
Trust as Dependence: A Logical Approach

Munindar P. Singh
Department of Computer Science

North Carolina State University
Raleigh, NC 27695-8206, USA

singh@ncsu.edu

ABSTRACT
We propose that the trust an agent places in another agent
declaratively captures an architectural connector between
the two agents. We formulate trust as a generic modality
expressing a relationship between a truster and a trustee.
Specifically, trust here is definitionally independent of, al-
beit constrained by, other relevant modalities such as com-
mitments and beliefs. Trust applies to a variety of attributes
of the relationship between truster and trustee. For exam-
ple, an agent may trust someone to possess an important
capability, exercise good judgment, or to intend to help it.
Although such varieties of trust are hugely different, they re-
spect common logical patterns. We present a logic of trust
that expresses such patterns as reasoning postulates con-
cerning the static representation of trust, its dynamics, and
its relationships with teamwork and other agent interactions.
In this manner, the proposed logic illustrates the general
properties of trust that reflect natural intuitions, and can
facilitate the engineering of multiagent systems.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—multiagent systems; D.2.1 [Software Engineer-
ing]: Requirements Specifications—Methodologies

General Terms
Theory

Keywords
Trust, commitments, service-oriented computing

1. INTRODUCTION
We develop a novel approach to trust in multiagent sys-

tems that relates the intuition of trust as reliance with the
notion of an architectural connector [17]. When the com-
ponents of a software architecture are agents (understood
as active, autonomous entities), each connector between any
two agents is naturally understood in terms of the trust they
place in each other. In this manner, we not only relate intu-
itions about two heretofore isolated subfields of multiagent

Cite as: Trust as Dependence: A Logical Approach, Munindar P. Singh,
Proc. of 10th Int. Conf. on Autonomous Agents and Multia-
gent Systems (AAMAS 2011), Tumer, Yolum, Sonenberg and Stone
(eds.), May, 2–6, 2011, Taipei, Taiwan, pp. 863-870.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

systems (trust and agent-based software engineering), but
also provide a new basis for formalizing those intuitions to
use as a basis for improved engineering methodologies.

Classically, following Castelfranchi and Falcone [1], one
may understand an agent (the truster) as trusting another
(the trustee) when the truster puts its plans in the hands of
the trusted agent. In general terms, the above is a valuable
intuition that we seek to preserve. However, Castelfranchi
and Falcone take a staunchly cognitive stance wherein a
“plan” is reflected in the intentions and beliefs of the truster
with respect to the trustee.

In contrast, we take the position that the notion of “plan”
in general multiagent settings is often, though not always,
far removed from the cognitive view. Referrals, which are
crucial for inducing trust in social settings, often involve
plans that might be quite tenuous. In other cases, one may
spot a plan only based on strong assumptions about the trus-
ter and trustee, the tasks involved, and the context. There-
fore, we advocate here an architectural intuition where the
parties may not have strongly cognitive plans either.

Trust arises in many settings. For this reason, we develop
a modular, “minimalist” formalization of trust, which cap-
tures the essential properties that any model of trust would
follow. Our approach does not demand agreement on the
additional aspects of trust—such as belief, intentions, plans,
similarity, probability, utility—that specific models might
incorporate and specific applications may demand. Thus
our approach can provide a conceptual basis for organizing
systems without having to delve into the details of trust.

We treat trust as a high-level architectural connector. A
truster’s trust in a trustee expresses the expectations the
truster holds of the trustee. This interpretation of an ar-
chitectural connector as the dependence of a truster on a
trustee generalizes the classical software architecture [15]
idea of one component’s “assumptions” about another. Tra-
ditionally, such assumptions reduce to operational details of
control and data flow, but in agent-oriented software engi-
neering we ought to treat them as interagent dependencies.

Singh and Chopra [19] propose to use commitments as a
basis for multiagent systems architecture. Commitments are
appropriate bases for interaction where a protocol specifies
the commitments involved. However, in flexible, emergent
settings, such specifications might be incomplete or even
nonexistent. That is, the agents should be prepared to inter-
act with others even in the absence of commitments. In such
cases, the basis for their interactions would be the trust that
each agent places in the other. Even when a commitment
exists, the creditor of the commitment would need to trust

863

the debtor in order to rationally act on the assumption that
the debtor will discharge the commitment in consideration.

When we apply our trust-based approach on traditional
software components, any modeling of trust would be im-
plicit and hard-coded in the components—reflected only in
the minds of the designers. When we apply our approach on
sophisticated intelligent agents, the modeling of trust would
be more explicit and subject to reasoning by the agents
themselves.

Notice that sometimes architecture is conflated with nota-
tions for expressing it, especially established notations such
as UML. Such notations have no abstractions geared toward
trust and other high-level concepts, so we avoid them here.

Contributions. We present a formal semantics of trust, mo-
tivating several reasoning postulates for trust and relating
those postulates to architectural connectors. Our contribu-
tions bear relevance also to the study of commitments, which
we treat as correlates of trust. Further, the notion of archi-
tecture pursued here, although far removed from traditional
software architecture, is inspired by taking a truly agent-
oriented stance. Not only are agents a natural abstraction
but also the trust between them is core to their interactions.

