alternative score) for different roles (proposers and respon-
der). As shown by the figure, the SIGAL agent outper-
formed people in all roles (111 points as proposer in round 1
versus 87 points for human proposers in round 1; 121 points
as proposer in round 2 versus 77 points for human proposers
in round 2).

The SIGAL agent was also more successful at reaching
agreements than were people. Only 2% of games in which
SIGAL played people did not reach agreement (in first or
second round), while 27% of games in which people played
other people did not reach agreement. In particular, offers
made by SIGAL in round 2 were accepted 87% of the time,
while offers made by people in round 2 were only accepted
14% of the time. If an offer is rejected at this last round,
the game ends without agreement. This striking difference
shows that SIGAL learned to make good offers at critical
points in the game.

As shown in Figure 2 SIGAL also outperformed the equi-
librium agent in both rounds. The equilibrium agent was
fully strategic and assumed the other player was unbound-
edly rational. Although not shown in the Figure, it made
very selfish offers in the last round, offering only 25 average
points to people and 215 to itself. Most of these offers were

10Although this portion corresponds to only 22 games played
by people, it was sufficient to achieve statistical significance.

Figure 3: Average Proposed Benefit in First and
Second rounds

not accepted. In the first round, it made offers that were
highly beneficial to people, offering 219 average points to
people and 20 to itself. Most of these offers were accepted,
but this did not aid its performance.

To explain the success behind SIGAL’s strategy, we present
a comparison of the benefit from proposals made by the SI-
GAL agent and people in both game rounds in Figure 3.
As shown by the Figure both people and SIGAL made of-
fers that were beneficial to both players in rounds 1 and 2.
However, SIGAL made offers that were significantly more
generous to human responders than did human proposers
(120 points benefit provided by SIGAL as proposer in round
1 versus 96 points provided by human proposers; 114 points
benefit provided by SIGAL as proposer in round 2 versus
66 points provided by human proposers). As shown by the
figure, there was no significant differences between the ben-
efit to SIGAL from offers made by SIGAL itself and people
(121 points to SIGAL versus 123 points to people for round
1 and 126 points versus 124 points in round 2). In particu-
lar, all of SIGAL’s proposals enabled the responder to reach
its goal. Thus, SIGAL was able to learn to make offers that
were better for human responders without compromising its
own utility.

SIGAL’s strategy is highlighted by examining the weights
learned for the different features of how people accept of-
fers. As shown in Table 1, the largest weight was assigned
to BENn

j , the benefit to the responder from an offer. In ad-
dition, the weight for AIni measuring the difference between
the benefit for the proposer and responder was large and
negative. This means that responders prefer proposals that
provide them with large benefits, and are also competitive,
in that they dislike offers that provide more to proposers
than to responders. The offers made by SIGAL reflect these
criteria. In particular, proposers asked more for themselves
than for responders in both rounds. In contrast, SIGAL
equalized the difference in benefit between proposers and
responders in round 1, and decreased the difference between
its own benefit and responder’s benefit in round 2 as com-
pared to human proposer.

7.2 Analysis: Revelation of Goals
We now turn to analyzing the affect of goal revelation

on the behavior of SIGAL. Recall that Ea (φ∗a = ta) denotes
the value of the game for SIGAL when deciding to reveal
its goal in round 0, and behaving optimally according to its
model of how people make offers. Similarly, Ea (φ∗a = null)
denotes the value of the game for SIGAL when deciding not
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Feature Value

REV 0
j 0.258

REV 0
i 0.035

BENn
j 0.956

AIni -0.792
P.BENn

j 0.496

P.BENn
i 0.334

Free Parameter 0.608

Table 1: Features coefficients weights

to reveal its goal in round 0. Our model predicted no sig-
nificant difference in value to SIGAL between revealing and
not revealing its goal, i.e. Ea (φ∗a = null) ≈ Ea (φ∗a = ta) for
each type ta ∈ Ta. Therefore we used two types of SIGAL
agents, one that consistently revealed its goal at the onset of
the game and one that did not reveal. In all other respects
these agents followed the model described in Section 4. The
empirical results confirmed the model’s prediction, in that
there was no significant difference in the performance of the
two SIGAL agents for all boards and types used in the em-
pirical study. The results described in this section average
over the revealing and non-revealing types of SIGAL agents.

This was confirmed by the empirical results, in which the
average performance of the SIGAL agent when revealing its
goal was 114 points (n = 52), while the average performance
of SIGAL when not revealing its goal was 118 points (n =
58). This difference was not significantly significant in the
p < 0.05 range.

However, the decision of the person to reveal or not reveal
its goal had a significant affect on the negotiation strategy of
SIGAL. When people revealed their goals, SIGAL learned
to ask for more benefit for itself as compared to the case
in which people did not reveal their goals. For example,
when playing the asymmetric board, the non-revealing SI-
GAL agents learns to ask 125 points for itself if the person
reveals its goal, and only 115 points for itself if the person
did not reveal. In this case SIGAL took advantage of the
fact that the type of the human responder is known, but its
own type is not known.

Lastly, the probabilities that people revealed their goals,
as learned from the training set, were as follows: 37.14%
and 46.27% in the asymmetric board were missing one, and
two chips to get to the goal, respectively, and 41.13% for the
symmetric board, in which both players were only missing
one chip. Interestingly, people missing two chips to get to
the goal were most likely to reveal their type. We hypothe-
size this was to justify their request for their missing chips
from the other player.

8. CONCLUSION AND FUTURE WORK
This paper presented an agent-design for interacting with

people in “revelation games”, in which participants are given
the choice to truthfully reveal private information prior to
negotiation. The decision-making model used by the agent
reasoned about the social factors that affect people’s deci-
sions whether to reveal their goals, as well as the effects of
people’s revelation decisions on their negotiation behavior.
The parameters of the model were estimated from data con-
sisting of people’s interaction with other people. In empiri-
cal investigations, the agent was able to outperform people
playing other people as well as agents playing equilibrium
strategies and was able to reach agreement significantly more
often than did people.

We are currently extending this work in two directions.
First, we are considering more elaborate settings in which
players are able to control the extent to which they reveal
their goals. Second, we are using this work as the basis for a
more broad argumentation in which agents integrate expla-
nations and justifications within their negotiation process.
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