Controlling Narrative Time in Interactive Storytelling

Julie Porteous, Jonathan Teutenberg, Fred Charles and Marc Cavazza
School of Computing,
Teesside University,
Middlesbrough TS1 3BA,
United Kingdom
{j.porteous,j.teutenberg,f.charles,m.o.cavazza}@tees.ac.uk

ABSTRACT

Narrative time has an important role to play in Interac-
tive Storytelling (IS). The prevailing approach to control-
ling narrative time has been to use implicit models that
allow only limited temporal reasoning about virtual agent
behaviour. In contrast, this paper proposes the use of an
explicit model of narrative time which provides a control
mechanism that enhances narrative generation, orchestra-
tion of virtual agents and number of possibilities for the
staging of agent actions. This approach can help address a
number of problems experienced in IS systems both at the
level of execution staging and at the level of narrative gen-
eration. Consequently it has a number of advantages: it is
more flexible with respect to the staging of virtual agent ac-
tions; it reduces the possibility of timing problems in the co-
ordination of virtual agents; and it enables more expressive
representation of narrative worlds and narrative generative
power. Overall it provides a uniform, consistent, principled
and rigorous approach to the problem of time in agent-based
storytelling. In the paper we demonstrate how this approach
to controlling narrative time can be implemented within an
IS system and illustrate this using our fully implemented IS
system that features virtual agents inspired by Shakespeare’s
The Merchant of Venice. The paper presents results of an
experimental evaluation with the system that demonstrates
the use of this approach to co-ordinate the actions of virtual
agents and to increase narrative generative power.
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1. INTRODUCTION

Time plays a central role in many aspects of narration [22]
both at the story and at the discourse level. Time deter-
mines pace, dramatic tension as well as the aesthetic of story
visualisation and staging. Existing Interactive Storytelling
(IS) systems have emphasised the causal aspects of agents’
actions but have not incorporated time in their narrative
generation mechanism in a principled fashion.

The prevailing approach in IS has been to use Al planning
for narrative generation and empirical solutions for the syn-
chronisation of agents’ actions, often arrived at by a process
of trial and error or using deliberately underspecified rep-
resentations that assume uniform execution time of agent
actions. These approaches can work well, as demonstrated
by a number of successful IS prototype systems, including [2,
27, 19], but they miss an opportunity to use action duration
as an element of story presentation at the discourse level.

An alternative approach to controlling narrative time is
to extend the representation of narrative actions to rein-
corporate temporal aspects (such as duration, concurrency,
overlap and so on) in the planning process that is used for
narrative generation. This would ensure that generated nar-
ratives contained explicit information about the timing of
agent actions which could be used during the staging of the
narrative. While the IS research community has enthusias-
tically embraced Al planning due to its capability for propa-
gating causality, to date, there has been no use of dedicated
temporal planning architectures. Yet these architectures are
potentially useful for IS since it is likely that there are narra-
tive situations that require dedicated temporal architectures
(ones which are similar to the temporally expressive problems
documented in the AI planning literature [8]). Applying
temporal planning to narrative generation would provide a
sound and principled approach to further increase the gener-
ative power of IS systems and to expand the range of stories
that can be generated.

The use of temporal planning within the process of nar-
rative generation is an approach that neatly re-incorporates
aspects of the problem that have tended to be solved by trial
and error. Clear benefits of this approach include: (i) it will
enable the generation of story and discourse from shared
principles; (ii) it will simplify development and production;
(iii) it will improve integration of action and motion at the
technical level. In addition, we anticipate that the approach
will yield the following advantages: (i) help improve system
reliability, e.g. by overcoming problems associated with tim-
ing and co-ordination of virtual agent actions; (ii) provide a
wider range of possibilities for staging and cinematographic



aspects of virtual agent actions; and (iii) increase the gener-
ative power of the system, i.e. the range of agent situations
and narratives that can be generated.

Throughout the paper we illustrate our discussion with
examples taken from an interactive narrative that we have
developed which features virtual agents and situations in-
spired by Shakespeare’s play The Merchant of Venice [24].

