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ABSTRACT

Creating a virtual character that exhibits realistic physical
behaviors requires a rich set of animations. To mimic the
variety as well as the subtlety of human behavior, we may
need to animate not only a wide range of behaviors but also
variations of the same type of behavior influenced by the
environment and the state of the character, including the
emotional and physiological state. A general approach to
this challenge is to gather a set of animations produced by
artists or motion capture. However, this approach can be
extremely costly in time and effort. In this work, we pro-
pose a model that can learn styled motion generation and
an algorithm that produce new styles of motions via style
interpolation. The model takes a set of styled motions as
training samples and creates new motions that are the gen-
eralization among the given styles. Our style interpolation
algorithm can blend together motions with distinct styles,
and improves on the performance of previous work. We ver-
ify our algorithm using walking motions of different styles,
and the experimental results show that our method is sig-
nificantly better than previous work.
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1. INTRODUCTION

In the short film Luzo Jr. by Pixar Animation Studios,
the two Anglepoise desk lamps demonstrate a simple and
entertaining story. Without the aid of verbal and facial ex-
pressions, the desk lamps successfully express their character
and emotional states through motions. Human sensitivity
to information conveyed through such expression breathes
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life into these virtual characters. In fact, we can perceive
identity [20] and gender [12] of walkers simply based on the
motion of lights points attached to their joints. Thus, mo-
tion is one of the main criterion for building realistic virtual
characters.

Humans have many different kinds of behaviors, and each
behavior is composed of many different motions. Even for
a single motion, there can be various ways to perform it.
The variation can be due to different mental states, physi-
cal properties, personality, etc. To exhibit this resemblance
to reality, the virtual character requires a large set of ani-
mations, and it is not always obvious how to determine the
subtle dynamics expressing these characteristics. One com-
mon approach to creating a virtual character’s behaviors is
employing animators. Another approach is to apply mo-
tion capture. The motion capture technique can record the
temporal difference of each motion and the subtle variance
within different styles. However, recording every possible
kind of motion is very time consuming. Moreover, when a
human performs the same motion, each will show some vari-
ation. It is not practical to collect a huge set of animations
for each motion for either approach, and replaying the same
animation every time reduces the resemblance to reality of
the virtual character.

To generate realistic motion animations and save anima-
tors’ efforts, one approach is to generalize motion from ex-
amples. There are many ways to approach this generaliza-
tion. One that has been widely applied is synthesizing mo-
tion from a motion library [7, 9]. Segmenting motion clips
and combining them is an easy way to make a general use
of existing motion, but animations are limited to the finite
set of clips. Another approach to generate new animation is
to learn a style translator and translate a given motion to a
specific style [6, 4]. We can increase the amount of virtual
human behaviors via converting some motions to new styles
with such a translator.

This approach becomes more powerful if we can infer what
parameters determine the style of motion. The style param-
eter of the virtual character gives control over motion gener-
ation, and we can adjust it to express appropriate signals like
emotional states in different situation. Thus, style-content
separation is an appealing approach to generate new mo-
tions. There have been several works to explore the separa-
tion of style and content of motion data [18, 3, 15, 2, 21, 16].
After separating the style parameters from the motion, we
can generate new motions via interpolation or extrapolation
in the style space [14, 19].

Previous work showed success in synthesizing new motions



with analogy among samples, but they suffer from overfitting
and usually will fail on synthesizing new styles. These works
followed the design of bilinear models [18] that represent
styles as a separate parameter, use different style values to
learn the motion generation, and then generate new motions
by changing the style value. When using this design, the
model is assumed to capture the style space so that adjusting
the style value leads to style interpolation or extrapolation.
However, to satisfy this assumption, we need a sufficient
amount of data distributed throughout the style space so
that the model can comprehend the structure of the style
space. This is because the style space can be a nonlinear
manifold [3], and it requires a lot of data for the model
to identify this structure, unless the members of the data
set is already close to each other. This condition leads to
the requirement of either collecting a large set of data or
requiring all motions to have similar styles.