Organization. The rest of this paper is organized as fol-
lows. Section 2 discusses some intuitions about trust as it
relates to architecture. Section 3 introduces our technical
framework for trust. Section 4 presents a variety of postu-
lates for trust describing potential properties of relevance to
active trust, integrity, structure, meaning, teamwork, and
dynamics. Section 5 presents a case study demonstrating
our approach in relation to both traditional and more re-
cent commitment-based approaches. Section 6 places our
work in the broader setting of architecture and brings out
some directions for future work.

2. INTUITIONS ABOUT TRUST
Trust is central to several disciplines. So it is not surpris-

ing that it has garnered a lot of research attention. Existing
approaches differ a lot on the complexity of the conceptual
model in which they consider trust. The following main lines
of research reflect the intuition of dependence are relevant.

Subjective, which treat trust as a suitably structured set
of beliefs and intentions [1]. Indeed, Demolombe [5]
reduces trust to (graded) beliefs. Liau [12] and Dastani
et al. [4] consider how a truster may absorb information
from a trustee, e.g., by adopting a belief if a trusted
sender says so.

Measured, which treat trust as a numeric weight based on
heuristics [9], subjective probability [11, 23], a utility
[3], or a grade [5]. These are subjective approaches
albeit with representations geared toward numeric or
ordinal values.

Social, which understand trust in terms of social relation-
ships [20]. Falcone and Castelfranchi [7] distinguish
objective and subjective dependence as well as uni-
lateral, reciprocal, and mutual dependence. Our basic
framework accounts for all of these, albeit with specific
postulates describing different situations, e.g., team-
work. Johnson et al. [10] examine teamwork via social
interdependence, which is crucial as a basis for trust.

A commonality of the existing approaches is that they con-
flate aspects of the representation of trust on the one hand
with the complex of features that go into making a judgment
of trustworthiness on the other. The latter involve reason-
ing techniques (often domain-specific and heuristic) for up-
dating the extent of trust placed by a truster in a trustee.
Indeed, there is a common confusion when talking about
trust in that many researchers expect to see the above kinds
of heuristics, and do not appreciate the value of a generic
method, such as ours. As an analogy, one can think of rules
of Bayesian inference or axioms of belief. Such rules and
axioms do not in themselves produce an answer of what an
agent should infer or believe, but constrain the probabilis-
tic or binary truth values an agent may assign to various
propositions. In the same way, our approach describes how
an agent or a designer may reason soundly about trust.

We formalize a general-purpose semantically motivated
representation of trust. Interestingly, this representation
provides a basis for stating a variety of constraints on the
modeling of trust with respect to the integrity and structure
of architectural connectors, and of reasoning about trust.
Although it is not focused on trust measures, it also pro-
vides a basis for such measures.

Conditionality of Trust. We posit that, in general, trust
must be conditional. Each assignment of trust presupposes
some preconditions (which we can capture as antecedents)
and expectations (which we can capture as consequents).
Blind trust is merely a boundary condition. This holds in
normal usage: e.g., a customer may trust a merchant as fol-
lows “if I pay, (I trust) the merchant will deliver the goods,”
expressing the customer’s expectation and presumably link-
ing it to further plans of the customer.

Trust as Dependence, Architecturally. Let us consider
an agent formulating and enacting a plan that relies upon
the contributions of others—in essence, trusting the others
to make their contributions to its plan. More generally, the
interactions of an agent with other agents may be described
at a high level in terms of the trust each of them places upon
the others. We model further aspects of the interactions such
as whether trusted agents are indeed trustworthy based on
how the trust maps to relevant concepts.

Although the antecedent and consequent are generic, nom-
inally, we associate them with the truster and trustee, re-
spectively. When the antecedent becomes true, the con-
nector activates and when the consequent becomes true,
the connector completes. It is helpful to relate the an-
tecedent and consequent of a trust expression to the struc-
ture of the connector it describes. Intuitively, a trust ex-
pression becomes stronger as its antecedent becomes weaker
and its consequent becomes stronger. We can understand
the antecedent becoming weaker with the connector becom-
ing broader because it would activate more easily. Likewise,
we can understand the consequent becoming stronger with
the connector becoming tighter because it would complete
with greater effort on part of the trustee, and thus sustain
enhanced expectations on part of the truster.

This paper develops an organizational approach, espe-
cially from the standpoint of the connectors among autonomous
agents understood conceptually. As explained above, in this
view, a relationship from one agent to another can be under-
stood as the trust the first agent places in the second agent.

864

An agent may implement such an interconnection based on
concepts such as beliefs.

3. TECHNICAL FRAMEWORK
Our technical framework is based on modal logic with a

possible worlds semantics. In addition to trust, we capture
commitments as an abstraction because they help us state
various important postulates reflecting dependence.

We include an explicit notion of reality in our model. That
is, we identify a path (corresponding to a particular execu-
tion of the multiagent system) as being the real one. This is
not to suggest that we have found a way to predict the fu-
ture; rather, it is a way to accommodate nondeterminism by
merely claiming (as appropriate) that whatever the real path
might be, it satisfies some property, desirable or otherwise.
For example, we might define trust as being well-placed if
the proposition that is being trusted occurs on the real path.
In this manner, incorporating reality explicitly enables us to
state constraints that we cannot state otherwise.