The paper is organised as follows. In the next section we
consider related work. This is followed in section 3 with dis-
cussion of issues related to the explicit temporal representa-
tion of actions and narratives. Section 4 gives an overview of
our approach to generating temporal narratives. The results
of an evaluation using our implemented system are presented
in section 5. Section 7 summarises our conclusions.

2. RELATED WORK

2.1 Interactive Storytelling

A number of prototype IS systems have been developed
that use AI planning for narrative generation [2, 27, 19].
These systems ignore the staged execution time of agent ac-
tions during narrative generation. Instead, they have adopted
a range of solutions to the handling of temporal aspects
at the staging level. One such approach is the use of ez-
ecutability conditions [15] to specify conditions for success-
ful execution of actions [4]. This approach has been used
to co-ordinate the actions of virtual agents but its failure
to reason about temporal aspects such as staged execution
time can make it unreliable. It also requires time-consuming
empirical solutions for the actual production of interactive
narratives thereby limiting its scalability.

A form of executability condition is used in the execution
management architecture ZOCALO [27] to ensure that actions
are executed in legal world states. The system makes some
allowance for the time taken for actions to execute (a state
of ezecuting is maintained) and action effects are not acti-
vated until actions have successfully completed. However
there is no explicit reasoning about action duration during
narrative generation and this could make the system unreli-
able. For example, this omission may only become apparent
during staged execution when an agent arrives too late to
co-ordinate with another agent.

The LOGTELL system [19] also features an overall man-
ager of the IS system which is responsible for controlling
the staging of a partially-ordered plot output by their IPG
generator. The system makes use of temporal logic as a rep-
resentation for the state of the system, which can be used in
particular when authoring the narrative. However no men-
tion is made of its use for resolving the problems of temporal
dynamics faced by narrative generation.

HPTS [11] is a system that reasons about time to han-
dle the synchronisation of behavioural agents. Reactive be-
haviours are described within a runtime environment to han-
dle parallel state machine execution and synchronisation of
agents. This approach orchestrates the synchronisation of
low level action execution (sometimes referred to as the mo-
tion level), such as motion blending and interruption.

An alternative approach is the use of Petri Nets which has
been explored to handle the unfolding of story plots and the
co-ordination of virtual agent behaviour [3]. However the
behaviour of such a system is reactive and only includes de-
liberation about localised temporal aspects of the problem.
Also localised in its approach is the use of cascaded Finite
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State Machines in SCENEMAKER [14]. This represents an
orchestrated approach to temporal and synchronisation is-
sues but its static strategy is rather inflexible and temporal
reasoning is at the “microscopic” level not the planning level.

2.2 Research in Automated Planning

On the other hand temporal planning is a very active re-
search topic in the field of AI planning which has gener-
ated multiple approaches, targeted specifically at temporal
problems. These include logic based planning [1], partial or-
der planning (ZENO [20], VHPOP [28]), hierarchical planning
(NoNLIN [25], OPLAN [12]), extended state space progres-
sion search planning (SAapa [10], SGPLAN [6]) and hybrid
planning systems combining features of different temporal
planning architectures (TEMPO [8], CRIKEY [7]). Early sys-
tems such as ZENO could tackle complex temporal problems
but they suffered from performance limitations. More re-
cently systems such as SGPLAN, TEMPO and CRIKEY have
overcome efficiency problems to the point where they now
have potential for application to IS.

3. REPRESENTING NARRATIVE TIME

IS systems that use planning for narrative generation use a
representation of the narrative world that includes informa-
tion about virtual agent behaviours represented as pre- and
post-condition actions. These actions detail the way that
the agent action is expected to change the state of the nar-
rative world when it is staged in a visual environment. Not
only can these actions describe the capabilities of an agent,
but they can also describe properties inherent in the process
itself — in particular their staged execution time. This no-
tion of execution time may be represented either explicitly
or implicitly: an implicit representation enabling the narra-
tive generator to reason about relative orderings of actions;
an explicit representation extending this to enable reasoning
about complex temporal interactions®.