In designing a virtual character behavior controller, we
would like to have the capability of generalization among
style space while minimizing the required effort to collect
training samples. However, overfitting is an inevitable prob-
lem when the styles of motions are quite different and the
training samples are insufficient, and therefore generating
new motions via interpolation with style parameters will
simply produce implausible results. To design a robust
method that can generate new motions with a limited set of
training samples, we need to abandon the assumption that
the general structure of the style space can be identified
accurately from the training data. Instead, the key issue to
address is how to do style interpolation when the model is
overfitted.

In this work, we propose a learning model and a style
interpolation algorithm that can generate new motions via
style interpolation when given a few training samples with
distinct styles. Our model, called the hierarchical factored
conditional Restricted Boltzmann Machine (HFCRBM), is
a modification of the factored conditional Restricted Boltz-
mann Machine (FCRBM) [16] that has additional hierarchi-
cal structure. The HFCRBM includes a middle hidden layer
for a new form of style interpolation. Our style interpolation
algorithm, called the multi-path model, performs the style
interpolation using the middle hidden layer.

To verify the effectiveness of our approach, we apply our
algorithm to learn and generate walking motions with differ-
ent styles. The walking motion samples are from the CMU
mocap database. We evaluate the performance of our al-
gorithm against motion generation of previous works, and
compare different style interpolation approaches. The ex-
periment results show that (1) the HFCRBM has better per-
formance than the FCRBM [16], (2) the multi-path model
generates new motions much more successfully than con-
ventional style label interpolation, and (3) the multi-path
model is also applicable to the FCRBM [16] and improves
its performance.

The contribution of this work is three-fold.

e We propose a model and a style interpolation algo-
rithm that can generate new styles of motions with
given a limited set of training samples.

e Our style interpolation algorithm improves the per-
formance of the previous work on blending different
styles.

e To the best of our knowledge, our work is the first to
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answer the question of how to do style interpolation
when the general structure of the style space cannot
be identified accurately from the training data.

2. RELATED WORK

One idea as to how to automatically generate human mo-
tion is to learn a motion generation function, such as learn-
ing the parameters of muscle control for the motion [11],
identifying dynamics of motion transition with a linear dy-
namic system for further synthesis [13, 10, 1], or learning
the transition between each frame with a Dynamic Bayesian
Network and generating new motions via adding noise to the
function [8]. Another idea is to convert existing motions to
new motions with the same content but different styles, and
to achieve this by learning a style translation function [6,
4]. A style translation function can produce new motion in
a specific style with given animations, but it will be even
more powerful if the factors that influence the style of mo-
tion can be determined. In this case, we need to separate
these properties from the content, learn the functional space
of the properties, and add variations within this function.

The problem of determining the properties that influence
the content is called style-content separation, and was in-
troduced by Tenenbuam & Freeman [18]. They proposed
a bilinear model that represents the training data as the
product of content, style, and interaction matrices. Elgam-
mal & Lee [3] extended the idea by representing content on
a nonlinear manifold. When the manifold is constructed,
the model learns nonlinear mappings from the embedding
space to the training data, and derives interactions (called
content bases in their paper) and style matrices from coef-
ficients. When given a new data, with fixed content bases,
the style (projection vector) and content (manifold coordi-
nates) are calculated with an EM-like iterative procedure.
Shapiro et al. [15] proposed to apply Independent Compo-
nent Analysis to decompose motion sequences into several
components (also motion sequences), and have users select
representative components. The new motion with a specific
style is generated via merging corresponding components.

These methods take regression-like approaches that treat
the motion data as trajectories, and do not model the tran-
sitions between frames. Brand & Hertzmann [2] designed
a model to learn this kind of transition relation. They ex-
tended hidden Markov models (HMMs) with an additional
style variable to model different motion sequences. While
hidden states capture the “mean” of the motion (the content)
the additional style variable models the deviation between
different motion (the style). The HMM can have only a few
discrete states, so the representation capability for poses is
limited. Wang et al. [21] proposed to use the Gaussian Pro-
cess Latent Variable Model to learn a function that predicts
the subsequent frames of the sequence from the previous
frame and specified information. The mapping function ex-
plicitly includes the identity and style factors, and learns
identity, style, and content from motion data performed by
different skeletons for various styles. The method showed
the synthesis of new motions via interpolation between sim-
ilar motions. Taylor & Hinton [16] proposed factored Condi-
tional Restricted Boltzmann Machines (FCRBMs) to model
the transition between frames while gated by style param-
eters. This method can learn motions with quite different
styles, but for synthesizing new styles, it requires sufficient
samples to learn generalization.
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Figure 1: The architecture of a CRBM of order 3.