3.1 Syntax and Formal Model
Putting together the intuitions about architectural con-

nectors and the inherent conditionality of trust, we propose
to formalize trust-as-dependence as a modal operator that
takes two parties and two propositions, as in

Ttruster,trustee(antecedent, consequent)

The first two arguments describe the end points of the given
connector, and the last two its logical structure. In logical
terms, trust bears a syntactic similarity with commitments
but the two are independent concepts. More generally, we
can view trust and commitment as correlates of each other.
Some of the postulates below relate trust and commitments.
L, our formal language, takes a linear-time logic enhanced

with a modality C for commitments [18] with a modality T
for trust. Below, Atom is a set of atomic propositions and
X is a set of agent names. We further define agents that are
composed from other agents; in other words, an agent may
be a simplistic multiagent system. L and X are nonterminals
corresponding to L and X , respectively.

L1. L −→ Trust | Commit | Atom | L ∧ L | ¬L | RL | LUL

L2. Trust −→ TAgent,Agent (L ,L)

L3. Commit −→ CAgent,Agent (L ,L)

L4. Agent −→ X | 〈{Agent}〉
We use the following conventions: x, etc. are agents, ψ, etc.
are atomic propositions, p, q, r, etc. are formulae in L, t,
etc. are moments, and P , etc. are paths. We drop agent
subscripts when they can be understood. A model for L is
a tuple, M = 〈S, <,R, I,T,C〉:
• S is a set of possible moments, each a possible snapshot

(i.e., a state) of the world.

• <⊆ S×S is a discrete linear order on S, which induces
paths at each moment. A path is a contiguous set of
moments beginning at a moment. Two paths are either
disjoint or one is a subset of the other. [P ; t, t′] denotes
a period on path P from t to t′. Formally, [P ; t, t′] is
the intersection of P with the set of moments between
t and t′, both inclusive. P is the set of all periods and
Pt of periods that begin at t (Pt 6= ∅).

• R identifies the real path that initiates from a moment.
A real path must be self-consistent in that if a moment
initiates a real path τ , every subsequent moment that
occurs on path τ initiates a suffix of τ as its real path.

• The interpretation, I, of an atomic proposition is the
set of moments at which it is true. That is, I : Atom 7→
℘(S). We show below, through the definition of mo-
ment-intension (which lifts I to all propositions), that
the denotations of all propositions are sets of moments.

• At each moment, T : S × X × X × ℘(S) 7→ ℘(℘(P))
yields a set of periods for each moment and proposition
for each truster-trustee (ordered) pair of agents.

• At each moment, C : S × X × X × ℘(S) 7→ ℘(℘(P))
yields a set of periods for each moment and proposition
for each debtor-creditor (ordered) pair of agents.

Models for modal logics are commonly based on Kripke
structures, which define a set of possible worlds along with
an accessibility relation that maps each world to a set of
worlds. The semantics of a modal operator tests for inclu-
sion in that set of worlds. The models proposed here are
not Kripke structures and do not involve an accessibility re-
lation. Instead they are based on the Montague (and Scott)
approach [14] to define a “standard” of correctness by map-
ping each world to a set of sets of worlds. The semantics of
a modal operator tests for membership in the set of sets of
worlds. Montague’s approach offers greater flexibility in al-
lowing or denying some inferences that the Kripke approach
requires. In many (though not all) cases, it is straightfor-
ward to map this semantics to a Kripke semantics but we
find the proposed formulation more natural and modular.

T and C capture the standards for trust and commit-
ments, respectively, for each moment and truster-trustee
pair. Given an antecedent proposition, T yields a set, each
of whose members is a set of periods. Each set of periods
is the representation in the model of a consequent propo-
sition, specifically, the proposition whose period-intension
(defined below as the set of periods at whose culmination
it holds) equals that set of periods. The truster trusts the
trustee to bring about any such consequent if the antecedent
holds. Likewise, C yields a set each of whose members is a
set of periods, each culminating in the consequent proposi-
tion that the debtor commits to bringing about. As in many
(arguably most) logics of intention and obligation, we do not
model actions explicitly: T and C are simply understood as
describing the conditions an agent would bring about.

3.2 Semantics
The semantics of L is given relative to a model, a path, and

a moment on the path. M |=P,t p expresses “M satisfies p at
t on path P .” The truth of several constructs is independent
of the path and depends only on the moment. An expression
p is satisfiable (respectively, valid) iff for some (respectively,
all) M , P , and t ∈ P , M |=P,t p. Formally, we have:

M1. M |=P,t ψ iff t ∈ I(ψ), where ψ ∈ Atom

M2. M |=P,t p ∧ q iff M |=P,t p and M |=P,t q

M3. M |=P,t ¬p iff M 6|=P,t p

M4. M |=P,t Rp iff M |=Rt,t p

865

M5. M |=P,t pUq iff (∃t′′ ∈ P : t ≤ t′′ and M |=P,t′′ q and
(∀t′ : t ≤ t′ < t′′ ⇒M |=P,t′ p))

Disjunction (∨), implication (→), equivalence (≡), false, and
true are the usual abbreviations. pUq means“p holds until q”:
thus trueUq (abbreviated Fq) means “eventually q.” And, Rp
means that p holds on the real path of the current moment.

We define the moment-intension of formula p as the set
of moments where it is true: [[p]] = {t|M |=P,t p}. We define
period-intension of formula p as the set of periods culminat-
ing in its becoming true: 〈[p]〉 = {[P ; t, t′]|M |=P,t′ p}. In
these periods, p occurs at the last moment but may possibly
occur earlier as well. Thus these are all possible ways in
which p may be brought about. Based on these, we can now
specify the formal semantics of trust and commitments. As
explained in connection with T above, Tx,y(r, u) holds pre-
cisely at points where the period-intension of u belongs to
the standard for trust. (Likewise, for commitments).