3.1 Narrative Action Representation

In an implicit representation no temporal information is
included in the description of agent actions and the assump-
tion is that the effects of actions are instantaneous (the clas-
sical STRIPS assumption [13]). In contrast, explicit rea-
soning about the duration of actions makes it possible to
take into account the more sophisticated interplay between
the occurrence of actions themselves, not just their con-
sequences. It shows the continuous evolution of the story
world over time as actions unfold rather than merely showing
actions as their consequences. This explicit durative repre-
sentation provides a means to represent conditions that can
be used for agent synchronisation: before an agent is able to
start an action (e.g. in order for an agent to start to listen
to another agent, they must be within earshot); at the end
of the action (e.g. in order for an agent to make a selection
between a number of alternatives, they must have reached
their decision); or must remain true over the duration of the
action as an invariant (e.g. during the time an agent listens
to an agent singing they must stay in earshot). The dura-
tive action representation also makes it possible to specify
which narrative effects occur immediately, as a virtual agent
starts to perform an action (e.g. when a virtual agent sings,

"We note the correspondence between implicit and explicit
models [17] and qualitative and quantitative models [7].
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Figure 1: System Architecture: input is a domain model (knowledge base) represented temporally; the plan-
based generator builds the narrative incrementally by decomposing the problem into a series of sub-problems
which are then tackled in turn using a temporal planner; for 3D visualisation, the temporal narrative actions
output by the planner map to UnrealScript action descriptions.

the sound starts immediately), and which are delayed until
the agent finishes the action (e.g. an agent spends time per-
suading another agent, the effect of having been persuaded
is activated at the end).

An illustration of the need for temporal reasoning is pro-
vided by act III scene ii of our Merchant of Venice system.
In the scene there are specific narrative actions that require
an informed decision by an agent. These actions must unfold
whilst the agent acquires additional information through
other actions (e.g. conversations). One such action is the se-
lection of a casket by a character, Bassanio, in an attempt to
win the hand in marriage of another character, the wealthy
heiress Portia. A durative representation of the action is*:

(:durative-action select-casket
:parameters (7c - char 7ca - casket 71 - location)
:duration (= ?duration 4)
:condition (and ....
(over all (selecting ?c 71))
(at end (selecting 7c 71))
(at end (decided-to-select 7c 7ca)))
:effect (and
(at
(at
(at

start (selecting 7c 71))
end (selected 7c 7ca 71))
end (not (selecting 7c 71)))))

This illustrates the temporal properties of the action where
deliberation lasts for the duration of the action (over all
the character is selecting) but this must be finalised for the
action to end when post-conditions are activated.

A non-durative version of this narrative action is cumber-
some and does not capture the unfolding of agent deliber-
ation over time. This may prevent the action from being

*We chose PDDL3.0 [16] because of its expressive power
and since it is a standard action description compatible with
multiple planning approaches.
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synchronised with other agent actions or being interrupted
(either by other agents or users in an interactive setting). In
addition, deliberation has dramatic value in terms of staging
and understandability: it enables the spectator to see agents’
decision processes and the factors that influence them.

3.2 Narrative Representation

Temporal narrative plans include information about the
time each agent action is scheduled to start and the expected
duration of each action. The following example:

0.001: (select-casket bassanio lead casket-room) [4.00]
0.002: (give-hint-in-song portia casket-room) [3.00]
0.003: (listen-to-song bassanio casket-room lead) [3.00]

is a representative example of the paradigm, showing the
start time on the left of the action name and the duration
on the right. This example occurs in act III scene ii of the
Merchant of Venice where one of the characters, Bassanio,
is deliberating about the selection of a casket whilst simul-
taneously acquiring information from hints that are given
to him in song by another character. The temporal aspect
of the action, namely the character’s decision process (de-
liberation) can now be staged as an important element of
discourse, as it incorporates important information on the
relation between characters. Also, it allows for interference
by other agents (or the user) thereby supporting further nar-
rative generation

In contrast, capturing this in a non-temporal narrative is
problematic since there is no way to specify start times and
duration of actions. Actions can be left partially ordered
(either generated by a partial order planner [28] or by lifting
a partially ordered narrative from a totally ordered one [26])
but the required overlap between actions cannot be captured
without explicit representation of time.
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Figure 2: Merchant of Venice example illustrating the role of reasoning about staged execution time: (a)
staging failure when narrative actions are not synchronised; (b) successful staging when reasoning about
staged execution time during narrative planning identifies required concurrencies between actions.

