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ABSTRACT Since 1966, when Condon and Ogston’s annotations of interac

tions have suggested that there are temporal correlatiemgebn
the behaviors of two persons engaged in a discussion [9in&}, t
relations between interactants’ behaviors have beentigeg¢sd in
both behavioral studies and cerebral activity studies32528, 40,
22,37, 45, 30, 31]. These studies tend to show that when @éopl
teract together, their ability to synchronize with eacheoth tightly
linked to the quality of their communication: smooth intian
is possible only when partners are online, not only activteréac-
tive [28], responding to each other in a continuously chagdiow.
Consistently with these results, in the design of autonaaments,
be robotic or virtual, able to interact with human users dreot
agents, one of the major issues is the “handling of time”.[T8je
agents use verbal and non-verbal means to communicate.afbey
endowed with perceptive capacities allowing them to degedtin-
terpret what their interactant is saying and how. When alkifpents
are virtual, interacting in a virtual environment, they daave di-
rect access to information about their partners: there isesd
of complex signal processing, and time handling is fac¢éida(see
fig.1(a) for such a setting). By contrast, when agents haiugeo-
act through the real environment, just as they would have teith
humans, acoustic and visual analysis software is neededvalp
information on behaviors as well as high level informatioclsas
emotional and epistemic states: these complex procedsetirte
and introduce delays within the interaction loop. As a cqons@ace,
agent-agent interaction (as in fig.1(b)) or agent-humaeraction
cannot be handled as in human-human interaction. Progedsin

While speaking about social interaction, psychology ctaés cru-
cial the temporal correlations between interactants’ biens: to
give to their partners a feeling of natural interactionerattants,
be human, robotic or virtual, must be able to react on appatpr
time. Recent approaches consider autonomous agents asidgha
systems and the interaction as a coupling between thesensyst
These approaches solve the issue of time handling and etwble
model synchronization and turn-taking as phenomenon énterg
with the coupling. But when complex computations are added t
their architecture, such as processing of video and audiuats,
delays appear within the interaction loop and disrupt thigpting.
We model here a dyad of agents where processing delays are con
trolled. These agents, driven by oscillators, synchroaizé take
turns when there is no delay. We describe the methodology en-
abling to evaluate the synchrony and turn-taking emergehide
test oscillators coupling properties when there is no detaypling
occurs if coupling strength is inferior to the parametertomliing
oscillators natural period and if the ratio between ostilis peri-
ods is inferior to ¥2. We quantify the maximal delays between
agents which do not disrupt the interaction: the maximahyléb|-
erated by agents is proportional to the natural period ofthupled
system and to the strength of the coupling. These resultpudre
in perspective with the different time constraints of hurhaman
and human-agent interactions.

Categories and Subject Descriptors lays influence the interaction capabilities of agents dy@dr aim
H.1.2 Models and Principled: User/Machine Systems is to evaluate this influence. _ _
;1.6.4 [Simulation and modeling: Model Validation and Analysis When we refer to the timing of an interaction between agents,

be human, robotic or virtual, “real-time” may account for alev
range of time scales. “Real-time” can be defined as: “Degatin
General Terms relating to a data-processing system in which a comput@ives
Theory, Measurement constantly changing data,[...] and processes it suffigieapidly to
be able to control the source of the data” [7]. For instarel&jrig
about “real-time” Embodied Conversational Agents (ECApli@s

Keywords to give on one hand an estimation of processing, answeridgan

Human-robot/agent interaction, Multi-user/multi-viteagent in- imation speed; and on the other hand an estimation of thelsyee

teraction, Peer to peer coordination,Emergent behavameéiing the systems, human or virtual, agents interact with. Withiar-

the dynamics of MAS, Agent commitments actions (and given a certain culture), there is a continufitimee
scales which may be focused on, depending on the phenomexnon w

1. INTRODUCTION are talklng about:

- for instance in face to face interactions, gaze crossirtyssm-
. chronous imitations rely on imperceptible delays40mseg¢ [10];
Cite as: Effect of time delays on agents’ interaction dynamics, Kee-P - concerning human-human turn-taking, over 70% of between-

/ﬂ\'g;ﬁg %‘ﬁge&”jtg‘zzmagggh;’; %XKII\/II,T'S%%Q]&);A#E&O”;&JS speaker silences are less than 586c[46], i.e. the approximate
nenberg and Stone (eds.), May, 26, 2011, Taipei, Taiwarﬁqm-loéz. simple vocal reaction time to variably-timed cues ([21fditby
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(b)
Figure 1: Two agents setup. (a) The two agents are on the
same computer, exchange of information between them is fast
and coupling occurs (synchrony and turn-taking). (b) The two
agents are on two different computers, information exchangd
has to be processed: there are longer delays and the coupling
does not occur anymore.