3. ALGORITHM BACKGROUND

The conditional Restricted Boltzmann Machine (CRBM)
[17], as shown in Fig. 1, is a model for learning transitions
within time series data. The CRBM adds directed links from
the past visible layers to send previous observed values to
the current visible and hidden layers. The new structure in-
cludes the information from the past, and can learn the tem-
poral relation of the time series data. A CRBM treats the
messages sent from the past as biases, or dynamic biases to
be more specific. When given a sequence of data, the CRBM
adds these values to the current prediction through directed
links as biases and uses alternating Gibbs sampling (sending
information iteratively between the visible layer and the hid-
den layer) to construct the next piece of data. The energy
function of a CRBM for real-valued visible data (assuming
unit variance) is:

1 N
E(vi,hi|vy) =3 Z (vig — @ie)® — Z Wijvithje
i

= bjiha
J

where v; and h; are current visible nodes and hidden nodes,
v<t denotes past visible nodes, W represents undirected con-
nections between visible and hidden layers, and a; : and b; ;
are dynamic biases such that a;;: = a; + Zk Arivi, <+ and
Bj,t =bj + >, Brjvk,<¢, where A and B represent directed
connections from the past visible nodes to the current visible
and hidden layers, and a; and b; denote the bias of visible
and hidden layers.

CRBMs capture the transition dynamic of the time se-
ries data in an unsupervised way. In some applications, we
would like to use annotation information to help recogni-
tion and generation. For example, for motion generation
style annotation can improve the training process of learn-
ing various forms of motions. The ancestor of CRBMs, the
Restricted Boltzmann Machine (RBM), can be stacked into
a multi-layer model to construct deep belief networks [5] for
supervised learning. As its successor, the CRBM can also be
stacked into multiple layers, so it is straightforward to stack
multiple CRBMs to build similar deep networks for super-
vised learning on time series data. However, the strategy is
no more effective. The limitation comes from the dynamic
biases. The values from the past observations v<; are too
strong and will dominate the values from the label parame-
ters. Thus, the generation process relies mainly on the past
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Figure 2: The architecture of a FCRBM with contextual
multiplicative interactions.

observed values [16].

Instead of defining labels as part of the inputs to the hid-
den nodes, we can model the labels as gates for controlling
other inputs. In this way, the label information has a strong
influence on the CRBM. To construct these gating capabil-
ities for the label units, each set of connections is expanded
with an additional “label” dimension. The new weight ma-
trix of the connections between the visible and hidden layers
is a three-way weight tensor Wj; connecting visible, hidden,
and label nodes. With this new form of weight matrix, label
nodes then can comprise the transition between visible and
hidden layers.

Assigning label nodes as a manipulator for the original
model can allow it to learn complex data, but this design
also makes the resulting model parametrically cubic. In
fact, much real world data, including mocap, has some form
of regularity, and the structure can be captured with a more
contiguous model. Taylor & Hinton proposed Factored
CRBM (FCRBM) with contextual multiplicative interac-
tion (we will simply call it FCRBM in the following text for
clarity) to model this property [16]. The FCRBM contains
the structure of the CRBM, and it applies additional label
information to change the information transition within the
original CRBM model in a factored form, as shown in Fig. 2.
The energy function of the FCRBM is:

1 N
E(vi,hi|ver) = 5 Z (viye — ai,t)2
f

Readers can refer to [16] for further details.
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4. HIERARCHICAL FCRBM

We extended the FCRBM to construct the hierarchical
FCRBM. The hierarchical structure is crucial for style in-
terpolation, because the structure provides a new form of
style interpolation, and the new approach produces much
better results than conventional style interpolation. We be-
gin our explanation by discussing the problems of previous
approaches.