4. NARRATIVE GENERATION

Generation of narratives that feature concurrent durative
agent actions requires a planning architecture that can rea-
son about explicit temporal information. Research in Al
planning has led to the development of a number of ded-
icated temporal planning architectures (discussed in sec-
tion 2). Recent, hybrid temporal planners such as TEMPO
and CRIKEY have managed to overcome the performance
limitations of earlier partial order planners and the incom-
pleteness experienced by the extended space progression plan-
ners. Since our motivation includes being able to generate
narratives that feature overlapping concurrent agent actions,
we have chosen to use the CRIKEY system of Coles et al[7]
in our implemented narrative generator. The system will
use CRIKEY in combination with narrative structuring infor-
mation since, without such information, the planner could
end up generating sparse narratives or even no narrative at
all [23]. The generator will use the information to guide
CRIKEY towards the generation of narratives that are suffi-
ciently rich and in keeping with the narrative genre.

The narrative structuring information represents key nar-
rative situations that can be used like intermediate goals to
guide the planner. After [21], we refer to these situations
as constraints but they have also been described in the lit-
erature as author goals [23] and are similar to the notion of
landmarks [18] that have featured in Al planning. The con-
straints for a narrative world are represented as a partially
ordered set of predicates — a declarative representation which
separates this information from action descriptions and may
help facilitate its specification and maintenance.

Our implementation is based on the decomposition ap-
proach of [21]. This can be summarised as follows: use an
input set of constraints to decompose the process of narra-
tive generation into a sequence of sub-problems; generate a
narrative for each decomposed sub-problem; and then as-
semble the final narrative by composition of the sequence of
narratives. This approach implements a higher level of rep-
resentation, where the constraints enable reasoning about
narrative at the meta-level. The constraints can also be
re-combined for different total orderings (as used in our ex-
periments, see section 6).

Our contribution has been to extend their approach to
handle temporal reasoning. These extensions were possible
because of fundamental properties of the system that en-
abled the control program to be integrated with different
base planners. An overview of the architecture of our imple-
mented experimental system is shown in figure 1. The input
is represented using the representation language PDDL3.0
which permits both implicit and explicit representations of
the narrative domain to be input to the system. The con-
trol mechanism uses the input constraints to decompose
the problem and then sends decomposed sub-problems to
CRIKEY. As narrative actions are received from CRIKEY
by the control mechanism they are sent to a visualisation
module. The switch to temporal planning provides a direct
route to mapping between planning actions and their visu-
alisation through the transfer of PDDL3.0 temporal param-
eters to animation control structures (UnrealScript action
descriptions).



S. QUALITATIVE EVALUATION

The objective of our evaluation was to provide data for
the systematic assessment of system performance and be-
haviour. Here we evaluate the approach qualitatively, with
reference to sample Merchant of Venice narratives generated
by our system and shown in figures 2 and 3. These narratives
provide answers to some key questions about our approach
to controlling narrative time, namely: (1) can our approach
help to avoid timing problems as agent actions are staged?
(2) does our approach provide a mechanism to exploit in-
formation about the staging of agent actions? (3) does our
approach to explicit temporal representation and reasoning
increase the generative power of the system?

5.1 Avoiding Timing Problems

Failure to reason explicitly about temporal aspects of the
IS domain at the point of narrative generation can cause
problems that only become apparent when the virtual agent
actions are staged. This can manifest itself both in real-time
failure of the system and failure at the “production” level
which it may be possible to repair through ad hoc local
solutions. For example, if action duration isn’t reasoned
about during narrative generation then an agent may fail
to meet up with another agent because they arrive too late,
after the other agent has already left.