- up to 30% of between-speaker silences are less tham&ao
long, i.e. the simple vocal reaction time over maximallydieable
conditions ([17] cited by [46]);

- behaviors modifications in non-verbal interactions arbaeis-
tively coded with Q4sectime windows [27];

- in human-agent interactions, after 1 second delay humardiyh
detect being imitated by the virtual agent and after 4 sexohey
do not detect it at all [3].

These time scales are spread frooms@cto 4 seconds but
we foresee two main timescales to classify agent desigriestud
> lsectime scales systems and Iffedime scales systems.

- the > 1sectimescale enables virtual agents to handle communi-
cation of the type emit/receive/answer, i.e. the telegsiphodel

of Shannon’s theory of communication [43]. For instancehd
interaction is a question/answer scenario with only namakebe-
haviors of mean latency such as posture or attitude imitatimne
second delay will not disrupt the interaction. This timésedlows
processing delay to appear within the interaction loopybeh per-
ception and reaction of agents; this is the rough estimatfam-

ing of many present virtual agents systems, when they ictterith

coupling between oscillators [46, 39, 44]. These approagont
to the fact that, during an interaction, participants anatiooiously
active, each modifying its own actions in response to thdicon
ously changing actions of its partners. They highlight theassity
to handle small timescales to build agent capable to intevih
humans, and capable to give them a feeling of shared unddrsta
ing [38].

In our paper, given a specific time scale, we study the range of
delays in the interaction loop which do not disrupt the iation.
In particular we study the effect of time delay on couplingvieen
two agents. We simulate simulate them by two oscillatoregisi
model similar to [39].

In the remaining of the paper, we first remind the psycholalgic
and neurological background on interaction and couplisgyell
as their existing robotics and virtual implementations ssltatory
systems. In Section 3 we describe our model of dyad of oscilla
tors. Then, in Section 4, we test the coupling propertiesushs
a dyad, i.e. we analyze the emergence of coupling depending o
the difference between natural periods of oscillators @atprocal
influence between oscillators. In Section 5, we test if déathe
interaction loop has a crucial effect on the coupling cafgtof
the dyad. Finally, in Section 6, we discuss these resultstlagid
outcomes.

2. DYNAMICAL APPROACH OF INTER-
ACTION

The dynamical approach of interactions is sustained by psy-
chological studies which tend to show that dyadic parareedér
interaction (such as synchrony) are phenomena emergingtfre
coupling occurring between interactants. In mother-ihfaterac-
tions via the “double-video” design (which enables a taedempter
interaction to be modified online by experimenters), syooiris
shown to emerge from the mutual engagement of mother anatinfa
in interaction [25, 27, 28]. In adult-adult interactions disted by
a technological device which restrains perception to oalbtile
stimulation, coupling between partners has been shown &gam
from the mutual attempt to interact with the other [2]. Other
studies focus on the “Unintentional Interpersonal Coation”,
in both behavioral studies [40, 22] and cerebral activitydis
[37, 45, 30, 31]. These studies show that synchrony emexkgss e
when people do not intentionally interact. Synchrony isvaino
as emerging from the coupling which takes place betweenl@eop
when cross-perception is enabled (cross-perception saghen
two interactants perceive each other simultaneously: eypgact

human and have to process both video and audio signals and toor touch are cross-perceptions [2]).