Previous approaches perform well at reproducing given
examples, but to generate new motions and avoid overfit-
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Figure 3: The architecture of a reduced CRBM of order 3.

ting, the model needs sufficient training samples with the
same content and different style throughout the style space
for which we want to generalize. For example, previous
work [16] applied the model to learn the generalization of
style parameters speed and stride length of walking motion.
They recorded nine sequences of walking motions which cor-
respond to the crossproduct of (slow, normal, fast) for speed
and (short, normal, long) for stride length, and fed these
samples to FCRBMs for training. The model shows good
generalization across speed and stride length. However,
when building a realistic virtual character, the character
needs to have a rich set of behaviors. A great number
of training samples will be required to complete its style
table, which makes the style-content separation approach
less practical. To make the generation function useful in
practice, the model needs the capability of learning from a
limited set of animations in which the style generalization
is not demonstrated explicitly.

Conventional style-content separation approaches accom-
plish style interpolation via adjusting the values of the style
label to indicate the ratio of style interpolation. The labels
can be real-valued or binary. In the real-valued represen-
tation, it is assumed that the style space is contiguous, the
label values provide the correct position of the style in the
style space, and the model can formulate the style space.
If the label values are assigned correctly, then this way of
labeling helps the learning process. However, the success
of this approach depends on whether the prior knowledge
of these motions is sufficient to provide an accurate anno-
tation. It also limits the variety of the motion style. In
the binary representation each label corresponds to a fea-
ture vector since the label layer connects to a feature layer.
The feature vector not only represents the vector generating
a specific style, it also corresponds to a way of generating
motions, the content. Interpolating two vectors in the Eu-
clidean space does not correspond to interpolating two styles
in the style space, and the new vectors can easily fall out of
the appropriate space for motion generation. Thus, a vector
resulting from this approach will rarely map the generation
to the appropriate style, and the function may be no longer
appropriate for generating the correct content.

We propose to perform style interpolation with the hidden
layer instead of with the label parameter directly. To formu-
late the hidden layer, we construct a hierarchical model with
the FCRBM. Instead of learning kinematics parameters di-
rectly, our model first extracts the patterns of the motion
samples and represents them as binary variables. The model
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Figure 4: The architecture of the entire model. The reduced
CRBM at the bottom layer is trained first, and the FCRBM
then takes the approximate filtering distribution from the
bottom layer as input to train its connections. There is a
feature layer linked to the label nodes that propagates the
label information to the model.

for performing such a step is called reduced CRBM.

4.1 Reduced CRBM

We modify the CRBM in order to construct the hierar-
chical structure. The new model is a CRBM without the
directed links from past visible layers to the current visible
layers. This reduced CRBM includes the past observed in-
formation, and the activation of hidden nodes conveys the
appearance of certain motion patterns. Without the lateral
links from the past visible layers, the generation depends
completely on top-down information. Therefore, the upper
layers have full control of the motion generation. The re-
duced CRBM is shown in Fig. 3. Its energy function is:

1
E(vi,he|ver, 0) =5 > Wi =) =) Wijviih,
i

= bjihia
J

where all the terms are the same as for the CRBM, except
the bias of the visible layer is static bias instead of dynamic
bias.

The reduced CRBM can be trained with a very efficient
approximate learning algorithm called contrastive diver-
gence [5]. Given the training motion samples, the reduced
CRBM learns the reconstruction of the data z; based on
the sequence z¢—1 to zi—, (for an order n model), where
the hidden layers receive x;—1 to x¢—, through connection
B as the dynamic bias.