A scene from our Merchant of Venice system, shown in fig-
ure 2, illustrates how this situation can arise. In this scene
one character, Antonio, is endeavouring to reach another
character, Bassanio, in time to bid him farewell before he
departs to sea. In principle, it is possible to generate a nar-
rative for this scenario without reasoning about the staged
execution time of the actions and then to use executabil-
ity conditions (as used in [4]) to try to synchronise agents
by testing that conditions for successful execution of agent
actions hold. In this example the actions for Antonio are
to rush to the port and then bid farewell to Bassanio as he
leaves; the actions for Bassanio are to board the boat and
then depart on his voyage. The first action for Bassanio
has him boarding the ship and since this is independent of
the first action for Antonio, rushing to the port, they can
be staged and visualised in a concurrent fashion (which also
gives interesting opportunities for exploration of automated
camera control). The executability conditions for Bassanio’s
next action, departing aboard ship, do not mention anything
about Antonio’s location. Hence the action can start being
visualised irrespective of the actual on-stage localisation of
Antonio. Depending on how long Antonio takes to arrive at
the port, it can happen that this doesn’t occur until Bassanio
has completely departed from the port, making it impossible
for Antonio’s final action, that of bidding his friend farewell,
to be executed in the visual environment. This situation is
depicted in figure 2.

How would explicit reasoning about time at the point
of narrative generation mean such situations were avoided?
The critical consequence of reasoning about the staged exe-
cution time of these agent actions is the recognition of the
requirement that Bassanio must still be at the port when
Antonio bids farewell to him, in other words that these ac-
tions are staged at the same time. This is shown in figure 2:
the narrative generator has considered the duration of the
actions, identified the required concurrency between them
and forced them to overlap.
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5.2 Providing Information for Staging

Our use of an explicit model of time results in generated
narratives that include scheduled start times for each agent
action and their duration, precisely the information that can
be utilised for staging actions in different ways.

Act T scene (iii) of the Merchant of Venice provides an il-
lustration of the generation of this staging information. The
narrative for this scene (figure 3) shows the scheduled ac-
tions for the characters named Antonio, Bassanio and Shy-
lock. The start of the narrative includes actions which bring
them together on the Rialto ready to discuss the loan of
a sum of money and subsequently seal a bond committing
them to this arrangement. The red line drawn through the
narrative in figure 3 shows the point at which this scene be-
gins in the original play — opening with Bassanio and Shy-
lock in conversation on the Rialto and continuing with the
arrival of Antonio who joins them in conversation. This use
of scene changes in classical theatre can be seen as a “tweak”
which enables characters to appear at different locations as
and when needed with no need to reason about their actions
during the elapsed time (this tweaking of time has also been
used in IS systems to avoid reasoning about agent actions
whilst they are “off-screen” [21]).

However, in IS the objective is to provide different possi-
ble directions for the narrative and if there is a possibility
that agent actions may need to be staged then they must
be reasoned about. In our Merchant of Venice example, this
means that earlier portions of the narrative (i.e. those before
the start of the original scene from the play) need to be rea-
soned about during narrative generation. Consequently, the
narrative in figure 3 also includes agent actions for the time
before they enter into conversation. This allows for mul-
tiple ways of staging these actions, for example, focussing
on one agent and their actions and motivations prior to the
conversation, rather than cutting directly to them.

5.3 Generative Power

There are narratives that can only be generated with an
explicit temporal approach. The scene depicted in figure 3
where the character Bassanio is enquiring about a loan and
Shylock is simultaneously listening can be used to illustrate
this. The action of Bassanio enquiring about the loan re-
quires that Shylock listens to Bassanio for the whole of the
enquiry. The action can be represented as:

(:durative-action listen-to-enquiry
:parameters (7cl ?c2 - char ?1 - location)
:duration (= 7duration 2)
:condition (and
(at start (at 7cil 71))
(over all (listening-to-enquiry ?cl 7c2 71))
(at end (listening-to-enquiry ?7cl ?7c2 71)))
:effect (and
(at start (listening-to-enquiry ?cl 7c2 71))
(at end (not (listening-to-enquiry ?cl ?c2 71)))))

which captures the ongoing nature of the listening process
with the condition (listening-to-enquiry ?c1 ?c2 ?1) that is
activated at the start of the action and is maintained over
the duration. However, in a non-durative version of this ac-
tion, time would be compressed® and this condition would
not be made true. This is problematic since the action of

3 A compressed version of a durative action can be formed by
setting the effects of the action to be the result of applying
the start effects followed by the end effects and then setting
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Figure 3: Example Merchant of Venice Narrative with overlapping durative actions: multiple possibilities for
staging are introduced by temporal reasoning before the start of the scene in the original play (red line).

Bassanio enquiring about a loan requires Shylock to be lis-
tening (even in a compressed version this would remain as
a pre-condition). The only way to handle scenarios such as
this would be somewhat clumsy and would involve coercing
the conversational exchange to take place at a given stage.

This example demonstrates the increased generative power
of a temporal approach: narratives can be generated that
require interactions over the duration of actions and these
cannot be generated by compressed versions of the same ac-
tions. This is discussed further in the next section.

6. RESULTS

As demonstrated in the previous section, there are nar-
ratives which can only be properly generated and staged
using narrative actions which have duration. Here we as-
sess how this could affect real-world IS narrative generation
problems, by examining the capacity these representations
have for generating narratives for the different sub-problems
that result from applying our decomposition approach in
our experimental Merchant of Venice domain. These exper-
iments focussed on narrative generation and consequently
were performed off-line, without visualisation. The inclu-
sion of staging would not significantly alter these results,
and if anything, temporal planning would be less adversely
affected given that the resolution of temporal factors is han-
dled prior to visualisation.

In the course of one run of the IS system, user interaction
could force the story to enter a broad range of unforesee-
able world states. To simulate this, we generated a set of 20

the action pre-conditions to be the start conditions of the
durative action along with all end conditions and invariants
that are not achieved by the start effects [7].
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potential initial states of the narrative domain by sampling
randomly from the set of facts that are relevant to the dif-
ferent story sub-problems (where a fact is relevant if it can
appear in a causal chain for achieving the sub-problem).
A typical example of one of the randomly generated initial
states contains the following facts:

(at bassanio venice-rialto)

(at antonio venice-street )

(decided bassanio lead-casket)
(enquired-about-loan bassanio shylock antonio)

In addition to facts specifying virtual agents’ initial loca-
tions, in this state Bassanio has decided to choose the cor-
rect casket prior to travelling to Belmont, and has already
discussed potential loans with Shylock. It should be noted
that spurious facts, such as (decided antonio gold-casket) are
never included in the generated initial states, as they are not
deemed to be relevant facts (i.e. in this case, Antonio is not
a suitor, and therefore has no reason for selecting caskets).

For each of the initial states, two narrative plans were
generated, built up from 10 decomposed sub-problems. The
first of these narratives was constructed using non-durative
agent actions, and the second with durative ones. A cu-
mulative count of the number of sub-problems successfully
achieved was kept for each run. If one approach failed to
achieve a sub-problem its state was changed to that reached
by the other approach, and the system was then permit-
ted to continue narrative generation from that point. This
strategy was adopted in order to avoid unfairly penalising
an approach for failing to achieve a sub-problem especially
early in the narrative. Figure 4 shows the mean rate of
sub-problem achievement for durative and non-durative ac-
tions. The solid lines indicate the mean number of sub-
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Figure 4: Count of the number of successfully gener-
ated narratives for decomposed sub-problems (with
and without durative actions). Corridors show one
standard deviation. (See text for further details.)

problems achieved at each point in a narrative, and the cor-
ridor around each shows one standard deviation.