compute both verbal and non-verbal behaviors to display.
- the timescale around hundreds of milliseconds comes freyn p
chological studies of interaction. This is the time scakoamted
to changes of gaze direction, facial expression and acopisimi-
nence; these behaviors are necessary to give to human bsers t
sense of ECA engagement; a one second delay can completely di
rupt this feeling [3]. The model of fast and automatic apgahi
triggers very quick reactions(100mseg [23]. It claims that reac-
tive and very rapid influence of stimuli on behavior is crlicihis
model associates this quick reaction to a larger time s¢aksrer
the second) which enables top-down modulation of the behavi
Recent approaches in psychology [27], neuro-dynamicsdad]
agent design [32, 16, 39, 33] proposes that communicatian is
coupling between dynamical systems and stress the issum®f t
handling: agents, when coupled together with their intewats,
constitute a new, larger and richer, dynamical system. i&iance
turn-taking and synchrony can be modeled as emerging frem th
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These phenomena are echoed by physics and theoreticastrdi
oscillators coupling. Huygens discovered in 1665 that tedo-
lums of two clocks hung together synchronize in anti-phdiss a
while [15]. The model explaining the anti-phase synchration of
the pendulums was proposed three hundred years later [2dn w
the two pendulums oscillate, they make the support movess&h
movements of the support provide little exchanges and lbss-0
ergy between the two oscillators. The furthest from antigghthe
pendulums are, the larger the movement is and thus the hitjees
exchange and loss of energy is. The anti-phase synchrimizat
the unique stable attraction basin of this dynamical syst&fis
explains Huygens’ observations.

The more general issue of coupling between non-periodic
oscillators such as chaotic oscillators has been studiefdby
42, 14, 19, 4] following the pioneer model 8fynchronization in
Chaotic Systemfsom Pecora and Carroll [34].



The stability of these coupling states leading to turnstgKanti-
phase) and synchrony (constant phase-shift) is a diresecprence
of the reciprocal influence between agents. It has alreaely lve-
plemented for robotics [39] and for virtual agent coupliBg]l
- In the robotic experiment, two robots controlled by newstil-
lators are coupled together by their mutual influence: taking
and synchrony emerge [39].

- In the virtual agent experiment, Evolutionary Robotiess used
to design a dyad of agents able to favor cross-perceptioatsn;
the obtained result is a dyad of agents with oscillatory g
which share a stable state of both cross perception and mch
[33].

Coupling Model Principles.

These two implementations are quite simple: both signals em
ted and received by the agents are one dimension signalseaynd v
few computational processes are done on them (by contrasfy w
visual perception is involved such as in human-agent iotena,
images of video are bi-dimensional signals which requiramex
computational processes). It allows for very fast procegssime
with time delay negligible compared to interaction timinig.en-
ables an easy coupling with the emergence of both turn-gedial
synchrony. We reproduced these experiments with a dyad biBD
manoid virtual agents. If the two agents are on the same canpu
and agents have a copy of the other agent’s behavior (segdp. 1
the signals are exchanged without any treatment: no timaydel
is introduced within the interaction loop and coupling ascuBy
contrast, if each agent is on its own computer and relies onsic
and visual analysis to get information on the other as in fidp) 1
setting, the coupling does not occur anymore. We believedhi
fect is due to the complex audio-video processing whictodhices
time delay in the interaction loop between agents.

This last setting is equivalent to human-agent systems \when

man’s motion is analyzed and sent to the agent. In our work we

are relying on Watson [26] that provides head motion in extéve
time. The mean time to get data concerning the partner (pegdf/
head movements) is aboutelc

We test this model and its sensitivity to time delays by imple
menting a dyad of agents as a NN (Neural Network) in the NN Sim-
ulator Leto/Prometheus (developed in the ETIS lab. by Gauss
al. [12, 13]). Leto/Prometheus simulates the dynamics 06NN

by an update of the whole network at each time step; it also en-

ables to simulate coupling between agents comparable fgingu
through the real world [39]. These two oscillators contiw be-
haviors of two virtual agent implemented with the systemt&re
[35]. This system enables one to generate multi-modal &renhd
non-verbal) behaviors with accurate timing.

3. OSCILLATOR COUPLING MODEL

In both robotic and virtual agent modeling of turn-takingiot
properties must be satisfied by every agent [39]: each agentoh
alternate between an active state and a receptive stase; stegtes
have to be influenced by the actions of the other agent. Whamtsg
having these two properties are placed in the same envinonme
turn-taking emerges [39].