M6. M |=P,t Tx,y(r, u) iff 〈[u]〉 ∈ Tx,y(t, [[r]])

M7. M |=P,t Cx,y(r, u) iff 〈[u]〉 ∈ Cx,y(t, [[r]])

4. REASONING POSTULATES
Let’s now consider several postulates that reflect common

reasoning patterns that apply uniformly to trust. It is worth
emphasizing that we consider atomic propositions that are
stable, meaning that they include any temporal requirements
within them. Thus a proposition that is true is generally
true forever. For example, let pay mean the agent pays by
noon on May 1. If pay is true at one point on a run, it
is true on all points on the run. Consequently, most of our
postulates do not involve any temporal operators. Trust and
commitments (which can become active and then inactive)
are themselves not stable; thus some postulates that deal
with them involve the until operator. We expand the notion
of agents to treat simplified multiagent systems.

4.1 Postulates for Active Trust
We treat trust in the sense of a living, functioning archi-

tectural connector. That is, we consider the case of active
trust. When a truster places trust in a trustee, the cor-
responding connector is activated. When the trustee has
performed as expected, there is no more for the truster to
expect of the trustee based solely upon the given connector.
In such a case, the connector is no longer active.

Our approach helps distinguish between a connector that
is inactive and one that which has been activated but not
completed. The former is perfect; the latter is worrisome.
As a result, often, we would formulate trust expressions as
including the possibility of success. As a specific example,
an agent x may deal with an agent y because it trusts y
to deliver the goods if it pays. That is, we would have
Tx,y(pay, deliver). But to accommodate the unknown or
early performance of deliver, we might instead formulate the
trust expression as deliver ∨ Tx,y(pay, deliver)

For each postulate below that uses truster x and trustee
y, for brevity, we write T(r, u) instead of Tx,y(r, u).

T1. complete a connector. u→ ¬T(r, u)

When u holds, the trust in u is completed and is, therefore,
no longer active (this treatment is neutral as to whether u is
the provision of information or the performance of a domain
action). Notice that the above yields ¬T(r, true) for any r.

T2. activate a connector. T(r ∧ s, u) ∧ r → T(s, u)

A typical case is when a truster performs part or all of
what it needs to do to activate a connector. For example,
if you push money over a coffee counter you trust that the
barista would push back a cup of coffee for you. If you
trusted the barista to give you a cup of coffee upon your
paying $1, upon handing over $1 you trust the barista to
give you the cup of coffee without further ado.

More generally, a connector may be activated piecemeal.
When “part of” the antecedent of a connector holds, the
connector strengthens to one for the “remainder” of the an-
tecedent and with the original consequent comes into being.
Notice that this postulate means that a connector does not
need to be activated in a single shot: as more and more of
its antecedent becomes true, the connector becomes incre-
mentally closer to being activated. When the connector is
of the form T(true, u), then it is fully activated. For such a
connector, failure by the trustee to complete the connector
is tantamount to a betrayal of trust.

T3. partition a connector. T(r, u ∧ v) ∧ ¬u→ T(r, u)

In general, if you trust a trustee for two propositions, you
trust it for each of the propositions. In other words, you
would expect to be able to partition a connector into its com-
ponents. However, the obvious formulation T(r, u ∧ v) →
T(r, u) is inconsistent with T1, because if u holds, T1 would
eliminate T(r, u). Since T1 is fundamental to capturing an
active connector, we include ¬u on the left-hand side in
T3. Thus a connector partitions into component connec-
tors as long as none of the components have already been
completed. For example, if you trust a merchant to send
both the goods you ordered and a warranty, then you trust
the merchant to send you the goods—unless the goods are
already sent.

4.2 Postulates for Connector Integrity
These postulates describe the integrity of connectors.

T4. avoid conflict. T(r, u)→ ¬T(r,¬u)

A connector cannot both ask for and prevent the same
thing. This postulate is stronger than merely stating that
a connector for a logical impossibility cannot exist, which
would be formalized as ¬T(r, false). However, in the pres-
ence of T8, avoid conflict is the same as ¬T(r, false).

T5. nonvacuity. From r ` u infer ¬T(r, u)

Since r ` u, if r holds so does u. Or, T(r, u) completes
as soon as it is activated, and is thus vacuous. Because
r ` r, we have ¬T(r, r). The intuition is that a nonvacuous
connector must not require an antecedent stronger than its
consequent. The architectural implication of a vacuous con-
nector is that we might as well disconnect the two agents,
because the trustee would deliver no value to the truster.

T6. tighten. From T(r, u), s ` r, s 6` u infer T(s, u)

Any connector that holds for a weaker antecedent also
holds for a stronger antecedent. In other words, we can
always broaden a connector in the logical ways specified.
For example, if you trust your customer will pay you $1 if
you give them a coffee, then you can safely trust they will

866

pay you $1 if you give them a coffee and a cookie. Some
useful consequences are T(r ∨ s, u) → T(r, u), T(r, u) →
T(r ∧ s, u), and T(true, u)→ T(r, u).

Note that p ` q means we can prove q from p: this is
stronger than implication p → q, which holds merely if p is
false. Clearly, T(r, u) ∧ ¬s→ T(s, u) is bogus, i.e., we would
not conclude T(s, u) simply because s happens to be false.