4.2 Hierarchical FCRBM

Our model stacks a FCRBM on top of the reduced CRBM
to learn motion generation with label information. After
training the reduced CRBM, the connection within this
layer is fixed. To train the FCRBM, the training data goes
bottom-up through the reduced CRBM to the FCRBM.
The motion sequence is then converted into the approx-
imate filtering distribution, and the FCRBM learns the
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Figure 5: The generation process. A short motion sequence
is input to the reduced CRBM, and the motion data is con-
verted into the seed sequence of the FCRBM. Starting from
this seed sequence, the FCRBM generates new data and uses
it as new seed for further generations. The reduced CRBM
takes the output of the FCRBM to construct motion data.

generation based on the sequence of the distribution. The
visible layer of the top layer FCRBM is binary-valued, and
we tied feature-factor parameters in our model as it further
reduced the complexity of the model while maintaining good
performance [16]. The architecture of the entire model and
the training process is shown in Fig. 4. Each node in the
label vector corresponds to each category of motion sample,
and only one node is active when training a motion sample.

The model takes a short sequence of motion as a seed to
generate future motions with the specified style parameters.
After each generation step, the model concatenates its out-
put to the seed sequence, drops the first data, and uses the
new sequence as a seed to generate the next data. Via this
recurrent-like structure, the generation process can perform
multiple steps of prediction that allow it to generate a mo-
tion sequence of any length. In this multi-layer model, the
seed sequence is sent bottom-up to the top layer to generate
the next data. However, in the self-concatenation step, in-
stead of using the output real-valued data at the bottom and
sending it all the way up to the top layer as the new seed,
the top layer model uses the generated data at its visible
layer directly as input to generate the succeeding sequence.
The data generated by the top layer model then goes down
to the bottom layer to construct the motion vector. We
demonstrate the generation process in Fig. 5.

S. STYLE INTERPOLATION

The style controller is a prediction function which takes
the form:

xt = f(xi<t,0)

where z; denotes current motion data, z;<; denotes past
motion data, and 6 represents the style vector. Using the
current output data as one of the inputs for the next gener-
ation, the function can iteratively produce a data sequence
with a specified length. We use one-hot encoding for the
style vector since it does not require prior knowledge for as-
signing values as real-valued representation does. The style
vector has the same length as the number of styles provided
for training. Each element of the vector corresponds to a
category of the sample motion. A vector with value 1 at the
ith element and 0 elsewhere will make the generation func-
tion reconstruct a motion with the style of the ith training
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Figure 6: A two-motion blending example of the multi-path
model. The multi-path process is executed at top layer
FCRBMs. The interpolated result is then sent to the hid-
den layer of reduced CRBM to convert to the distributions
of the hidden nodes.

sample. To synthesize a new style, previous work uses the
values of style vector to represent the fractional weights of
styles we want to generate. In this case, a style vector with
0.5 at the ith and jth elements corresponds to a style that
is an average of the two respective categories. When as-
signing different fractions to different elements for the style
vector, the generation function will create new styles of mo-
tions which are the blending of different styles based on the
fractional weights.

We do not follow the original method but propose a new
style interpolation approach called the multi-path model.
For each style element with positive values, the multi-path
model creates a FCRBM instance to generate the motion
independently with only the corresponding style label be-
ing active. After the visible data of each style is generated,
an average of the data weighted according to the respec-
tive fractional values is sent to the hidden layer of the bot-
tom reduced CRBM. For example, when given a style vec-
tor [0.6,0.4,0], the model creates a FCRBM instance with
style vector [1,0,0] and a FCRBM instance with style vec-
tor [0,1,0] to do the generation separately. The connection
weights of both are the same, and the output is interpolated
with 0.6 X x1 + 0.4 X x2 where x1, 2 denotes the respective
output. The architecture of the multi-path model is shown
in Fig. 6.