To satisfy these conditions, agents are controlled by tatest
oscillators: one state orientates the agent to be actieea@ient ini-
tiates actions in imitation games, and speaks in dialobs)pther

IEvolutionary Robotic is a “technique for automatic creatiof
autonomous robots [...] inspired by the Darwinian prineipf se-
lective reproduction of the fittest” [29] preface
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state orientates the agent to be receptive (the agent @sitatim-

itation games, and listens in dialogs). This oscillatonftuenced
by the other agent’'s behavior: it is pushed toward receptiate

when the other agent is active. These two properties makagafy
agents have one stable state, phase-opposition (in digpstgnss,
they speak alternately).

3.1 The oscillator

The oscillator is made of two neuronsl}, whose activities are
bounded between1 and 1.N; is the state of the agent: in our case,
whenN; = 1 the agent speaks, and whén= —1 the agent listens.
These neurons activate and inhibit each other proportipt@the
parameten. a controls the natural period of the agent’s oscillator,
i.e. the speed of oscillation between speaking and listesiates.
This model fits the set of equation 1 (see also fig.2(a)):

{ Ny (t+1) = Ny (t) — o - Na(t) (1)
No(t+1) = Na(t) +a-Ny(t)
Nl
N, H ,/‘/
+1 (®)

@)

Figure 2: (a) The oscillator is made of two neuronsN;, and
N, with a self-connection weighted tdl. A link with weight +a
connectsN, to N; , and a link with weight —a connectsN; to
No. (b) Activation of this oscillator when it is isolated from any
external influence.

We can make the approximatidw(t + 1) — Ni(t) = N/(t) if o
is small enough, i.e. iNy(t) andNx(t) vary almost continuously:
with a < 0.2 they vary between-1 and+1 in more than 10 time
steps (see fig.11 for an illustration of this issue). Makihig tp-
proximation, the system of equations 1 becomes:

N:/L(t) =—a-N(t) (2)
Np(t) = o Na(t)
By deriving these equations, we obtain the following seti6f d
ferential equations:
Nj/l/(t) =—o? Nl(t) (3)
Ng (t) = —a?-Na(t)
Finally the general solutions of such equatiad$(t) + a2-N(t),
are the oscillatory functions of equation 4:

N(t) = Asin(at + @) 4)
whereA is the constant oscillator amplitude ag@dts phase: in
our case, when the oscillator is isolated, it starts with t auti-
vation, A= 1 and@= 0. The implementation of this oscillator in

the Leto/Prometheus simulator makes the neiNpproduces the
sinusoidal signal plotted on fig.2(b).

3.2 The coupling

Let us consider a dyad of oscillatddsandM. To enable mutual in-
fluence between them, the main neurbh &ndM;) of each oscil-
lator should directly (weakly) inhibit the main neuron oétbther,
see fig. 3. Thénhib parameter controls the sensitivity of the agent
to the other agent’s speaking turn:irihib is low, speech overlap-
ping is tolerated by the agent, whereaisffib is high the agent will
be quiet as soon as the other agent speaks.

For the oscillatorsiN andM, the set of equations 2 becomes:



Noise

Figure 3: Architecture of the two agents influencing each otbr.
Each agent is driven by an internal oscillator and influenceshe
other depending on this oscillator. When real effectors (sch as
robotic arms) or/and captors (such as camera) are used, n@s
is added to signal by the environment. In simulation this nase
has to be simulated to enable the agent to anti-synchronizend
avoid oscillation death.

{ Nj(t) = —a - Na(t) —inhib- My (t — 1) 5)
N (t) =a-Ny(t)
and
{ M1 (t) = —a - Ma(t) —inhib- Ny (t — 1) ©)
Ma(t) = o Ma(t)

Fig. 4 shows an example of coupling when the oscillatorgihhi
each other: the two oscillators start in pha$g(to) = N (to) = —1,
and after a period of mutual perturbation, they stabilizeaiiri-
phase. Itis important to note here that, in simulation, @omist
be added to the signals exchanged between agents [39]oibks t
contrasted with real situations where noise is naturalsent in
the environment, effectors and captors; in simulationsilators
have the exact same period and phase, and if there is no tiage,
stay in the unstable in-phase state and inhibit each othi#édeath.