4.3 Postulates for Connector Structure
These postulates describe structural properties.

T7. combine antecedents. T(r, u) ∧ T(s, u)→ T(r ∨ s, u)

To the left of the→ are two connectors, together meaning
that the truster expects the trustee to do u if r or if s hold,
which is the connector on the right. Hence, this broadens a
connector, in contrast with T6.

T8. combine consequents. T(r, u) ∧ T(r, v)→ T(r, u ∧ v)

Combine consequents of connectors between the same trus-
ter and trustee with the same antecedent. The truster would
become committed to u and to v if r holds, which is the
meaning of the connector on the right. For example, if you
trust a merchant to give you an item for your payment and
a warranty for the same payment, then you can expect both
the item and the warranty for your payment. This postulate
relies upon the propositions being not temporally indexed,
as Section 4 explains.

T9. inference chain. From T(r, u), u ` s,T(s, v) infer T(r, v)

Assume you trust someone to bring about u if r and to
bring about v if u. Then, you trust them to bring about v
if r. T9 generalizes the above intuition to when u 6= s. Here
we have a situation where the connectors being chained exist
between the same truster and trustee pair. The situation
becomes more interesting with teamwork, as in T17.

4.4 Postulates for Connector Meaning
These postulates pertain to the content of trust, espe-

cially as it relates to commitments [18]. These are impor-
tant because in some respects commitments are the flip side
of trust.

T10. exposure. Cx,y(r, u)→ Ty,x(r, u)

A debtor is exposed when the creditor of the commitment
trusts the debtor for the same content as the given com-
mitment. Now the debtor cannot cancel the commitment
without betraying the trust the creditor placed in it. This
signifies architectural minimality in that a commitment is
being included in a multiagent system only if there is a trust
relationship that relies upon the commitment.

T11. transient alignment. Tx,y(r, u)→ Cy,x(r, u)

A creditor and debtor of a commitment are aligned when
if the creditor trusts the debtor for something, the debtor is
committed to bringing it about. That is, the connector be-
tween the debtor and creditor is covered. This postulate re-
lates to Chopra and Singh’s [2] notion of commitment align-
ment, although their notion considers commitments alone.

T12. well-placed trust. Tx,y(true, u)→ Ru

This says that whenever a truster trusts a trustee, the
consequent comes true on the real path. The success may
be incidental, but the trust is not betrayed.

T13. whole-hearted alignment.

Tx,y(s, v)→ R(s→ (Cy,x(s, v)Uv))

When a truster connects to a trustee, the trustee commits
(as debtor) to the truster for the relevant propositions and
remains committed until success. Thus success is achieved,
but as an outcome of the debtor’s persistent commitment,
not incidentally. Thus, this postulate describes a stronger
connector than does transient alignment.

The formulas below are not suitable to be asserted as con-
straints, but describe important situations. They could be
used for problem diagnosis or in engineering effective sys-
tems.

Unexercised connector. T(r, u) ∧ R¬r. This indicates a
connector that is never activated. For example, you
may trust that your banker will loan you money if
you apply for one, but you may never file the requisite
application.

Misplaced trust. T(r, u) ∧ R¬u A connector may fail be-
cause when it is activated, the trustee fails to deliver
the consequent. Notice that the trustee may never
have committed with respect to this connector: there-
fore, the trustee cannot be faulted for noncompliance.

4.5 Postulates Involving Multiple Agents
These postulates provide a basis for architecting multi-

agent settings such as teams. They can be thought of as
specifying the structures of different types of teams in logi-
cal terms, based on the trust relationships among the mem-
bers. Since, in intuitive terms, trust is an important aspect
of teams, we take this to be a promising theme. Below, 〈x, y〉
represents a simplified team consisting of x and y.

T14. mutual progress.

Tx,y(r, u) ∧ Ty,x(u, r)→ Tx,〈x,y〉(>, r ∧ u)

When two agents trust each other reciprocally, each of
them trusts their team to make progress on both proposi-
tions. This postulate arises commonly in instances of team-
work, including successful business interactions, where each
participant concedes to the other, thereby achieving progress.
We can think of it as a strengthening of reciprocal depen-
dence [7]. Trust in this sense also provides a complementary
aspect to commitments in understanding concession [24].

T15. trustee’s team. Tx,y(r, u)→ Tx,〈y,z〉(r, u)

Participation by the trustee in a team does not alter the
truster’s placement of trust in it. This can be thought of
as describing cooperative teams in which any conflicts are
resolved. For example, if z conflicted with y and prevented
y from being trustworthy for u, then the above postulate
would not hold for the team 〈y, z〉. In other words, the
connector between the truster and trustee applies equally to
the team including the trustee. For example, if you trust
your local postman to deliver your mail, you can trust the
local post office to deliver your mail. This inference applies
when participation in the team does not alter the nature of
the connection. For example, you can trust your friend to
take your side in a dispute, but not against his employer.

867

T16. truster’s team. Tx,y(r, u)→ T〈x,z〉,y(r, u)

In contrast with T15, here the connector applies to any
team that the truster may belong to.

T17. parallel teamwork.

Tx,y(r, u) ∧ Tx,z(u, v)→ Tx,〈y,z〉(r, u ∧ v)

When a truster connects to two trustees, the truster con-
nects to their team as a composite trustee. For example,
if you trust one friend to bring you bread and one to bring
you soup, you trust them as a team to bring you bread and
soup. This postulate is an alternative to T9 (inference
chain) and shows how the connectors to two trustees can
be combined.