It is immediately clear that in this real-world example of
an IS problem, generativity issues can have a significant ef-
fect on its execution. The graph shows results on output
narratives of more than 10 actions, since narratives shorter
than this are deemed too brief to be meaningful. For nar-
ratives of increasing length there is a clear difference in the
number of sub-problems that can be achieved with the use
of a temporal approach. Each failed sub-problem represents
a point at which a real-world IS system must either sacrifice
logical consistency of the narrative, or apply hand-crafted
repair rules that jeopardise its scalability and reliability.

In addition to quantifying the expected rate of failure to
achieve constraints after arbitrary user interaction, we also
want to quantify the increase in generative power that tem-
poral representations provide. As a measure of generative
power, we consider the potential for non-trivial interactions
between narrative actions of a domain. The simplest exam-
ples of these interactions can be seen in producer-consumer
relationships between agent actions, such as when a con-
dition that is added by one action is then deleted by an-
other; or when a fact that is deleted by an action is then
replaced by another. In IS, these sorts of interaction appear,
for example, in conversations between characters, or when
movement between locations is performed. An illustration
is provided by the agent action (board-ship bassanio venice-
port) that covers the movement of Bassanio from the port
and interacts with actions that move Bassanio to the port
(the “producers” in the relationship). Similar interactions
occur between conversational actions, which feature agents
entering and exiting the conversation through different ac-
tions. Most importantly, actions that do not interact in this
way provide no scope for the generation of novel interesting
narrative situations (similar to the idioms described in [5]).

The identification of these macros is performed in a phase
of static domain analysis [9]. For the macros considered
here the macro action sequence must be valid (i.e. the pre-
conditions for each action are not violated by prior actions)
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Figure 5: Increase in generative power resulting

from the use of durative action representation. Lines
show the increase in potential macros depending on
domain size and percentage of durative actions.

and the post-conditions of the macro as a whole must differ
from the union of its parts.

As a measure of these interesting narrative situations or
idioms we counted the number of additional macro actions
(i.e. all sets of actions with non-trivial interactions) that
result as a consequence of using an explicit temporal repre-
sentation. We created a set of test domains to measure the
presence of macro actions with varying numbers of durative
actions. The domain objects and facts were the same as
those in our Merchant of Venice domain. The number of ac-
tions in each domain was similar to that used in the previous
evaluation — between 100 and 500. These actions were ran-
domly generated from the domain facts, and had the same
number of pre- and post- conditions as those found in the
Merchant of Venice IS domain. Figure 5 shows the number
of additional macro operators present when 25%, 50%, 75%
or 100% of the agent actions in the domain were defined as
durative actions, and the remainder were compressed, non-
durative versions of them (as described in section 5.3).

The results show that the fundamental nature of the du-
rative representation of actions gives rise to a significant
increase in the number of possible interesting interactions.
For a 500 action domain, almost 100 additional macro ac-
tions were seen to appear from the switch to a pure temporal
representation — each of which is a new, potential situation
or idiom. When moving to domains with larger sets of ac-
tions (e.g. planning for the entire Merchant of Venice rather
than the sub-plot used to illustrate this paper), the number
of additional macros relative to the number of actions can
be seen to grow at a super-linear rate. As seen in figure 5,
applying the durative representation to only a subset of a
domain can still realise this increase in generative power.

7. CONCLUSIONS

In this paper we presented the case for the use of an ex-
plicit approach to controlling narrative time in IS. This ap-
proach involves extensions to the representation of agent ac-
tions to include their staged execution time. It also includes



a shift to planning architectures that can schedule agent ac-
tions with required concurrency. The approach is applicable
to a wide variety of different genres: those where timing or
pace play a role, those where staging needs to be explored
and those where story and discourse may have complex re-
lationships. Overall the approach provides a uniform, con-
sistent, principled and rigorous approach to the problem of
time in agent-based storytelling

Our evaluation clearly demonstrated the advantages of a
temporal IS approach: at the level of staging, it has been
shown to overcome problems of timing of agent actions and
provides a mechanism to exploit information about the stag-
ing of agent actions; and at the level of narrative generation,
it has been shown to increase the generative power of the
system. In addition the principled nature of the approach
will be advantageous in system production since it removes
the time consuming search for empirical solutions.
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