Internal states
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Figure 4: Activation evolution over time of each oscillator of
the two systems, fora = 3 = 0.05, —inhib = —0.01. The two
systems start in the same state: at timé = 0 the activation of
their oscillator is 0. When the oscillators start to activate, they
inhibit each other and one takes the advantage. After a trans
tion period, the oscillators are stabilized in phase opposbn.

The dynamics of the dyad of oscillators is different from ive-

ple sum of each oscillator dynamic. Even inthe fig. 4 wheréloe
oscillators have the same natural period, the period obdeafter
coupling differs from this natural period: natural perieglground
125 time steps for both oscillators whereas, the Dyad’s tdhRe-
riod (DNP) once coupled is around 160 time steps. It depends o
both the natural periods of oscillators,andf, and on their recip-
rocal inhibitioninhib (see Section 4.2).

4. COUPLING ANALYSIS

Each dyad of agents is characterized by a set of three paemnet
a, the speaking/listening period of agenfi\the speaking/listening
period of agentM, anahhib, the reciprocal influence between these
agents. Coupling occurs between agents if they manage¢b eea
shared stable state, even wteeand are different. Here coupling
occurs if agents speak alternately, i.e. if their interrsdikators
synchronize in anti-phase.

4.1 Evaluation methodology
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Phase of §1

For a given set of parameterq, (B, inhib), to determine if anti-
phase synchronization occurs between agents, we use aprece
described by Pikovsky, Rosenblum and Kurths in their refese
book “Synchronization” [36]. This procedure consists imar-
ing the phases of two signals to determine if they are symgue
or not.

Let us recall that “the phase of narrow-band signal such es th
one produced by our oscillators (sinusoid) can be obtained b
means of the analytic signal concept originally introdubgdsa-
bor [11]" [36]. To implement this, we have to construct therzo
plex procesg (t) from the scalar signali(t):

4(t) = N(t) +iN (t) = A(t)?"
whereNy (t) is the Hilbert transform oN(t) [36].

The instantaneous phagg) and amplitudeA(t) of the signal
are thus uniquely determined from equation 7.

7 i T

@)

~
/N
st

Tim i
Figure 5. Signal and phase (modulom), a = 3 = 0.05 an
—inhib = —0.01 The almost sinusoidal signal is the original
signal N1 (t) (shown in fig.4) and the almost linear (modulor)
signal is its associated re-built phase.

After that, when the phasepy(t) and @y(t) of the signals
are obtained, we consider their difference modufo & @y (t) —
v (t)(2m) = 0, signals are in phase; ¢k (t) — @w (t)(2m) = T, sig-
nals are in anti-phase (see fig.6). Horizontal plateausisngitaph
reflect periods of constant phase-shift between signals, syn-
chronization. Horizontal plateaus near onerflLreflect periods of
anti-phase synchronization.
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Figure 6: (a) Internal activations of two agents ft = 3 = 0.05
and —inhib = —0.01). (b) Associated phase-shiftAg, o,(t).
When agents synchronize in anti-phase, their phase-shifter
mains nearl- Tt

For each 5000 time steps simulation, we define that phage-loc
occurs if the two following properties are satisfied:
- First, the phase-shifigy, v, (t) becomes almost constant at time
tphaseLoctime defined in time steps), smaller than 4000 time steps
(1000 time steps before the end of the simulation), and nesnai
constant until the end.
- Second, itphaseLockeXists, the DNP (Dyad's Natural Period) after
tphaseLockiS finished (we notelfinisheq = 1). It is not the case if
the inhibition between oscillators is too high (see Sectid fig.
8,(b)): Agn, v, (t) becomes constant but oscillators do not oscillate
anymore; one remains high whereas the other remains low;iBNP
infinite (then we not8jnished= —1)-

We defined the locking speed &haselLockSpeed (4000—
tphaseLock/4000x Trinished: If phase-lock is immediate with fin-



ished DNP,PhaseLockSpeed 1; if phase-lock occurs at =
4000, PhaseLockSpeed 0; and if there is no finished DNP,
PhaseLockSpeed 0. For instance, with the previous parameters,
o = =0.05 andinhib = 0.01, the phase-lock occurs with a speed
near 08 and for a phase shift equal 1(i.e. anti-phase locking).