T18. propagate.

From Tx,y(r, u),Ty,z(s, v), v ` u, r ` s infer Tx,〈y,z〉(r, v)

Here, x trusts y and y trusts z. Because of how the an-
tecedents and consequents mutually relate, x trusts 〈y, z〉.
4.6 Postulates Involving Dynamism

The postulates involving updates are largely heuristic in
nature. The following illustrate three aspects of dynamism:
these deal with persistence when nothing changes; reduction
in trust ratings when trust is betrayed; and enhancement in
ratings when trust is kept. The intuition behind these is
based on the notion of relational or trust capital [7], which
agents can build up through trustworthy behavior and drain
through untrustworthy behavior.

T19. persistence. T(r, u)→ T(r, u)U(u ∨ r)
A truster persists in its connector unless it acquires ev-

idence that the connector has failed or completed. That
is, a connector persists at the same strength as long as the
connector is not activated (until r holds), meaning that the
substantive aspect of the trust has not been exercised, or
the connector has not been completed (until u holds). As-
sume you trust a merchant to deliver if you pay, i.e., as
T(pay, deliver). If you have not paid, then your not receiv-
ing a delivery should not affect your trust in the trustee.

Notice that the above postulate is silent about success or
failure. Below, skepticism and faith identify domain-specific
notions, outside our language, of how a truster respectively
reduces or increases its level of trust in a trustee.

T20. skepticism.

skepticismx,y(s, v)→ (T(r, u) ∧ r ∧ ¬u)→ ¬T(s, v)

A truster lowers its trust in a trustee if the trustee fails
for an activated connector, i.e., one whose antecedent has
been achieved. This can be thought as an agent narrowing
or weakening its connectors with another agent based on the
second agent’s performance.

T21. faith. faithx,y(s, v)→ (T(r, u)Uu)→ T(s, v)

A truster adjusts its trust in a trustee based on whether
the trustee achieves the consequent. This can be thought of
as an agent broadening or strengthening its connectors with
another based on the second agent’s performance.

In addition, we can compare trust ratings as follows.

Compare ratings. The expression Tx,y(r, u)∧Tx,w(r, u∧
v) signifies that x trusts y less than it trusts w. This
reflects some intuitions of Falcone et al.’s [8] contract-
ing approach. The deeper underlying intuition is that
sets of possible paths (being different outcomes) map
naturally to probabilities.

5. APPLYING THE THEORY
Let us consider a cross-organizational scenario of auto in-

surance claims [21], which relates naturally to multiagent
systems. Figure 1 (from [21]) describes the intended op-
erations in this scenario, which deals with auto insurance
claims processing by AGFIL, an insurance company. Inter-
estingly, this figure omits the policy holder whom the sce-
nario serves. A policy holder, John Doe, is in an accident
and files a claim with Europ Assist, who runs AGFIL’s call
center. Europ Assist identifies a mechanic shop (garage) in
consultation with Doe, sends Doe there, and forwards his
claim to AGFIL. AGFIL passes the claim to Lee Consult-
ing Services (Lee CS), which interacts with Doe to complete
the claim, obtains estimates from the mechanic, and decides
whether to honor Doe’s claim. Skipping ahead a few steps,
this episode would normally end with the mechanic repairing
Doe’s car and getting paid by AGFIL.

Figure 1: Insurance scenario modeled operationally

The traditional low-level representation emphasizes the
steps performed by each party and their mutual control flow.
It provides no support for meaning. Desai et al. [6] for-
malized this scenario in terms of commitments, identifying
the contractual business relationships among the parties in-
volved. However, such relationships are founded on a sub-
strate of trust. An additional benefit of modeling trust is
that it focuses on the architecture, which we can use as a
basis (in an engineering methodology) for determining the
necessary contractual relationships.

Let us consider the following examples. First, not only
do Lee CS and AGFIL have commitments toward one an-
other, they must also trust one another to perform accord-
ingly. Second, the importance of trust becomes more im-
portant when we consider architectures that are not highly
regimented. For example, when John Doe talks to Europ
Assist, out of the many mechanics who are preapproved,
Doe would select one of those whom he deemed trustworthy,

868

because the existence of commitments does not adequately
characterize the outcomes, although the existence of a com-
mitment by AGFIL to ameliorate a failed interaction with
a preapproved mechanic may be a reason to place greater
trust in the mechanic. Third, when the system in question
is open, i.e., John Doe can have his car seen by any me-
chanic, the importance of trust goes up further.

In each of these cases, the participants would apply some
of the above reasoning postulates. For example, Doe would
activate his dependence on the mechanic by bringing his
car in for repairs (T2); the mechanic would complete the
dependence by repairing the car (T1); the mechanic gives
Doe a loaner car for a week: the loaner is partitioned
from the repair itself via (T3); under T7, Doe can combine
his dependence on the mechanic to trust the mechanic to
repair the car whether Doe brings it in or asks the mechanic
to tow it to his shop. Under persistence (T19), the me-
chanic holds his trust in being paid in a timely fashion by
AGFIL until he submits a bill or gets paid. Doe and the me-
chanic demonstrate whole-hearted alignment (T13) because
the mechanic remains committed to completing the repairs
until he does so. Doe applies parallel teamwork (T17)
to place his trust in the team consisting of AGFIL, Lee CS,
and the mechanic to process his claim.