The style interpolation across the hidden layer is a new
form of style interpolation. Hidden layer interpolations re-
sult in a motion vector which is the interpolation of two
motion styles and can be different from all the motion sam-
ples. Since the generation result will feed back to the model
for the next prediction, the new motion frame can lead the
model to generate a new sequence of motion. On the other
hand, it may result in unfamiliar input for the model and
lead the function to be unable to predict the next frame.
Thus, it is possible that this approach will fail on some



style interpolations. Although the multi-path model can-
not guarantee a complete generalization, it is much more
robust than interpolation among style parameters. This is
because the overfitting of the motion generation function at-
tributed more to style vector 6 than past motion data x;<:.
In the multi-path model, the style label parameters assigned
to each instance of the FCRBM are familiar to the prediction
function. Thus, there is only one uncertain factor, the input
data z;<;. On the other hand, an explicit style interpola-
tion with style label parameters can result in a style label
parameter unfamiliar for the prediction function. All the
conditional parameters of the prediction function are then
uncertain in this approach. In this way, performing style
interpolation with the hidden layer is more robust.
Overall, there are four ways to do style interpolation:

1. Animation blending. Two motions with the same
content but different styles can be combined with inter-
polation among motion vectors. In this approach, each
motion is viewed as a high dimensional trajectory, and
motions can be combined after time warping and cor-
responding points are assigned. Animation blending is
the most popular way to combine two motions. It does
not suffer from the risk of generating inadmissible mo-
tions that prediction-based methods do. On the other
hand, it lacks the generalization capability of those
methods, such as creating new motions through anal-
ogy, and its performance depends on the correctness
of time warping and matching correspondent frames.
Moreover, it is also known to average out the styles of
motions on combination, while style-content separa-
tion approach can preserve more significant styles [15].

. Style label interpolation. The conventional ap-
proach to blend different styles together is to apply
a linear interpolation of the label parameters.

. Visible layer interpolation. Our multi-path model
can also be applied to a single layer FCRBM. The only
difference is that the output of the FCRBM is then a
motion vector, and the resulting motion data is the
direct interpolation across these vectors.

. Hidden layer interpolation. In the hierarchical
FCRBM, the multi-path model does the interpolation
at the hidden layer. As shown in Fig. 6, the interpo-
lation process works on the hidden node distributions
of the reduced CRBMs. In this way, the style interpo-
lation blends motions implicitly instead of modifying
motion vectors explicitly.

Due to the limitations of conventional animation blend-
ing with respect to style-content separation, we did not in-
clude animation blending in the experiment and only com-
pare style interpolation approaches.

6. EXPERIMENTS

Our motion samples are derived from the CMU Graphics
Lab Motion Capture Database. The skeleton of the CMU
motion capture data contains 38 nodes, and the total de-
gree of freedom of all joints is a vector with 96 dimensions.
There is a root node containing the global information of
translation and rotation, and every other node maps to a
part of the body that contains the local rotation informa-
tion. The rotation of each node is represented as exponential
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maps with three dimensions. To learn a motion generator
that focuses on the dynamics and interaction of body parts,
we remove the global translation from the motion vector.
We selected eight walking motions with different styles from
database subject #105.

In this experiment, we applied a previous approach [16],
which uses FCRBM with style label interpolation, as a
baseline for comparison. The FCRBM program is derived
from Taylor’s website!. To evaluate the performance of
the HFCRBM and the multi-path model, we evaluated two
approaches: the HFCRBM model with conventional style
label interpolation and the HFCRBM model with the multi-
path model. To test whether our multi-path model can also
improve the performance of the FCRBM, we evaluated the
performance of the combination of the FCRBM and the
multi-path model.

To sum up, we compared the performance of (1) FCRBM
with style label interpolation, (2) FCRBM with multi-path
model, (3) HFCRBM with style label interpolation, and (4)
HFCRBM with multi-path model. The performance is eval-
uated with pairwise blending of two motions. In style inter-
polation, the generation process succeeds more easily when
the ratio is weighted more toward one style; for example, a
80%/20% blending. It is more challenging when the ratio is
close to one. In our experiment, we chose the most difficult
option, the 50%/50% blending, for every case. For FCRBM-
based models, the prediction function has two sets of input,
the style label and the past data sequence. When blending
two motions per a given ratio, using the partial sequence
of one motion as initial input is considered a different case
than using the other motion for initialization. Thus, there
are two configurations for blending two motions, and total 64
configurations of pairwise blending for 8 motion sequences.
We used a FCRBM with 600 hidden nodes and a HFCRBM
with 360 nodes at the first hidden layer and 360 nodes at
the second hidden layer.