These automatic calculus &haselLockS peedPhaseShiftand
Period enable us to test the ability of a given dyad of agents (char-
acterized bya, and inhib) to take turns (synchronize in anti-
phase).

4.2 Test of Parameters

The parameters usually tested in such a coupling betweén osc
lators are they natural periods ratigP and their mutual inhibition
—inhib [36]. We briefly test here these properties of the dyad of
oscillators.

Reciprocal influence.

For givena = 3 = 0.05, we test the influence of reciprocal in-
hibition on the coupling: if inhibition is too low, no couplj is
possible (or after a very long time if the two oscillators ddtie
exact same period), and if inhibition is too high, the twoikeiors
do not oscillate anymore, one stays high and the other stays |
the dynamic of the dyad is disrupted (see fig.7).

PhaseShift and LockingSpeed

Inhib

Figure 7: The plain line represents the phase shift when phas
lock occurs (a phase shift equal to 1 is for anti-phasé@n, m, =
1), and the dotted line represents the locking speed. Fanhib >
0.050, a phase lock equal tartis shown but oscillators do not
oscillate, one remains high and the other remains low (see fig
8,(b)).

Coupling occurs when phase-lock occurs, phase-shift islequ
to 1t and periods of oscillators are finite. For the oscillator pa-
rametersa = 3 = 0.05, the highest reciprocal inhibition between
oscillators which enables coupling without killing osatibns is
inhibjjmic = 0.05 (see fig. 8, (b) and (c)). Actuallnhibyimit ~ o, B,

i.e. inhibition should not be higher than the internal weésgbf os-
cillators.

Ratio between natural periods of oscillators.

Let us test the influence af /B variation on the coupling. The
reciprocal inhibition is fixed tanhib = 0.05, the oscillatd’s pa-
rameter is fixed t@ = 0.05 and the oscillatdd’s parameter varies
betweerp = 0 andp = 0.3 with a Q002 step (see fig.8).

For reciprocal inhibitiorinhib = 0.05, if o /B differs from 1 too
much, oscillators do not lock in anti-phase: whe/3 decreases
(B increases), the DNP increases until the second oscillaiil-o
lates several times during one oscillation of the first ot 1.3);
conversely, when /B increasesfi decreases), DNP decreases until
there is not anymore oscillation (f@r= 0.03) (see fig. 8,(a)).

5. TEST OF DELAY EFFECT

In order to test how a delay in the processing of signals tiffec
ability of an agent to couple with another, we introduce inadyad
of agents a delay in the reciprocal inhibition (see fig.9)isTde-
lay will account for exactly what happens when we go from agen
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interacting altogether in the same virtual environmentgerds in-
teracting via the real world with other agents or with humd®-
cessing of audio and video signal introduces delays betwezn
perception and the availability of the information withimet sys-
tem.

A null delay means that the signal is immediately transrdijtee
delay d means that the signal transmitted is the signal which oc-
curredd time steps before (see sets of equations 8 and 9). The
“delay box”, recordgsd signals in a FIFO queue.

Figure 9: Architecture of the two agents influencing each otbr.
Each agent is driven by an internal oscillator and influences
the other depending on this oscillator. The signals exchargl
between agents are delayed bg time steps.

With the delayd, the two sets of equations 5 and 6 become:
Nj(t) = —a-Na(t) —inhib- M1 (t —1—d)

{ NJ(t) = a-Na (1) ®
and
{ MY (t) = —a - Ma(t) —inhib- Ny (t — 1—d) ©
Mj(t) = a - My(t)

Test of the delay fox = 8 = 0,05.

To evaluate the effect of the delay, we test the couplinglaitipa
of the dyad for different values af. We maked vary from 0 to 100
time steps and calculate for each experiment the speedigftzade
locking between the agents as well as the DNP (see fig.10).

A 4 M /W\ N an

PhaseShift and LackingSpeed

Delay
Figure 10: a = 3 = 0.05 and the transmission delayd varies
between0 and 100time steps (nhib = 0.01). The plain line rep-
resents the phase lock when it occurs (a phase lock equal todl i
for anti-phase, Ay, m, = 1), and the dotted line represents the
locking speed.