The foregoing points illustrate the kinds of reasoning in-
volving trust, which can be used as criteria for judging spe-
cialized trust approaches. Existing approaches do not read-
ily apply in the above kinds of settings: they either (1)
make unrealistic assumptions about their models or (2) fail
to support inferencing. In the first category we place ap-
proaches for adopting beliefs from reports [4, 12], which are
simply inapplicable because trust here (and often) is about
actions, not truthfulness; cognitive approaches, which pre-
sume deeper representations of beliefs and plans than may
hold in practice [1, 5]; current heuristic [9] and probabilis-
tic [11, 23] approaches, which do not provide the essential
logical structure for this case (thus making it difficult to use
them architecturally). In the second category, we place the
social approaches to trust [7, 20] and dependence [10] which,
though conceptually suited in principle to architecture, are
mostly informal in their details.

More importantly, we can characterize the trust relation-
ships among the parties with or without any contractual re-
lationships among them. Specifically, in the above setting,
we can define an auto repair ecosystem in which a party’s de-
pendencies can be expressed as trust, and reasoned about to
determine if the ecosystem will prove effective: for example,
if the respective dependencies are supported by capabilities
or commitments of the agent’s involved.

Architecture
More generally, an architecture is described not only by its
components and connectors but also by its constraints and
styles [17]. We propose an approach that enables specifying
architectures for specific multiagent systems:

Components: Application-specific roles, such as mechanic
and call center.

Connectors: The trust relationships between the roles: a
connector better reflects a flow of trust not just a flow
of information, as in traditional approaches. For ex-
ample, the mechanic trusts AGFIL to pay for repairs.

Constraints: The reasoning postulates discussed in the fore-
going. Of these, the integrity and structure constraints
are of broad use; some of the others would apply in spe-
cific settings. For example, if Lee CS arranges to take
care of Doe’s car, the mechanic and Doe may have no
direct connectors to each other.

Styles: The sets of constraints geared toward different ap-
plications. For instance, teamwork is a kind of archi-
tectural style. For example, the mechanic and policy
holder may trust each other reciprocally; or the me-
chanic and policy holder may trust a common party,
such as Lee CS or AGFIL.

One can imagine a design episode based on the above ar-
chitecture. Here the designers would identify the key roles
in their system-to-be, and identify the trust relationships
among the (agents playing these) roles. Such trust rela-
tionships would describe the system in architectural terms.
Upon further refinement, the designers could identify the
commitments among the roles that would help realize the
trust interactions. These could arise partly by (1) engender-
ing trust (John Doe might trust a mechanic to complete a
task after the mechanic commits to doing so) and (2) partly
by yielding trust by fiat (Doe would not trust any arbitrary
mechanic but a commitment from AGFIL or Lee CS to get
Doe’s car repaired would produce trust in an approved me-
chanic or limit Doe’s liability and thus reduce the need for
such trust). Trust as dependence can thus conceptually pre-
cede commitments. In other words, we would first identify
the necessary trust relationships and then induce commit-
ments that would support such trust. Trust is thus com-
plementary to goal-based approaches such as Tropos, which
capture dependencies between goals. Further, it can help
address some of the challenges of high variability that re-
cent work on Tropos has identified [16].

As Singh and Chopra [19] observe, recent agent-oriented
software engineering approaches either follow mentalist mod-
els based on beliefs and intentions (and are thus ill-suited
for multiagent architecture, since they inevitably describe an
agent’s internal state), or adopt low-level ideas from tradi-
tional software engineering (and are thus ill-suited for mul-
tiagent systems). Trust, as we have formalized it here, can
help provide a systematic basis for including the mentalist
concepts by showing how they may relate to the high-level
architecture of a multiagent system.

6. DISCUSSION
The above approach considers trust in propositional terms.

Most practical settings need parameters, which we can ac-
commodate in a fairly straightforward manner. Similarly,
an expansion to graded or measured notions of trust would
be valuable. We can potentially develop such a notion by
adopting some ideas of Demolombe [5]. Indeed, there is a
conceptually straightforward mapping of our models to the
above, which would arise by assigning relative weights to
the sets of runs that our model-theoretic standard of trust
T identifies. When such sets of runs can be assigned likeli-
hoods of occurrence, they can additionally be used as a basis
for a probabilistic definition of trust.

Trust is inherently contextual. As a result, in some uses
the preconditions that apply on a claim of trust may not
be explicit. Such implicit preconditions can be mapped to

869

antecedents in an explicit representation. Organizational
context is particularly relevant from our architectural per-
spective: an agent may depend upon another when they are
both part of the same team or organization.

Following a similar distinction for commitments [18], we
can distinguish two main kinds of trust: (1) dialectical, i.e.,
about assertions or arguments relating to reports [4, 12]; or
(2) practical, i.e., about actions, as in the present paper. We
can relate the above dichotomy to trust in an agent viewed
as a service provider and an agent viewed as a referrer. Ex-
amples are“if the interest rate has fallen, (I trust) my banker
to grant my mortgage application (practical) or (I trust) my
banker’s assertion of my new loan payment (dialectical).

Following the spirit of correspondence theory as proposed
by van Benthem [22], the above postulates can be given a
model-theoretic basis wherein for each postulate we state
a corresponding semantic constraint (in essence, a closure
property) on the model. For reasons of space, we defer such
constraints and theorems to a longer version of this paper.

Directions
Some important directions of future work fall out naturally
from the above formal, architectural development of trust.