In our experiment, we recruited 8 participants and asked
them to evaluate the results of motion generation based on
the following criteria:

e The movement must respect the range of motion for
each joint.

e The movement must not significantly violate physical
law. For example, it is unacceptable to see the skeleton
swimming in the air.

It must be walking, and the pace must be close to one
of the motions or lie in between the two.

The resulting motion must contain some of the style
of each sample. It is permissible if the style is not
as significant as in the original samples as long as the
related style cues are observable.

If a motion satisfies these four criteria, then we consider
the motion generation successful. The evaluation results of
four approaches are as follows.

FCRBM with style label interpolation. There are
some generated motions that are acceptable, but most of
them have two problems: (1) Most of the motions synthe-
sized shake in an unnatural way. (2) The styles are averaged.

"http://cs.nyu.edu/ gwtaylor/publications/
icm12009/code/index.html



(b) FCRBM with style label interpo-

lation. polation.

(c) HFCRBM with style label inter-
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(d) HFCRBM with multi-path model.

Figure 7: (a) Representative frames of motions March and QuickWalk. (b)—(d) Motions generated via 50/50 interpolation
between QuickWalk and March. The FCRBM with visible layer interpolation cannot blend two styles appropriately and
therefore is not shown in the figure. As we can observe from (c) and (d), both approaches based on the HFCRBM catch the
leg movements of March, and hand movements of QuickWalk, which are the most significant style features of the two motions.
Subfigure (b) shows that the motion generated by the FCRBM with style label interpolation has a vague style from both

samples.

In other words, those motions (ignoring the fact that many
of them are shaking) may acceptably be considered “walk-
ing”, and it is evident that they contain the styles from both
motions, but the styles are quite vague. Some of them look
similar to the motions generated from animation blending,
as they both exhibit the phenomenon of averaging out the
styles. Overall, ignoring the shaking properties and weak-
ened styles, the approach has a 8.3% success rate for motion
generation.

FCRBM with multi-path model. Applying the multi-
path algorithm at the visible layer of the FCRBM, we
achieved a success rate close to 32.8%. Characteristic of the
resulting motions is that we usually can observe one style
significantly while the other style is vague. In other words,
the style blending of this approach is more like a competition
than an averaging. Thus, when doing style interpolation,
it has a success rate higher than 32.8% for generating an
admissible walking motion, but some of them are evaluated
as having failed because they did not successfully blend two
styles.

HFCRBM with style label interpolation. The over-
all success rate for motion generation using this approach
is 36.7%. Among its more successful results are that none
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of the motion shake, and the style from both component
motions usually appear significant on the blended motions.

HFCRBM with multi-path model. The style qual-
ity of this approach is similar to some of the results of the
HFCRBM with style label interpolation in that the styles of
both motions are more apparent than in approaches based
on the FCRBM. The overall success rate of this approach is
55%.

The experimental results show that the HFCRBM with
hidden layer interpolation has a success rate 6.6 times higher
than the previous work, and the blended style quality is the
same as or better than the results of those approaches. Ex-
amples of motions generated by these approaches are plotted
in Fig. 7.

7. CONCLUSIONS

We have proposed a method for style-content separation
and motion style interpolation. Specifically, we developed
the HFCRBM which learns style-based motion generation,
and the multi-path model which performs style interpola-
tion with the hidden layer. The approach produced motions
with a success rate judged to be 6.6 times better than that
in previous work using the FCRBM. We also demonstrated



that the multi-path model improves the FCRBM. The hi-
erarchical structure provides the capability of hidden layer
interpolation, which is the major improvement for the style
interpolation approaches.

Although our algorithm yields better performance than
the previous work, it still needs further improvement on the
success rate for practical use. In part, this is due to the
small training set comprised of highly different styles. It is
also due to the model being trained without assigning any
constraints. Walking is a complex behavior that must obey
many biomechanical and physical constraints. To learn a
good model for various walking motions, without using any
constraints or domain knowledge, presents a considerable
challenge. This suggests that adding domain knowledge to
improve learning is a plausible way to improve the model
without increasing the amount of training samples.
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