Figure 10 shows that, with = 3 = 0.05 andinhib = 0.05, as
soon as the delayis above 18 time steps, the coupling is disrupted:
locking speed is null and the phase shift is arou@m). Agents
have the same natural periad+£ 3 = 0.05) and start with the same
phase @i = 0), by consequence their phase shift is naturally near
0 or 2twhen no coupling is possible.

To test how this Maximal Tolerated-Delay (MTD) depends on
the three parameters of the dyad, we first test if it is propoat
DNP.

Test of the delay for.00< a = g < 0.30.
Forinhib=0.03 and 001 < a = 3 < 0.3 the DNP of the coupled
system obtained are displayed on fig.11.
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Figure 8: (a) a = 0.05and 3 varies between0 and 0.3 (with a 0.002 step). The plain line represents the phase lock when it occar
(a phase lock equal to 1 is for anti-phasep@n, v, = 1), and the dotted line represents the locking speed. For regiocal inhibition
inhib = 0.05, if a/p differs from 1 too much, oscillators do not lock in anti-phase anymore: for 0.5 < a/B < 1 there is still a phase
lock but with a phase shift varying from 1tto 1/2; for o/f > 1.25 (3 = 0.04) the two oscillators stop oscillating. (b)(c)(d)(e) Actiation

of the two oscillators for the different natural periods of second oscillator: (b)3 = 0.03; (c) 3 =0.05; (d) =0.1, (¢)p=0.11

Common Periods in time steps.
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Figure 11: DNP (Dyad's Natural Period). Undera =3 =0.03=
inhib no coupling occurs. Abovea = 3 = 0.21 coupling appears
chaotic.

At this point, we can notice two things:

- Undera = 3 = 0.03 = inhib no coupling occurs:a and 3 are
lower than the reciprocal inhibitiomhib; The internal dynamics

of oscillators are disrupted as soon as agents are put grggte
observe the same phenomenonifdrib = 0.05).

- Above a = 3 = 0.2 coupling appears chaotid; (t) and M1 (t)
cannot be considered as varying continuously (see Sectihn 3
they switch unpredictably between positive and negativaes
constant phase-opposition is not a stable state of thersyste

These phenomenons are independent from the study of thg dela
but they will influence our results.

In the same conditionsrhib=0.03 and 001 < o =3 < 0.3) we
test the effect of delay, @ d < 50. Figure.12 shows the phase-lock
speed obtained for every cougle = 3,d).

We can notice here that above a certain delay, the Maximal Tol
erated Delay (MTD), coupling is disrupted. But when the gé&a
a multiple of the DNP, coupling is enabled again.

For inhib = 0.03, coupling occurs betweam = 3 = 0.03 and
o = 3 =0.2. Between these values, the curves of the DNP and
the MTD are almost proportionalMTD = 0.15 x DNP, with a
correlation coefficient equal ta®0.

Doing the same simulations, extraction of phases, and lealcu
tions of phase-locking, for different coupling strengthib = 0.01
andinhib = 0.03, the DNP and MTD also appeared proportional.
For inhib = 0.01, MTD = 0.18 x DNP with a correlation coeffi-
cient equal to @9, and forinhib = 0.05,MTD = 0.12x DNP with
a correlation coefficient equal tody.

The MTD appeared to be proportional to both the DNP and to
the coupling strengthMTD = (0.195— 1.5 x inhib)DNP with a
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Parameter of oscillators:”

Alpha=Beta > Delay in time steps

Figure 12: Phase-lock speed obtained for coupleg = B,d)
with 0.01 < o =3 < 0.3 and inhib = 0.03. A null phase lock-
speed account for no stable coupling, and a phase-lock speed
equal to1 accounts for a quick and robust anti-phase coupling.

correlation coefficient equal ta®0.