In conceptual terms, a deeper study of the reasoning pos-
tulates would be beneficial in a wide range of multiagent
applications. In particular, it would be important to deter-
mine additional architectural styles. We considered simplis-
tic multiagent systems above. This is an important start in
formalizing trust, but it would be valuable to expand on this
theme to specify richer systems and postulates about them.
Specifically, above we treated agents as either individuals or
sets of agents. In general, multiagent systems would demon-
strate rich structures and consist of roles that feature in a
variety of operational and institutional relationships with
each other. Such relationships would naturally bear a sig-
nificant impact on trust understood architecturally.

In theoretical terms, a rich formal language for express-
ing constraints and reasoning about them to determine if a
particular architecture style or instance will satisfy desirable
properties such as a guarantee of progress under appropriate
assumptions on the behaviors of the participants. Makinson
and van der Torre [13] introduced the idea of input-output
logics as a general way to treat conditionalization. Our
approach can be thought of as specializing their ideas for
the setting of trust with inferences for completion, commit-
ments, and teamwork that do not arise with conditionals in
general, but are important for an understanding of trust. It
would be interesting to explore what insights we can adopt
from input-output logics.

In practical terms, an important consideration is of a pat-
tern language for expressing architectures. Such a language
could provide a basis for a tool and methodology for spec-
ifying architectures. A greater goal is to develop an exten-
sive approach for service-oriented computing in the broadest
sense of the term that considers not technical (web or grid)
services as emphasized today but service engagements me-
diated by flexible and expressive trust relations.

Acknowledgments
Thanks to the anonymous referees and to Amit Chopra for
helpful comments. Thanks to the Army Research Labora-
tory for partial support under Cooperative Agreement Num-
ber W911NF-09-2-0053.

7. REFERENCES
[1] C. Castelfranchi, R. Falcone. Principles of trust for

MAS. ICMAS, pp. 72–79, 1998.

[2] A. K. Chopra, M. P. Singh. Constitutive
interoperability. AAMAS, pp. 797–804, May 2008.

[3] P. Dasgupta. Trust as a commodity. In D. Gambetta,
ed., Trust: Making and Breaking Cooperative
Relations, ch. 4, pp. 49–72. 2000.

[4] M. Dastani, A. Herzig, J. Hulstijn, L. van der Torre.
Inferring trust. AAMAS CLIMA, LNCS 3487,
pp. 144–160. Springer, 2004.

[5] R. Demolombe. Graded trust. AAMAS Trust,
pp. 1–12, 2009.

[6] N. Desai, A. K. Chopra, M. P. Singh. Amoeba: A
methodology for modeling and evolution of
cross-organizational business processes. ACM
TOSEM, 19(2):6:1–6:45, October 2009.

[7] R. Falcone, C. Castelfranchi. From dependence
networks to trust networks. AAMAS Trust, 2009.

[8] R. Falcone, G. Pezzulo, C. Castelfranchi, G. Calvi.
Contract nets for evaluating agent trustworthiness.
Proc. 6th & 7th Trust Workshops, LNCS 3577, ch. 3,
pp. 43–58. Springer, 2005.

[9] K. Fullam, K. S. Barber. Dynamically learning sources
of trust information. AAMAS, pp. 1062–1069, 2007.

[10] M. Johnson, J. M. Bradshaw, P. Feltovich, C. Jonker,
M. B. van Riemsdijk, M. Sierhuis. Coactive design.
AAMAS COIN Workshop, pp. 49–56, 2010.

[11] A. Jøsang. A subjective metric of authentication.
ESORICS, LNCS 1485, pp. 329–344, 1998. Springer.

[12] C.-J. Liau. Belief, information acquisition, and trust in
multi-agent systems. Art. Intell., 149(1):31–60, 2003.

[13] D. Makinson, L. van der Torre. Input-output logics. J.
Philosophical Logic, 29:383–408, 2000.

[14] R. Montague. Universal grammar. Theoria,
36(3):373–398, 1970.

[15] D. Parnas. Information distribution aspects of design
methodology. Proc. IFIP, TA-3, pp. 26–30, 1971.

[16] L. Penserini, A. Perini, A. Susi, J. Mylopoulos. High
variability design for software agents: Extending
Tropos. ACM TAAS, 2(4):16:1–16:27, November 2007.

[17] M. Shaw, D. Garlan. Software Architecture.
Prentice-Hall, 1996.

[18] M. P. Singh. Semantical considerations on dialectical
and practical commitments. AAAI, pp. 176–181, 2008.

[19] M. P. Singh, A. K. Chopra. Programming multiagent
systems without programming agents. ProMAS 2009
Workshop, LNAI 5919, pp. 1–14. Springer, 2010.

[20] P. Sztompka. Trust: A Sociological Theory. Cambridge
University Press, 1999.

[21] C. J. van Aart et al. Use case outline and
requirements. IST CONTRACT Project, 2007.

[22] J. F. A. K. van Benthem. Correspondence theory. In
D. Gabbay, F. Guenthner, eds., Hbk Phil. Log, vol. II,
pp. 167–247. Reidel, 1984.

[23] Y. Wang, M. P. Singh. Formal trust model for
multiagent systems. IJCAI, pp. 1551–1556, 2007.

[24] P. Yolum, M. P. Singh. Enacting protocols by
commitment concession. AAMAS, pp. 116–123, 2007.

870