6. DISCUSSION AND CONCLUSION

We have described the implementation of a dyad of agents con-
trolled by oscillators and influencing each other: this dgadbles
synchrony and turn-taking to emerge when coupling occurs. W
have then described the methodology used to evaluate ogup-
tween these agents and tested the parameters of this dgadtith
between the natural periods of agents behaviors; the oezEpinhi-
bition between agents. Our results show two main facts coigg
oscillators modeled by neurons:

- First, that the internal variables of the oscillatoosfér AgentN
andp for AgentM) fix the maximal external influence the oscillator
tolerates without the death of their oscillations.

- Second, given the step by step update of the NN by the NN Simu-
lator, when the weight of the connection is ove2@ the activation

of the neuron does not vary continuously anymore and becomes
chaotic.

Considering these results, we tested how a delay in thentians
sion of signal between agents impacts the capacity of thatage
to couple. We tested the séd < a < 0.3,0 < 3 < 0.3,inhib €
{0.01,0.03,0.05} } for 0 < d < 100.

The first result concerning delay is that it has an effectoddog



delay disrupts coupling. As conjectured in the introduttivhen
agents interact in the wild world (e.g. Human-Agent intéiag
see fig.13), the complex computation of video signals thexe ha
to perform introduces delays in agents communication wiiely
disrupt their coupling capabilities.

Figure 13: Experimental design for evaluation Human-Agent
interaction [5].

Second, delays appeared as having an all or none effecttimgup
occurred rapidly or did not occur at all.

The third result is that the Maximal Tolerated Delay (MTDeth
maximal delay enabling coupling of the dyad), depends propo
tionally on both the Dyad’s Natural-Period (DNP, which dege

ona andp) and the coupling strength (i.e. the reciprocal inhibition 7.

inhib):

- For a given coupling strength, the MTD increases when th€ DN
increases: If the coupling concerns long period phenomedia as
posture imitations, the MTD will be longer than if the coungliin-
volves fast phenomena such as smiles or gaze directiortiiomsa

- For a given DNP, the MTD increases when the coupling strengt

decreases: If the DNP is fixed, when the mutual influence ketwe
agents decreases, the effect of the delay decreases tddTibés
higher).

These results do not only concern interactions betweentagen

but they are also relevant for human-agent interactionshantan-
human interactions. As we have seen in Section2, both pgygho
ical and neurofunctional models of human-human interast[@5,
27, 28, 37, 45, 40, 22, 30, 31, 2] claim that dynamical couplin
between humans is an essential aspect of their communmicatio
enables non-verbal interaction but it can also be seen asipleo
mentary part of the verbal exchange [38] which leads to rfigeli
such as rapport and mutual engagement .

Based on the facts just listed, the design of agents deditate
interact with humans needs to integrate coupling dimengsrwe
know, time constraints have to be satisfied when we speak abou
teraction. The present paper gives a rough estimation dfiffie
according to the timescales of the considered coupled tmh&or
instance, during dialog between a speaker and a listenéngif
mean time between successive backchannels (listenermatk
edgments [47]) is aboutsgc[1], the signals which may enable to

regulate this timescale cannot be delayed more than 18%if th

time scale (see Section 5), i.e. the timing of backchanneist ive
accurate at more or less 588eqi.e. more accurate than the verbal
reaction time to unpredictable signal [46]).

Considering these results obtained for agents interaetitign
the same virtual environment and with an artificial delay,fature
work involves two directions:

- Atheoretical way. The MTD should be quantified by addinggiel
in mathematical models, such as the Kuramoto model of cogpli
between oscillators [20].

- An experimental way. We propose to test the effect of a cdlet!
delay on the coupling between our agent and a human integacti
in a cooperative task, for instance the maze task of [6]. Td8k
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involves two humans; A character is lost in a maze; One of the
subjects sees the maze and the character; the other hasnthe co
mands to control the character; Both have to cooperate toafind
way out the maze. This task induces rhythmic patterns ofante
tion in which delays can be controlled. By replacing one eftthio
humans by our virtual agent, the MTD can be estimated regardi
the task timescale. The significance of delay can be addtetse
delay can be intentionally added in order to transmit infation
concerning understanding [38] or in order to disrupt intéoe in
case of disagreement.

In conclusion, we have seen in this paper that “handlingméti
is a matter of timescales when dealing with human-agent emtag
agent interactions. It is crucial to take into account deléap-
pearing with computational time) in the coupling capasitié the
agents.
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